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CONTENTS

Summary

The first part of this thesis focuses on the theme of group actions on smooth manifolds
and cohomology. Our contribution was to introduce a new cohomology attached to group
actions on smooth manifolds called "Cohomology of co-invariant differential forms". More
precisely, let M be a manifold endowed with an action of a group Γ, we are interersted in
studying the graded vector space spanned by ω−γ∗ω where ω is a differential form with
compact support and γ ∈Γ. The results of this part are the subject of [1].

In the second part of this thesis, we introduce and study two new invariants associated to
any connected Lie group. More precisely, given a connected Lie group G we define p(G) as
the maximal integer p such that Zp is isomorphic to a discrete subgroup of G, likewise we
define q(G) to be the maximal integer q for which Rq is isomorphic to a closed subgroup
of G. Our study concerns connected nilpotent Lie groups and the relations of these two
invariants with a well-known algebraic invariants, namely the rank of the fundamental
group π1(G) and M (g), i.e the maximum among the dimensions of abelian subalgebras of
the Lie algebra g of G. The full extent of these results are presented in [3].



Chapter 1

General Introduction

In this chapter
1.1 Part 1: Cohomology of Co-invariant Differ-

ential Forms . . . . . . . . . . . . . . . . . . . 1

1.2 Part 2: Maximal Abelian Torsion-free Sub-

groups of Lie Groups . . . . . . . . . . . . . . 4

1.3 Perspectives . . . . . . . . . . . . . . . . . . . 5

This chapter provides the main guidelines by which we proceed throughout this document.
The first two sections contain the technical layout and statements of the central results,
these will be discussed with further details in Chapters 2 and 3. The final part of this
chapter is dedicated to the discussion of open questions and problems that were raised
during the period of preparation of this thesis and which may take part in future research
plans.

1.1 Part 1: Cohomology of Co-invariant Differential Forms

The first part of the thesis, which is the topic of Chapter 2, is for the most part an ex-
position of the article entitled "Cohomology of Co-invariant Differential Forms" that was
published in "Journal of Lie Theory". In this work, we introduce a new complex Ωc(M)Γ
that is attached to an action by diffeomorphisms of a group Γ on a smooth manifold M
and which consists of co-invariant differential forms i.e compactly supported forms ω that



CHAPTER 1. GENERAL INTRODUCTION

can be expressed as a finite sum ω = ∑
iωi −γ∗i ωi with ωi ∈Ωc(M) and γi ∈ Γ. The reason

for this specific labeling is that in many situations, co-invariant differential forms share a
complementary relationship with invariant differential forms i.e differential forms ω on M
satisfying ω= γ∗ω for any γ ∈ Γ, for instance when M is a compact manifold and Γ is a fi-
nite group, then it is shown that Ω(M)=Ω(M)Γ⊕Ω(M)Γ where Ω(M)Γ denotes the complex
of invariant forms on M. The main goal of the article was to prove that in more general
settings, the same behavior is still preserved at the cohomology level. We start with the
case of an isometric action on a compact Riemannian manifold as a natural generalization
of finite group actions, here is a statement of the main results of this part:

THEOREM 1.1.0.1. Let Γ be a group acting by isometries on a compact oriented Rieman-
nian manifold M. Then the map Φ : Hp(Ω(M)Γ)⊕Hp(Ω(M)Γ) −→ Hp(M) given by the ex-
pression Φ([ω]Γ⊕ [η]Γ)= [ω+η] is an isomorphism satisfying:

Φ(Hp(Ω(M)Γ))=Hp(M)Γ and Φ(Hp(Ω(M)Γ))=Hp(M)Γ. (1.1)

In particular if ρ(Γ)⊂ Isom(M)0 then Hp(M)'Hp(Ω(M)Γ).

The proof of this Theorem relies on the theory of harmonic forms on compact manifolds
presented in Appendix B. As a consequence, we get another proof of the following classic
result:

COROLLARY 1.1.0.1. Let G be a compact connected Lie group with Lie algebra g. Let H(g)
denote the Lie algebra cohomology of g, then Hp(G)'Hp(g).

The next step in the article was to discuss the relationship between the cohomologies
of invariant and co-invariant differential forms in the context of properly discontinuous
actions, the motivation for this choice is that this type of group actions represents the
natural extension of finite group actions into the non-compact framework (in fact, in the
compact case properly discontinuous actions are exactly finite group actions). Let Γ be a
group acting properly discontinuous by diffeomorphisms on a smooth manifold M, as it is
the case with finite group actions, one is able in this setting to define the average m(ω)
of a compactly supported differential form ω by the expression m(ω)=∑

γ∈Γγ∗ω, note that
this does make sense since the previous sum is finite when ω is restricted to any relatively
compact subset of M and therefore results in a smooth Γ-invariant form on M, moreover
it can be shown that supp m(ω)/Γ is compact i.e m(ω) has Γ-compact support. In summary
we get a linear map m : Ωc(M) −→ Ω(M)ΓΓc where Ω(M)ΓΓc

is the complex of Γ-invariant
differential forms on M with Γ-compact support.

PROPOSITION 1.1.0.1. Let Γ be a group acting properly discontinuously on a smooth
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CHAPTER 1. GENERAL INTRODUCTION

manifold M. The average map m :Ωc(M)−→Ω(M)ΓΓc is surjective and ker(m)=Ωc(M)Γ.

In order to prove this Proposition, we made use of the following technical Lemma which
gives the existence of a special type of functions:

LEMMA 1.1.0.1 (CUTOFF FUNCTIONS). Let Γ be a discrete group acting properly discon-
tinously on a smooth manifold M. There exists a positive function φ : M −→R which is C ∞

such that for any compact B ⊂ M/Γ, supp(φ)∩π−1(B) is compact. Furthermore we have:

∑
γ∈Γ

φ◦γ= 1. (1.2)

The function φ ∈C ∞(M) is called a Γ-cutoff function.

Here is the statement of the main Theorem of this part:

THEOREM 1.1.0.2. Let Γ be a group that acts properly discontinuously on a manifold M.
Then we have the following short exact sequence:

0→Ωc(M)Γ
ι→Ωc(M) m→Ω(M)ΓΓc → 0, (1.3)

which in turn gives rise to a long exact cohomology sequence:

· · ·→Hp(Ωc(M)Γ) ι→Hp
c (M) m→Hp(Ω(M)ΓΓc)

δ→Hp+1(Ωc(M)Γ)→ . . . . (1.4)

Moreover, the connecting homomorphism δ : Hp(Ω(M)ΓΓc) −→ Hp+1(Ωc(M)Γ) is given by the
expression:

δ([ω]Γ)= [dφ∧ω]Γ,

for any cutoff function φ ∈C ∞(M).

To end the paragraph, it is worth to mention that the Cohomology of co-invariant differen-
tial forms, has been developed as a kind of generalization of the Cohomology of divergence
forms introduced in [4] by Pr. A. Abouqateb in order to resolve some problems of group ac-
tions on manifolds where the Lie group structure is absent i.e actions of topological groups
or when the Lie algebra does not provide much information about the action of the Lie
group, this happens for instance when one considers the action of a discrete Lie group on
a manifold, in which case the Lie algebra of the group is trivial.
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CHAPTER 1. GENERAL INTRODUCTION

1.2 Part 2: Maximal Abelian Torsion-free Subgroups of Lie Groups

In this part, we give a brief review of the paper "On a type of Maximal Abelian Torsion-free
subgroups of Connected Lie groups" that were recently published in the scientific journal
" Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg". The com-
plete context of the presented statements as well as their full proofs can be consulted with
more details in Chapter 3. In this article, we introduce two integers p(G) and q(G) that
are naturally associated to a connected Lie group G and which measure to some extent
the maximal size of abelian torsion-free Lie subgroups of G, namely:

p(G)=max{p ∈N, Zp is isomorphic to a discrete subgroup of G}.

q(G)=max{q ∈N, Rq is isomorphic to a closed subgroup of G}.

Before proceeding to the main study, the first step was to make sure that these integers are
non-trivial (nonzero for a large class of Lie groups) and well-defined (are indeed integers
and not infinite), this is provided by the following result:

PROPOSITION 1.2.0.1. Let G be a noncompact connected Lie group. Then:

1≤ q(G)≤ p(G)≤ dim(G/K),

where K is a maximal compact subgroup of G. In particular p(G) is finite.

The next Proposition summarizes some general properties of the integers p(G) and q(G):

PROPOSITION 1.2.0.2. Let G be a connected Lie group. We have the following properties:

1. Assume that G =G1 ×G2 for some connected Lie groups G1 and G2, then:

p(G)= p(G1)+p(G2) and q(G)= q(G1)+q(G2).

2. Let G̃ π−→G be a finite cover of Lie groups, then p(G̃)= p(G) and q(G̃)= q(G).

It should be noted that 2 does not hold for an infinite cover of Lie groups (for more details,
see Examples 3.3.0.2 and 3.3.0.3). The remaining part shifts from the general case into
more specific situations and illustrates how the integers p(G) and q(G) may differ signifi-
cantly depending on the nature of the Lie group G. It also points to the relationship that
these invariants may share with the abelian dimension M (g) of the Lie algebra g of G i.e
the maximal dimension of an abelian subalgebra of the Lie algebra g. Here is an example
when this occurs:

4
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PROPOSITION 1.2.0.3. Let G be an exponential Lie group. Then:

p(G)= q(G)=M (g).

Simply connected nilpotent Lie groups represents an important class of exponential Lie
groups and one may naturally ask whether a general nilpotent Lie group G exhibits the
same behavior from the perspective of the integer p(G) and q(G). The first results in this
direction are stated as follows:

PROPOSITION 1.2.0.4. Let G be a linear connected nilpotent Lie group, then:

p(G)= q(G)=M (g)−rank(π1(G)).

THEOREM 1.2.0.1. Let G be a connected nilpotent Lie group, then:

q(G)=M (g)−rank(π1(G)).

To this end it may seem that the same result may hold for any connected nilpotent Lie
group, but this turns out to be false and the we provided a counter-example to this sit-
uation by considering a connected nilpotent Lie group G such that p(G) 6= q(G) (for more
details, see Example 3.5.0.1). In fact, it is shown by the analogue Theorem for p(G) in the
case of a general nilpotent Lie group is not as easily stated:

THEOREM 1.2.0.2. Let G be a connected nilpotent Lie group and denote g its Lie algebra.
Then:

p(G)= dim(n0)−rank(π1(G)),

where n0 is of maximal dimension among all 2-step nilpotent Lie subalgebras n of g such
that the Lie group (n,∗) admits a lattice Γ satisfying [Γ,Γ]⊂ ker(expG)⊂Γ.

1.3 Perspectives

The results obtained during the course of this thesis raise many open questions and a
handful of situations remain to be explored in the future. We state here a set of problems,
some of which are already part of the literature, that we think are approachable using our
methods and might be central topic of discussion in upcoming works.

5
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1.3.1 Isometric Actions on Pseudo-Riemannian Manifolds

Let (M, g) be a compact manifold endowed with a Pseudo-Riemannian metric g and let Γ
be a group acting on M by Pseudo-Riemannian isometries.
PROBLEM 1. Can we formulate an analogue of Theorem 1.1.0.1 in this situation ? What
happens in the Lorentzian case ?

In constrast to the Riemannian case, Pseudo-Riemannian structures do not always ex-
ist in general and relies on a number of topological requirements that the manifold must
satisfy, for instance a Lorentzian metric exists on a compact manifold M if and only if M
admits a nowhere vanishing vector field i.e its Euler class must vanish. These constraints
alone make the question more challenging and looking for either answer is a topic that
deserves to be addressed.

1.3.2 Existence of compact Clifford-Klein Forms

Let G be a Lie group and H a connected Lie subgoup. If Γ is any discrete subgroup of
G acting properly discontinuously and freely on the homogeneous space G/H, the double
quotient Γ\G/H is a smooth manifold locally modeled on G/H called a Clifford-Klein form
of G/H. We say that Γ ⊂ G ⊃ H is a Clifford-Klein triplet, if furthermore the double quo-
tient Γ\G/H is compact we say that the triplet Γ⊂G ⊃ H is compact. Clifford-Klein forms
has been studied by many authors (see [29, 39, 40, 41] for instance).

PROBLEM 2. Can we use the results of Theorem 1.1.0.2 in the context of homegeneous space
in order to study the existence problem of compact Clifford-Klein forms. Will this approach
lead to some topological obstructions ?

1.3.3 Links Between the Cohomologies of Divergence forms and Co-invariant
forms

Let G be a Lie group with Lie algebra g acting on smooth manifold M by diffeomorphisms,
and let Γ be a subgroup of G. In [4], Pr. A. Abouqateb introduced the complex of divergence
forms Cg(M) which consists of differential forms ω ∈Ωc(M) that can be written as a finite
sum ω = ∑

i LX iηi with X i ∈ g and ηi ∈ Ωc(M). When the Lie group G is connected, it is
straightforward to check that Ωc(M)Γ ⊂ Cg(M), and this inclusion in turn induces a homo-
morphism ι : Hp(Ωc(M)Γ)−→ Hp

g (M) between the cohomologies of the complexes involved.

6
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PROBLEM 3. Study the homomorphism ι : Hp(Ωc(M)Γ) −→ Hp
g (M) in general and in the

case when Γ is a lattice of the Lie group G.

1.3.4 The invariants p(G) and q(G) in more general situations

The computation of the integers p(G) and q(G) for a general Lie group G is a difficult
problem, but restricting the nature of the Lie group G could make it more approachable
as more results concerning the structure of the Lie group become available, this is for in-
stance what has been shown in Theorems 1.2.0.1, 1.2.0.2 and Propositions 1.2.0.3, 1.2.0.4:

PROBLEM 5. Can we prove a similar set of results or generalizations of the previous re-
sults for p(G) and q(G) when G is a connected solvable or semisimple Lie group? What can
be said about transformation groups (for instance the isometry group of a manifold)?
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Chapter 2

Cohomology of co-invariant Differential forms

In this chapter
2.1 Introduction . . . . . . . . . . . . . . . . . . . 9

2.2 Group Actions on Vector Spaces . . . . . . . 11

2.3 Action of a Finite Group on a Compact

Manifold . . . . . . . . . . . . . . . . . . . . . 13

2.4 Action by Isometries on a compact manifold 14

2.5 Group Actions on Noncompact Manifolds . 19

2.6 Properties of Co-invariant Cohomology . . . 26

2.7 Examples with infinite dimensional co-

invariant cohomology . . . . . . . . . . . . . 29

2.1 Introduction

The main goal of this chapter is to introduce a cohomological invariant attached to a group
action on a manifold, and which can be used to look for obstructions of the existence of cer-
tain types of group actions. This new invariant is in a broad sense a generalization of the
cohomology of divergence forms (introduced in [4]) when the acting group fails to be a Lie
group (or is discrete in which case its Lie algebra is trivial). This usage of cohomology to
study group actions has become quite frequent, examples of this practice may be found in
[31], [39], [40] and [41] for instance.



CHAPTER 2. COHOMOLOGY OF CO-INVARIANT DIFFERENTIAL FORMS

We start by fixing some notations. Let V be a vector space and ϕ : Γ×V −→V an action of
group Γ on V by linear isomorphisms, put ϕ(γ,v) := γ ·v. Denote by VΓ the vector subspace
of V consisting of Γ-invariant vectors and VΓ the vector subspace of Γ-co-invariant vectors,
i.e. the vector subspace given by:

VΓ = span{v−γ.v,v ∈V ,γ ∈Γ}.

Let M be a smooth n-dimensional manifold. We denote by Diff(M) the group of diffeo-
morphisms of M. Let ρ : Γ→ Diff(M) be an action of a group Γ on M by diffeomorphisms.
For an r-form ω on M and an element γ ∈ Γ, we denote γ∗ω the pull-back of ω by the
diffeomorphism ρ(γ). This gives rise to a linear action (γ,ω) −→ (γ−1)∗ω of the group Γ

on both Ωr(M) and Ωr
c(M) to which corresponds a space of Γ-invariant r-forms Ωr(M)Γ

and a space of Γ-co-invariant r-forms Ωr
c(M)Γ. It is easy to check that the graded vector

spaces Ω(M)Γ :=⊕rΩ
r(M)Γ and Ωc(M)Γ :=⊕rΩ

r
c(M)Γ are stable under the usual de Rham

differential and hence define two cohomologies H(Ω(M)Γ) and H(Ωc(M)Γ). To avoid con-
fusion, the cohomology class of a closed differential form ω on M will be written [ω]Γ in
Hp(Ωc(M)Γ), [ω]Γ in Hp(Ω(M)Γ) and simply [ω] in Hp(M). The cohomology H(Ω(M)Γ) also
known as the cohomology of invariant forms has been studied by many authors (for in-
stance see [22, 35, 46]), however the cohomology H(Ωc(M)Γ), which we call cohomology of
Γ-coinvariant forms, is to our knowledge new and constitutes our main object of study. In
order to study a smooth action of a group Γ on a manifold M, we will exhibit relationships
relating the differential complexes Ωc(M)Γ, Ω(M)Γ and Ωc(M) in various situations, this
allows to illustrate the interplay between their respective cohomologies by means of di-
rect sum decompositions or exact sequences, depending on the case of study which maybe
viewed as obstructions for the existence of certain types of group actions (Isometric actions
or properly discontinuous actions for instance). We note that this method of proceeding is
similar to the one that can be found in the article of Morita [39] in which he used a coho-
mology to find an obstruction for the existence of Clifford-Klein forms.

This chapter is organized in the following manner: We start by some general results of
linear group actions on vector spaces which will be useful for the development that will
follow. We then address the main problem of the chapter in three parts. The first part is
concerned with the action of a finite group Γ on a compact manifold M, in this context we

10



CHAPTER 2. COHOMOLOGY OF CO-INVARIANT DIFFERENTIAL FORMS

show that Ω(M)=Ω(M)Γ⊕Ω(M)Γ, and as a consequence, we get that:

Hp(M)'Hp(Ω(M)Γ)⊕Hp(Ω(M)Γ). (2.1)

The action of the group Γ on Ω(M) given by the pull-back operation induces a linear action
of Γ on the cohomology of M, hence it gives rise to the vector subspaces H(M)Γ and H(M)Γ
of H(M). We prove that:

Hp(M)Γ 'Hp(Ω(M)Γ) and Hp(M)Γ 'Hp(Ω(M)Γ). (2.2)

The second part of this chapter is an extension of the first in which we widen our context
in order to include isometric actions of an arbitrary group Γ on a compact orientable Rie-
mannian manifold M, the goal is to show that the relations (2.1) and (2.2) still holds in
this new setting, this can be interpreted as an obstruction for the existence of Riemannian
isometric actions. This part makes use of Hodge theory of harmonic forms (Appendix B).
We conclude by applying our results to get a new proof of a well-known theorem on Lie
algebra cohomology (see [19], Theorem III, p.163). Finally the third section studies the
case of a properly discontinuous action of a group Γ on a smooth manifold M that is not
necessarily compact, this again is another generalization of a finite action already seen in
the first section. The main result of this part is a long exact sequences relating the coho-
mologies H(Ωc(M)Γ), Hc(M) and H(Ω(M)Γ) generalizing (2.1) to this situation, the involved
operators are defined and studied at the beginning of the paragraph. We then derive some
consequences of this result. It is interesting to compare this exact sequence to the one
found in [4, Theorem 5.3].

2.2 Group Actions on Vector Spaces

Let V be a vector space and Γ a group acting on V by linear isomorphisms.

PROPOSITION 2.2.0.1. Suppose that V is finite dimensional and that Γ acts orthogonally
on V with respect to a scalar product, then we have the following decomposition:

V =VΓ
⊥⊕VΓ. (2.3)

Proof. For all v ∈VΓ, w ∈V and γ ∈Γ, we have:

〈v,w−γw〉 = 〈v,w〉−〈γ−1v,w〉 = 〈v,w〉−〈v,w〉 = 0.

11
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Thus VΓ and VΓ are orthogonal subspaces of V . Now fix v ∈ (VΓ⊕VΓ)⊥, since v ∈ (VΓ)⊥ then
for every γ ∈Γ, w ∈V we have:

〈v−γv,w〉 = 〈v,w−γ−1w〉 = 0.

This gives that v = γv for all γ ∈Γ i.e v ∈VΓ, but v ∈ (VΓ)⊥ as well hence v = 0. We conclude
that (VΓ⊕VΓ)⊥ = 0, this leads to the desired result.

As a consequence of this result, we get the following:

COROLLARY 2.2.0.1. Let Γ be a finite group acting linearly on a finite dimensional vector
space V , then:

V =VΓ⊕VΓ. (2.4)

Proof. From an arbitrary scalar product 〈 , 〉0 on V , one can define a Γ-invariant scalar
product 〈 , 〉 by setting for all v,w ∈V :

〈v,w〉 = ∑
γ∈Γ

〈γv,γw〉0.

Now formula (2.4) is a consequence of Proposition 2.2.0.1.

The preceding result remains true for any vector space V , not necessarily finite dimen-
sional, provided that the group Γ is finite. In order to prove this fact, we consider the
linear map m : V −→V given by:

m(v)= 1
|Γ|

∑
γ∈Γ

γv (2.5)

where |Γ| is the cardinal of Γ. Then m has the following properties:

PROPOSITION 2.2.0.2. Let Γ be a finite group acting linearly on a vector space V . The
map m : V −→V defined in (2.5) is a linear projection with Im(m)=VΓ and ker(m)=VΓ.

Proof. First, observe that for all v ∈V and α ∈Γ, αm(v)=m(v). Indeed:

αm(v)= 1
|Γ|

∑
γ∈Γ

(αγ)v = 1
|Γ|

∑
γ∈Γ

γv =m(v).

It follows that m(v) ∈VΓ for all v ∈V and thus Im(m)⊂VΓ. Conversely if w ∈VΓ, it is clear
that w = m(w), hence VΓ ⊂ Im(m). Next notice that since m(v) ∈ VΓ then m2(v) = m(v) i.e

12
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m is a linear projection. It is only left to prove that ker(m) = VΓ, for all v ∈ V and γ ∈ Γ,
formula (2.5) gives that m(v−γv) = 0, thus VΓ ⊂ ker(m). Conversely, fix v ∈ ker(m) and

define for every γ ∈Γ, vγ = 1
|Γ| (v−γv) ∈VΓ. We get that:

∑
γ∈Γ

vγ = v− 1
|Γ|

∑
γ∈Γ

γv = v−m(v)= v.

Thus v ∈VΓ, which means that ker(m)⊂VΓ hence the equality.

In view of the decomposition V = ker(m)⊕ Im(m), we obtain:

COROLLARY 2.2.0.2. Let Γ be a finite group acting linearly on a vector space V . Then:

V =VΓ⊕VΓ. (2.6)

2.3 Action of a Finite Group on a Compact Manifold

In this section, M is a compact manifold and Γ a finite group. The goal is to express the
relationship between the invariant and co-invariant forms relative to the action of Γ on M.

PROPOSITION 2.3.0.1. Let Γ be a finite group acting by diffeomorphisms on a compact
manifold M. Then we have the following properties:

1. Ω(M)=Ω(M)Γ⊕Ω(M)Γ.

2. The map Φ : Hp(Ω(M)Γ)⊕Hp(Ω(M)Γ) −→ Hp(M), Φ([ω]Γ⊕ [η]Γ) = [ω+η] is an isomor-
phism. Moreover:

Φ(Hp(Ω(M)Γ)=Hp(M)Γ and Φ(Hp(Ω(M)Γ)=Hp(M)Γ.

Proof. In view of Corollary 2.2.0.2, we obtain 1. by taking V =Ω(M) and the linear action
given by the pull-back operation. If instead we take V =Hp(M), we obtain the vector space
decomposition Hp(M) = Hp(M)Γ ⊕Hp(M)Γ. It follows from 1. that the map Φ is indeed
an isomorphism, moreover since the cohomology class of a closed Γ-invariant form on M is
also Γ-invariant we get thatΦ(Hp(Ω(M)Γ))⊂Hp(M)Γ. Conversely let m :Ω(M)−→Ω(M) be
the average map given by (2.5) and choose [ω] ∈ Hp(M)Γ i.e [ω] = [γ∗ω] for any γ ∈ Γ, then
clearly m(ω) is a closed Γ-invariant form on M satisfying [ω]= [m(ω)]=Φ[m(ω)]Γ, it follows
that Φ(Hp(Ω(M)Γ)) = Hp(M)Γ. On the other hand it is clear that Hp(M)Γ ⊂Φ(Hp(Ω(M)Γ)).

13
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Since M is compact it has finite dimensional cohomology and since:

dimHp(M)= dimHp(M)Γ+dimHp(M)Γ = dimHp(Ω(M)Γ)+dimHp(Ω(M)Γ),

we get that dimHp(M)Γ = dimHp(Ω(M)Γ) thus Φ(Hp(Ω(M)Γ))=Hp(M)Γ.

In particular if Γ is a finite group that acts on a compact manifold M by diffeomorphisms,
we have dimHp(Ω(M)Γ) ≤ dimHp(M) and dimHp(Ω(M)Γ) ≤ dimHp(M) hence all the in-
volved cohomologies are finite dimensional.

2.4 Action by Isometries on a compact manifold

Let M be a compact manifold and Γ a group. Recall that when Γ is a finite group acting
on M, then M admits a Γ-invariant Riemannian metric. A natural generalization of the
preceding situation is then to consider Γ acting by isometries on the manifold M. Fix a
Riemannian metric 〈 , 〉 on M and let G := Isom(M,〈 , 〉) be the isometry group of (M,〈 , 〉).
Let ρ : Γ −→ Diff(M) be an action of the group Γ on M by Riemannian isometries, this
means that ρ(Γ)⊂ Isom(M,〈 , 〉). We then denote G0 the identity component of the isometry
group G. The goal of this paragraph is to give an extension of the results presented in (2.1)
and (2.2) to this new setting, and on the other hand, use those results to find topological
obstructions for the existence of isometric actions. We start by showing that the induced
action of Γ on the cohomology of M is in fact equivalent to a finite group action, to do this
we need this key lemma which can be found in [20]:

LEMMA 2.4.0.1. Let (M,〈 , 〉) be a Riemannian manifold. Any isometry ϕ ∈ G0 in the
identity component is homotopic to IdM .

Denote Γ0 = ρ(Γ)/ρ(Γ)∩G0, this is clearly a group since ρ(Γ)∩G0 C ρ(Γ), moreover Γ0 is
finite, this is due to the compactness of the isometry group G. Denote [γ] the equivalence
class of an element γ in ρ(Γ).

PROPOSITION 2.4.0.1. The action Γ0 ×Hp(M) −→ Hp(M) given by ([γ], [ω]) 7→ [γ∗ω] is
well-defined, furthermore:

Hp(M)Γ =Hp(M)Γ0 and Hp(M)Γ =Hp(M)Γ0 . (2.7)

Proof. Take two elements γ1 and γ2 in Γ satisfying [γ1] = [γ2]. This meanss γ2 = γ0γ1 for

14
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some element γ0 ∈ ρ(Γ)∩G0. Hence for all [ω] ∈Hp(M), the preceding lemma gives that:

[γ∗2ω]= [γ∗1(γ∗0ω)]= γ∗1[γ∗0ω]= γ∗1[ω]= [γ∗1ω].

This shows that the action depends only on the equivalence class in question, it is thus
well-defined. Now (2.7) follows from [γ∗ω]= [ω] for any γ ∈ ρ(Γ)∩G0.

In view of (2.2.0.2) and the last proposition, we conclude that:

COROLLARY 2.4.0.1. Let M be a compact Riemannian manifold and Γ a group that acts
on M by Riemannian isometries. Then:

Hp(M)=Hp(M)Γ⊕Hp(M)Γ.

Furthermore if ρ(Γ)⊂ Isom(M)0 then Hp(M)Γ = 0.

We dedicate the rest of the paragraph to show that the results (2.1) and (2.2) are still
available in a more general setting. The claims and proofs presented here relies on the
theory of harmonic forms on compact oriented Riemannian manifolds, the notations and
main results can be consulted in Appendix B. In what follows (M,〈 , 〉) denotes a compact
oriented Riemannian manifold with Riemannian volume element dV .

LEMMA 2.4.0.2. For any γ ∈ Isom(M), we have ∗γ∗ = deg(γ)γ∗∗ where deg(γ) is the degree
of γ (equal to 1 if γ is orientation preserving and −1 otherwise).

Proof. Fix an orthonormal frame R = {E1, . . . ,En} on an open subset U ⊂ M with dual
co-frame {ε1, . . . ,εn}. We claim that {γ∗ε1, . . . ,γ∗εn} is the dual co-frame of the orthonor-
mal frame Rγ = {γ∗E1, . . . ,γ∗En} defined on γ−1U , indeed this is a result of the following
computation:

(γ∗εi)(γ∗E j)(x)= εi
γx(Txγ((γ∗E j)x))= εi

γx(E j(γx))= δi j.

It follows that (γ∗εI ,γ∗εJ)= δIJ where I = {i1 < ·· · < i p} and εI = εi1∧·· ·∧εi p . Next consider
two p-forms ω and η, and write ω=∑

I f IεI and η=∑
J gJεJ on U . Then:

(γ∗ω,γ∗η)= γ∗
(∑

I
f I gI

)
= γ∗(ω,η).

Denote σ= γ−1, since γ∗(dV )= deg(γ)dV , the preceding relation gives that:

ω∧ (deg(γ)γ∗(∗η))= deg(γ)γ∗(σ∗ω∧∗η)= deg(γ)γ∗(σ∗ω,η)γ∗(dV )= (ω,γ∗η)dV .

15
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The result then follows from the definition of the Hodge-∗ operator.

COROLLARY 2.4.0.2. Any γ ∈ Isom(M) induces an isometry γ∗ on (Ω(M),〈 , 〉), more pre-
cisely if ω and η are differential forms on M then:

〈γ∗ω,γ∗η〉 = 〈ω,η〉.

Proof. In view of the preceding Lemma, we have:∫
M
γ∗ω∧∗γ∗η= deg(γ)

∫
M
γ∗ω∧γ∗(∗η)= deg(γ)

∫
M
γ∗(ω∧∗η)= deg(γ)2

∫
M
ω∧∗η.

Since deg(γ)2 = 1, we obtain that 〈γ∗ω,γ∗η〉 = 〈ω,η〉.

COROLLARY 2.4.0.3. For all γ ∈ Γ, we have γ∗δ = δγ∗ and γ∗∆ = ∆γ∗. In particular, for
any harmonic form ω on M, γ∗ω is also harmonic.

Proof. Let η ∈Ωp(M) et γ ∈Γ, we have by the preceding lemma:

δ(γ∗η)= (−1)n(p+1)+1 ∗d(∗γ∗η)= (−1)n(p+1)+1γ∗(∗d∗η)= γ∗(δη).

This shows that γ∗δ= δγ∗. Now γ∗∆=∆γ∗ follows from ∆= dδ+δd.

A consequence of Corollary 2.4.0.3 is that the induced linear action of Γ on Ω(M) restricts
to the space H (M) of harmonic forms on M , let H (M)Γ (resp. H (M)Γ) denote the corre-
sponding graded vector space of Γ-co-invariant (resp. Γ-invariant) harmonic forms.

THEOREM 2.4.0.1 (HODGE DECOMPOSITION FOR Ω(M)Γ AND Ω(M)Γ).
Let ρ : Γ−→ Isom(M) be an action by isometries of a group Γ on a compact oriented Riem-
mannian manifold M. Then:

1. Ωp(M)Γ = d(Ωp−1(M)Γ)
⊥⊕δ(Ωp+1(M)Γ)

⊥⊕H p(M)Γ.

2. Ωp(M)Γ = d(Ωp−1(M)Γ)
⊥⊕δ(Ωp+1(M)Γ)

⊥⊕H p(M)Γ.

3. H p(M)=H p(M)Γ
⊥⊕H p(M)Γ.

Proof. By Corollary 2.4.0.2 the group Γ acts by isometries on H (M) and since H p(M) is a
finite dimensional vector space, then 3. follows from Proposition 2.2.0.1. The decomposition
in 1. is straightforward, indeed choose ω ∈Ωp(M) and use B.3.0.1 to write ω= dα+δβ+η
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where α ∈Ωp−1(M), β ∈Ωp+1(M) and η ∈H p(M). Then:

ω−γ∗ω= d(α−γ∗α)+δ(β−γ∗β)+ (η−γ∗η).

This proves the claim. For 2. let ω ∈Ωp(M)Γ, again by B.3.0.1 we can write ω= dα+δ+η
with α ∈Ωp−1(M), β ∈Ωp+1(M) and η ∈H p(M). For any γ ∈Γ we have that:

0=ω−γ∗ω= d(α−γ∗α)+δ(β−γ∗β)+ (η−γ∗η).

Uniqueness of the Hodge decomposition gives that dα= γ∗dα, δβ= γ∗δβ and η= γ∗η there-
fore η ∈ H p(M)Γ. Next we prove that α and β can be chosen Γ-invariant, more precisely
we show that we can write α=α1+α2, β=β1+β2 with α1 ∈Ωp−1(M)Γ, β1 ∈Ωp+1(M)Γ and
such that dα2 = 0, δβ2 = 0. In order to do so let α = dµ+δν+λ and β = dµ̂+δν̂+ λ̂ be the
Hodge decompositions of α and β respectively, then for any γ ∈Γ:

d(α−γ∗α)= dδ(ν−γ∗ν) and δ(β−γ∗β)= δd(µ̂−γ∗µ̂).

This implies that dδ(ν−γ∗ν)= 0 and δd(µ̂−γ∗µ̂)= 0. Therefore:

〈δ(ν−γ∗ν),δ(ν−γ∗ν)〉 = 〈ν−γ∗ν,dδ(ν−γ∗ν)〉 = 0.

Thus δν−γ∗δν= 0 for any γ ∈ Γ and hence δν ∈Ωp−1(M)Γ. In a similar way we can show
that dµ̂ ∈Ωp+1(M)Γ. Put α1 = δν, α2 = dµ+λ, β1 = dµ̂ and β2 = δν̂+ λ̂. We get that:

ω= d(α1 +α2)+δ(β1 +β2)+η= dα1 +δβ1 +η,

such that α1 ∈Ωp−1(M)Γ, β1 ∈Ωp+1(M)Γ and η ∈H p(M)Γ. This completes the proof.

We can now state and prove the main theorem of this paragraph:

THEOREM 2.4.0.2. Let Γ be a group acting by isometries on a compact oriented Rieman-
nian manifold M. Then the map Φ : Hp(Ω(M)Γ)⊕Hp(Ω(M)Γ) −→ Hp(M) given by the ex-
pression Φ([ω]Γ⊕ [η]Γ)= [ω+η] is an isomorphism satisfying:

Φ(Hp(Ω(M)Γ))=Hp(M)Γ and Φ(Hp(Ω(M)Γ))=Hp(M)Γ. (2.8)

In particular if ρ(Γ)⊂ Isom(M)0 then Hp(M)'Hp(Ω(M)Γ).

Proof. From the first two decompositions of Theorem 2.4.0.1 we get that there exists an
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isomorphism:

Φ1 : Hp(Ω(M)Γ)⊕Hp(Ω(M)Γ)−→H p(M)Γ⊕H p(M)Γ (3)= H p(M),

and Φ = Φ1 ◦ j where j : H p(M) −→ Hp(M) is the isomorphism in Corollary B.3.0.1. It is
clear that j(H p(M)Γ) = Hp(M)Γ and j(H p(M)Γ) = Hp(M)Γ therefore we get (2.8). Finally
if ρ(Γ) is contained in the identity component of Isom(M) then from Corollary 2.4.0.1 we
get that Hp(M)Γ = 0 and thus Hp(Ω(M)Γ)= 0 as desired.

The first point of Proposition 2.3.0.1 however, does not generalize to this case, this is best
illustrated in the following example:

EXAMPLE 2.4.0.1. Let Tn be the n-dimensional torus which we view as the quotient Rn/Zn

with natural projection π : Rn −→ Tn. Choose a generator a = (a1, . . . ,an) ∈ Rn of Tn this
means that Tn = 〈π(a)〉 or equivalently that the real numbers 1,a1, . . . ,an are Q-linearly in-
dependant. Denote γ ∈ Diff(Tn) the group multiplication by π(a) and ρ : Z −→ Diff(Tn) the
corresponding Z-action, i.e ρ(n) = γn. Clearly ρ(Z) ⊂ Isom(Tn,〈 , 〉) for any (bi-)invariant
Riemannian metric 〈 , 〉 on Tn.
Since γ has dense orbits in Tn then C ∞(Tn)Z = R. Furthermore since γ is orientation pre-
serving any function g ∈C ∞(Tn)Z must satisfy I(g) = 0 where I : C ∞(Tn) −→ R is the oper-
ator given by the expression I(g)= ∫

Tn g(x)dx. It is easy to check that:

C ∞(Tn)= ker(I)⊕R.

We say that a ∈ Rn is a Liouville vector if there exists A > 0 such that for any τ > 0 there
exists mτ ∈Zn satisfying:

|1− e2πi〈mτ,a〉| ≥ A
|mτ|τ

.

When a ∈ Rn is a Liouville vector, A. El Kacimi and H. Hmili in [?, Theorem 1.4] used
Fourier series to construct an infinite family {gk, k ∈N∗} of smooth functions on Tn satisfy-
ing I(gk)= 0 and such that the equation f −γ∗ f = gk doesn’t have a solution. In particular
we obtain that C ∞(Tn)Z( ker(I) and therefore C ∞(Tn) 6=C ∞(Tn)Z⊕C ∞(Tn)Z in this case.

As an application, we give new proofs of the following known results:

PROPOSITION 2.4.0.2. Let G be a compact connected Lie group acting smoothly on a
compact orientable manifold M. Then:

Hp(M)'Hp(Ω(M)G).
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Proof. Let 〈 , 〉 be any Riemannian metric on M and denote ρ : G −→ Diff(M) the action of
the group G on M. Let x ∈ M and X ,Y two smooth vector fields on M. The map G −→ R

given by g 7→ 〈Txρ(g)(Xx),Txρ(g)(Yx)〉gx is smooth, we put:

〈〈Xx,Yx〉〉x :=
∫

G
〈Txρ(g)(Xx),Txρ(g)(Yx)〉0

gxdg.

This defines a G-invariant Riemannian metric 〈〈 , 〉〉 on M i.e ρ(G) ⊂ Isom(M,〈〈 , 〉〉).
Since G is connected and ρ is continuous, ρ(G) is contained in the identity component
of Isom(M,〈〈 , 〉〉), hence Hp(Ω(M)G)= 0 and thus Hp(M)'Hp(Ω(M)G).

COROLLARY 2.4.0.4. Let G be a compact connected Lie group with Lie algebra g. Let H(g)
denote the Lie algebra cohomology of g, then Hp(G)'Hp(g).

Proof. The homomorphism ρ : G −→ Diff(G), g 7→ `g where `g denotes the left multipli-
cation on G defines a smooth isometric action on G with respect to any left invariant
Riemannian metric 〈 , 〉 on G. Thus by Proposition 2.4.0.2, Hp(G)'Hp(G)G 'Hp(g).

2.5 Group Actions on Noncompact Manifolds

We turn now to the study of the action of a group on a manifold which is not necessarily
compact in contrast to the preceding situations. In what follows, we set a group Γ acting
properly discontinously on a smooth manifold M. When the manifold M is compact, the
group Γ must be finite, therefore properly discontinuous actions are a natural extension
of finite actions on compact manifolds. A main goal in this paragraph is therefore to give
an analogue to the decomposition (2.1) in the current situation. As a matter of fact, the
process of averaging described in the compact case still makes sense in the case of prop-
erly discontinuous actions. Indeed, the average map m : Ωc(M) −→ Ω(M)Γ given by the
expression m(ω) =∑

γ∈Γγ∗ω is well-defined and linear. Note that this map is not a projec-
tion contrary to the compact case since Ω(M)Γ may contain differential forms which are
not compactly supported. In fact, m is not even surjective, to see this it is sufficient to
consider the case when Γ is a finite group acting on a noncompact manifold M, we obtain
that for any ω ∈ Ωc(M), the average form m(ω) is compactly supported. However, up to
reducing its range we can show that m can be made surjective. The key to proceed lies in
the following important lemma, which was originally proved in [?] in the case of a properly
discontinuous and free action:
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LEMMA 2.5.0.1 (CUTOFF FUNCTIONS). Let Γ be a discrete group acting properly discon-
tinously on a smooth manifold M. There exists a positive function φ : M −→R which is C ∞

such that for any compact B ⊂ M/Γ, supp(φ)∩π−1(B) is compact. Furthermore we have:

∑
γ∈Γ

φ◦γ= 1. (2.9)

The function φ ∈C ∞(M) is called a Γ-cutoff function.

Proof. Set a locally finite cover V := {Vn, n ∈N} of M/Γ by relatively compact open subsets.
There exists a locally finite open cover W := {Wn, n ∈N} of M/Γ such that Wn is a relatively
compact subset and V̄n ⊂ Wn. To see this, denote J1 = {i ∈ N, V̄1 ∩Vi 6= ;}. Since V̄1 is
compact and V is a locally finite cover of M/Γ, we obtain that J1 is finite and moreover:

V̄1 ⊂
⋃
j∈J1

Vj et V̄1 ∩
⋃
j∉J1

Vj =;.

Thus we can find a relatively compact open set W1 containing V̄1 such that:

W1 ⊂
⋃
j∈J1

Vj et W1 ∩
⋃
j∉J1

Vj =;.

Hence the family W1 = {W1}∪{Vj, j ≥ 2} is a locally finite cover of M/Γ by relatively compact
open sets. Repeating this process on the family W1, we obtain by induction the desired
open cover. Next we show that there exists relatively compact open subsets Un and On

of M satisfying π(Un) = Vn, π(On) = Wn and Ūn ⊂ On. Indeed, we start with any pair of
relatively compact open subsets Ûn and Ôn of M such that π(Ûn) = Vn and π(Ôn) = Wn.
Since Vn ⊂Wn then Ûn ⊂⋃

γ∈Γγ · Ôn. We then put:

Un = Ôn ∩
⋃
γ∈Γ

γ−1 ·Ûn.

Thus Un is a relatively compact open subset of M and it is clear that π(Un) ⊂ Vn. Con-
versely let x ∈ Vn, we can write x = π(a) for some a ∈ Ûn. Since Ûn ⊂ ⋃

γ∈Γγ · Ôn we can
find γ ∈ Γ such that γ−1a ∈ γ−1Ûn ∩ Ôn and from π(γ−1a) = x we get that x ∈ π(Un). Next
for any n ∈N define Sn = {γ ∈ Γ, Ūn ∩γ · Ôn 6= ;} which is a finite set since Γ acts properly
discontinuously on M. Since V̄n ⊂Wn, then Ūn ⊂⋃

γ∈Γγ · Ôn and we deduce that:

Un ⊂ ⋃
γ∈Sn

γ · Ôn :=On.
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After this tedious construction, we can begin the proof of the lemma. Let gn ∈C ∞
c (M) such

that 0 ≤ gn ≤ 1, supp(gn) ⊂ On and gn = 1 on Un, next put g = ∑
n∈N gn. We claim that

the function g is well-defined, positive and smooth. Indeed, choose any relatively compact
open subset U ⊂ M and let J = {n ∈N,Ū ∩On 6= ;}. Since W is a locally finite cover of M/Γ
then (On)n∈N is a locally finite cover of M and thus the set J is finite. Hence:

g|U = ∑
j∈J

g j |U ∈C ∞(U).

This shows that g is a well-defined smooth function on M. Let B ⊂ M/Γ be a compact subset
and put I = {n ∈N, π−1(B)∩On 6= ;}. Since π(On)=Wn then:

I ⊂ {n ∈N, π−1(B)∩π−1(Wn) 6= ;}⊂ {n ∈N, B∩Wn 6= ;} which is finite.

Thus π−1(B)∩ supp(g) ⊂ π−1(B)∩⋃
n∈NOn = π−1(B)∩⋃

i∈I Oi. It is clear that
⋃

i∈I Oi is rel-
atively compact, and therefore π−1(B)∩supp(g) is compact. Next let x ∈ M, then π(x) ∈ Vn

for some n ∈ N. This means that there exists γ ∈ Γ such that γx ∈ Un and thus g(γx) > 0.
Hence

∑
γ∈Γ g(γx)> 0. Finally put:

φ= g∑
γ∈Γ g ◦γ .

This gives that supp(φ)= supp(g) and
∑
γ∈Γφ◦γ= 1.

REMARK 2.5.0.1. When M/Γ is compact, writing supp(φ)= supp(φ)∩π−1(M/Γ) shows that
any cutoff function φ on M must be compactly supported.

We say that a Γ-invariant form ω on M has Γ-compact support if (supp ω)/Γ is compact.
We denote Ω(M)ΓΓc the space of Γ-invariant forms on M with Γ-compact support, it is a
differential subalgebra of Ω(M).

REMARK 2.5.0.2. For any ω ∈Ωc(M) the average form m(ω) has Γ-compact support. In-
deed, it is clear that supp m(ω) ⊂⋃

γ∈Γγ ·supp(ω), hence π(supp m(ω)) ⊂ π(suppω) which is
a compact subset of M/Γ. In other words m(ω) ∈Ω(M)ΓΓc.

PROPOSITION 2.5.0.1. Let Γ be a group acting properly discontinuously on a smooth
manifold M. The average map m :Ωc(M)−→Ω(M)ΓΓc is surjective and ker(m)=Ωc(M)Γ.

Proof. Let η ∈Ω(M)ΓΓc and choose a Γ-cutoff function φ ∈ C ∞(M). Denote K := π(supp η),
since supp(η) is Γ-invariant we obtain that supp(η)=π−1(K) , furthermore K is a compact
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set. It follows that the form ω=φη has compact support in M, thus:

m(ω)= ∑
γ∈Γ

γ∗ω= ∑
γ∈Γ

γ∗(φη)=
(∑
γ∈Γ

γ∗φ

)
η= η.

This shows that m is surjective. On the other hand, given α ∈Γ and ω ∈Ωc(M), we have:

m(ω−α∗ω)= ∑
γ∈Γ

γ∗ω− ∑
γ∈Γ

γ∗α∗ω= ∑
γ∈Γ

γ∗ω− ∑
γ∈Γ

γ∗ω= 0.

Hence Ωc(M)Γ ⊂ ker(m). Conversely let ω ∈ ker(m), for any γ ∈Γ define ωγ :=φγω−γ∗(φγω)
with φγ := φ ◦γ−1. It is clear that ωγ ∈ Ωc(M)Γ, we claim that ωγ = 0 except for a finite
family A ⊂ Γ. To see this put K = π(suppω), then K is compact subset of M/Γ and thus by
Lemma 2.5.0.1, the subset supp(φ)∩π−1(K) = ⋃

γ∈Γ(supp(φ)∩γ · supp ω) is compact. Next
put A := {γ ∈ Γ, (supp φ∩π−1(K))∩γ · supp ω 6= ;}, since Γ acts properly discontinuous on
the manifold M we obtain that A is a finite subset of Γ, Moreover it is straightforward to
check that A = {γ ∈Γ, suppφ∩γ ·suppω 6= ;}. Hence for α ∈Γ\ A, it follows that:

supp(φαω)⊂ (α−1suppφ)∩suppω=α−1(suppφ∩αsuppω)=;.

Consequently φαω= 0 and thus ωα = 0 for all α ∈Γ\ A. As a result:

∑
γ∈A

ωγ =
∑
γ∈Γ

ωγ =
(∑
γ∈Γ

φγ

)
ω−φ

(∑
γ∈Γ

γ∗ω

)
=ω−φm(ω)=ω.

In summary ω=∑
γ∈Aωγ ∈Ωc(M)Γ. Thus ker(m)⊂Ωc(M)Γ.

This leads to the main Theorem of this paragraph:

THEOREM 2.5.0.1. Let Γ be a group that acts properly discontinuously on a manifold M.
Then we have the following short exact sequence:

0→Ωc(M)Γ
ι→Ωc(M) m→Ω(M)ΓΓc → 0, (2.10)

which in turn gives rise to a long exact cohomology sequence:

· · ·→Hp(Ωc(M)Γ) ι→Hp
c (M) m→Hp(Ω(M)ΓΓc)

δ→Hp+1(Ωc(M)Γ)→ . . . . (2.11)

Moreover, the connecting homomorphism δ : Hp(Ω(M)ΓΓc) −→ Hp+1(Ωc(M)Γ) is given by the
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expression:
δ([ω]Γ)= [dφ∧ω]Γ,

for any cutoff function φ ∈C ∞(M) (satisfying (2.9)).

Proof. The exactness of the sequence (2.10) easily follows from Propostion 2.5.0.1 in which
case the cohomology sequence (2.11) is straightforward. In order to obtain the expression
of the operator δ, fix a closed form ω ∈Ωp(M)ΓΓc. If we write δ([ω]Γ) = [β]Γ then β= dα for
some α ∈Ωp

c (M) satisfying m(α)=ω. For α=φω, we conclude that β= dφ∧ω.

REMARK 2.5.0.3. Consider a cutoff function φ ∈C ∞(M) (satisfying (2.9)). Then

d

(∑
γ∈Γ

γ∗φ

)
= ∑
γ∈Γ

γ∗dφ= 0.

It follows that dφ ∈Ω(M)Γ. When M/Γ is compact, we obtain that dφ ∈Ωc(M)Γ in this case
we denote [θ]Γ ∈H1(Ωc(M)Γ) its cohomology class.

REMARK 2.5.0.4. In the exact sequence (2.11) we have ker(ι)= Im(δ), hence the co-invariant
classes of the form [dφ∧ω]Γ are exactly the classes of H(Ωc(M)Γ) which are exact in Hc(M).

We give some consequences of the preceding exact sequence:

COROLLARY 2.5.0.1. Let Γ be a group acting properly discontinuously on a smooth man-
ifold M. Then H0(Ωc(M)Γ)= 0 and if M is compact, the mapping ι : Hp(Ωc(M)Γ)−→Hp

c (M)
is injective and the map m : Hp

c (M)−→Hp(Ω(M)Γ) is surjective.

Proof. Let φ ∈C ∞(M) be a cutoff function satisfying (2.9). Let [ f ]Γ ∈H0(Ωc(M)Γ) i.e a con-
stant function satisfying

∑
γ∈Γγ∗ f = 0. If M is noncompact, then f = 0 since it is constant

and compactly supported. If M is compact, then Γ must be finite since it acts properly dis-
continuously on M thus

∑
γ∈Γγ∗ f = |Γ| f = 0, hence f = 0. If M is compact then Γ is finite

we can choose φ = 1/|Γ| as a cutoff function. Let δ : Hp(Ω(M)ΓΓc) −→ Hp+1(Ωc(M)Γ) be the
connecting homomorphism in the cohomology sequence (2.11), from the previous remark
we get that δ([ω]Γ) = [dφ∧ω]Γ = 0 for every closed form ω ∈ Ω(M)Γ. It follows from the
exactness of (2.11) that ker(ι) = Im(δ) = 0 and Im(m) = ker(δ) =Ω(M)Γc . We conclude that ι
is injective et m is surjective.

PROPOSITION 2.5.0.2. Let Γ be a group acting properly discontinuously on a noncompact
connected manifold M. Then M/Γ is compact if and only if ι : H1(Ωc(M)Γ) −→ H1

c(M) is not
injective.
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Proof. Let φ ∈ C ∞(M) be a cutoff function. Assume M/Γ is compact, then φ ∈ C ∞
c (M).

Suppose that [dφ]Γ = 0, then we can find ψ ∈ Ω0
c(M)Γ such that dφ = dψ and since M is

connected the difference φ−ψ is constant with compact support, which implies that φ=ψ
but this is impossible as φ ∉Ω0

c(M)Γ. We obtain that [dφ]Γ 6= 0, and since ι[dφ]Γ = [dφ] = 0
we conclude that ι is not injective.
Conversely if M/Γ is not compact, let ω ∈Ωc(M)Γ be a closed form such that [ω] = 0. We
can write ω = d f for some f ∈ C ∞

c (M). Since dm( f ) = m(ω) = 0 we obtain that m( f ) is a
constant function with Γ-compact support. If m( f ) 6= 0 then we would have supp m( f )= M
and consequently supp m( f )/Γ = M/Γ which is noncompact, this leads to a contradiction.
Thus m( f )= 0 i.e f ∈C ∞

c (M)Γ and therefore [ω]Γ = 0. We conclude that ι is injective.

COROLLARY 2.5.0.2. Let M be a contractible smooth manifold, and Γ a group acting
properly discontinuously on M. Then M/Γ is compact if and only if H1(Ωc(M)Γ) 6= 0.

COROLLARY 2.5.0.3. Let M be a contractible manifold and ρ : Γ→ Diff(M) be a properly
discontinuous action with compact orbit space M/Γ. Then for any 1≤ p ≤ n, we have

Hp(Ωc(M)Γ)'Hp−1(Ω(M)Γ).

In particular, H1(Ωc(M)Γ)=Span{[θ]Γ}.

Let ψ ∈C ∞(M) be a cutoff function with respect to the action of Γ on M. Let U ,V be open
subsets of M and choose a partition of unity {φU ,φV } subordinate to {U ,V } then put:

φ̂U = ∑
γ∈Γ

γ∗(ψφU ), φ̂V = ∑
γ∈Γ

γ∗(ψφV ).

It is then straightforward to check that {φ̂U , φ̂V } is a Γ-invariant partition of unity subor-
dinate to {U ,V }. As a consequence of Proposition 2.6.2.4 we get the following result:

COROLLARY 2.5.0.4. Let Γ be a group that acts properly discontinuously on a smooth
manifold M by diffeomorphisms. For any Γ-invariant open subsets U ,V of M, the long
exact cohomology sequences (2.14) and (2.16) hold.

EXAMPLE 2.5.0.1 (CLIFFORD-KLEIN FORMS). Let G be a Lie group and H ⊂ G a con-
nected Lie subgoup. If Γ is any discrete subgroup of G acting properly discontinuously and
freely on the homogeneous space G/H, the double quotient Γ\G/H is a smooth manifold
locally modeled on G/H called a Clifford-Klein form of G/H. We say that Γ ⊂ G ⊃ H is a
Clifford-Klein triplet, if furthermore Γ\G/H is compact we say that the triplet Γ⊂G ⊃ H is
compact. Clifford-Klein forms has been studied by many authors (see [29] for instance).
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For every compact Clifford-Klein form Γ\G/H, by virtue of Theorem 2.5.0.1, we have a
long exact sequence in cohomology:

· · ·→Hp(Ωc(G/H)Γ) H(ι)→ Hp
c (G/H) H(m)→ Hp(Ω(G/H)Γ) δ→Hp+1(Ωc(G/H)Γ)→ . . .

In particular, when H is a maximal compact subgroup of a connected Lie group G, the
manifold G/H is then a contractible, which leads to:

Hp(Ωc(G/H)Γ)'Hp−1(Ω(G/H)Γ)

and when the action of Γ on G/H is free, we have Hp(Ωc(G/H)Γ)'Hp−1(Γ\G/H).

EXAMPLE 2.5.0.2. Let Σg be a connected compact Riemann surface of genus g ≥ 2. The
fundamental group of Σg can be identified with a discrete subgroup Γg of the projective
group:

PSL(2,R)=SL(2,R)/{±I},

so that Σg is identified with the orbit space H/Γg of the action of Γg on the Poincaré half-
plane H. This action is given by:

(A, z) 7−→ az+b
cz+d

, A =
(

a b
c d

)

for every z ∈H and any matrix A ∈SL(2,R). The 2-cohomology space of Γg-co-invariant forms
on H is then isomorphic to the 1-cohomology space of Σg, hence dim(H2(Ωc(H)Γg )= 2g.

EXAMPLE 2.5.0.3 (NILMANIFOLDS). A compact nilmanifold is the quotient of a simply
connected nilpotent Lie group G by a discrete subgroup Γ⊂G such that G/Γ is compact (one
can see [45] for details). The simplest example being the n-dimensional torus viewed as the
natural quotient of Rn by Zn.

The cohomology of Γ-invariant forms on G can naturally be identified with the cohomol-
ogy of G/Γ and a famous theorem of Nomizu (see [42]) asserts that the cohomology H(G/Γ)
of the nilmanifold is isomorphic to H(g) the cohomology of the Lie algebra g = Lie(G). It
follows from Corollary 2.5.0.3 that for every p = 1, . . . ,n,

Hp(Ω(G)Γ)'Hp(g) and Hp(Ωc(G)Γ)'Hp−1(g).

25



CHAPTER 2. COHOMOLOGY OF CO-INVARIANT DIFFERENTIAL FORMS

In particular, for the usual action by translations of Zn on Rn, we obtain that:

dimHp(Ωc(Rn)Zn)= Cp−1
n .

2.6 Properties of Co-invariant Cohomology

In this paragraph we give some basic properties of co-invariant cohomology.

2.6.1 Homotopy Invariance

Let M and N be smooth manifolds and Γ a group acting on both M and N by diffeomor-
phisms. Let f i : M −→ N be a smooth Γ-equivariant map with i = 0,1, then f ∗i ◦γ∗ = γ∗ ◦ f ∗i
for any γ ∈ Γ and it follows that f ∗i (Ω(N)Γ) ⊂Ω(M)Γ. If furthermore the map f i is proper
then f ∗i (Ωc(N)Γ) ⊂Ωc(M)Γ. Let F : M ×R −→ N be a smooth homotopy between f0 and f1

and K :Ω(N)−→Ω(M) the corresponding chain homotopy given by (B.3) recall that:

K ◦d+d ◦K = f ∗1 − f ∗0 .

For any γ ∈ Γ and (x, t) ∈ M ×R put γ · (x, t) := (γx, t), this defines an action by diffeomor-
phisms of the group Γ on M ×R. In the case where F is Γ-equivariant, then it is easy to
see that K ◦γ∗ = γ∗ ◦K and therefore K(Ωp(N)Γ) ⊂ Ωp−1(M)Γ, if moreover F is a proper
homotopy then K(Ωp

c (N)Γ)⊂Ωp−1
c (M)Γ. As a result, we get the following proposition:

PROPOSITION 2.6.1.1. Let Γ be a group acting on smooth manifolds M and N by diffeo-
morphisms. Let f , g : M −→ N be Γ-equivariant smooth maps and suppose F : M ×R−→ N
is a Γ-equivariant homotopy sending f to g. Then the cohomology maps:

f ∗, g∗ : Hp(Ω(N)Γ)−→Hp(Ω(M)Γ),

induced by the pullback operation are equal. If F is a proper homotopy, the maps f and g
are proper as well and f ∗, g∗ : Hp(Ωc(N)Γ)−→Hp(Ωc(M)Γ) are also equal.

2.6.2 Mayer-Vietoris sequence

Let Γ be a group acting on a smooth manifold M by diffeomorphisms. Let U ,V ⊂ M be open
subsets and consider the Mayer-Vietoris exact sequence:

0−→Ω(U ∪V ) r−→Ω(U)⊕Ω(V )
−→Ω(U ∩V )−→ 0,
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where r(ω) = (ω|U ,ω|V ) and (ω,η) = η|U∩V −ω|U∩V . Assume now that U and V are Γ-
invariant, it is easy to check that for any γ ∈Γ, r◦γ∗ = γ∗◦r and ◦γ∗ = γ∗◦ , consequently:

r(Ω(U ∪V )Γ)⊂Ω(U)Γ⊕Ω(V )Γ, (Ω(U)Γ⊕Ω(V )Γ)⊂Ω(U ∩V )Γ.

This allows to obtain the following sequence:

0−→Ω(U ∪V )Γ
rΓ−→Ω(U)Γ⊕Ω(V )Γ

Γ−→Ω(U ∩V )Γ −→ 0, (2.12)

where rΓ and Γ are the restriction corresponding to r and  respectively.

PROPOSITION 2.6.2.1. Let Γ be a group that acts by diffeomorphisms on a smooth man-
ifold M and let {U ,V } be Γ-invariant open subsets of M. Assume that there exists a Γ-
invariant partition of unity {φU ,φV } subordinate to {U ,V }. Then (2.12) is an exact sequence.

Proof. It is clear that rΓ is injective, let α ∈Ω(U ∩V )Γ which can be expressed as a finite
sum α=∑

iαi−γ∗i αi with αi ∈Ω(U∩V ) and γi ∈Γ. Since  is a surjective map then we can
write αi =ωi −ηi such that ωi ∈Ω(U) and ηi ∈Ω(V ). It follows that α= Γ(ω,η) with:

ω=∑
i
ωi −γ∗i ωi and η=∑

i
ηi −γ∗i ηi. (2.13)

Thus Γ is surjective. On the other hand we clearly have Im(rΓ) ⊂ ker( Γ), conversely
choose ω ∈ Ω(U)Γ and η ∈ Ω(V )Γ such that ω = η on U ∩V i.e (ω,η) ∈ ker( Γ) and write:

ω=∑
i
ωi −γ∗i ωi and η=∑

j
η j −γ∗j η j.

Since ker( ) = Im(r), then ω=α|U and η=α|V for some α ∈Ω(U ∪V ). It is clear that φUωi

and φVη j define global forms on U ∪V . Thus by Γ-invariance of φU and φV we get that:

α=φUα+φVα=∑
i

(φUωi)−γ∗i (φUωi)+
∑

j
(φVη j)−σ∗

j (φVη j) ∈Ω(U ∪V )Γ.

It follows that (ω,η)= rΓ(α). This ends the proof.

PROPOSITION 2.6.2.2. Let M be a smooth manifold, Γ a group acting on M by diffeo-
morphisms and U ,V ⊂ M arbitrary open subsets. Assume that there exists a Γ-invariant
partition of unity {φU ,φV } subordinate to {U ,V }. Then the short exact sequence (2.12) in-
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duce the following long exact cohomology sequence:

· · ·→Hp(Ω(U ∪V )Γ)
rΓ→Hp(Ω(U)Γ)⊕Hp(Ω(V )Γ)

Γ→Hp(Ω(U ∩V )Γ) ∂→Hp+1(Ω(U ∪V )Γ)
rΓ→ . . .
(2.14)

where ∂ : Hp(Ω(U ∩V )Γ)−→Hp+1(Ω(U ∪V )Γ) denote the connecting homomorphism.

For any open subset W ⊂ M we can view Ωc(W) as the subcomplex of forms ω ∈Ωc(M) such
that supp(ω) ⊂ W . Recall that the short Mayer-Vietoris sequence for compact supports is
given by:

0−→Ωc(U ∩V ) ι−→Ωc(U)⊕Ωc(V )
ρ−→Ωc(U ∪V )−→ 0,

where ι and ρ are given by ι(ω)= (ω,−ω) and ρ(ω,η)=ω+η. It is easy to see that ι◦γ∗ = γ∗◦ι
and ρ ◦γ∗ = γ∗ ◦ρ. Thus we get the following sequence:

0−→Ωc(U ∩V )Γ
ιΓ−→Ωc(U)Γ⊕Ωc(V )Γ

ρΓ−→Ωc(U ∪V )Γ −→ 0, (2.15)

where ιΓ and ρΓ are the restriction maps corresponding to ι and ρ respectively.

PROPOSITION 2.6.2.3. Assume that there exists a Γ-invariant partition of unity {φU ,φV }
subordinate to {U ,V }. Then (2.15) is an exact sequence.

Proof. Following the proof of Proposition 2.6.2.1 we can show in a similar way that ιΓ is
injective, ρΓ is surjective and Im(ιΓ) ⊂ ker(ρΓ). Conversely let ω ∈Ωc(U)Γ and η ∈Ωc(V )Γ
such that ω+η= 0 on U∪V . Since ker(ρ)= Im(ι) we can find α ∈Ωc(U∩V ) such that ω=α
and η = −α. Now φU and φV are Γ-invariant, supp(φU ) ⊂ U and supp(φV ) ⊂ V , therefore
we get that φVω,φUη ∈Ωc(U ∩V )Γ and it follows that:

α=φUα+φVα=φVω−φUη ∈Ωc(U ∩V )Γ.

Thus (ω,η)= ιΓ(α), this ends the proof.

PROPOSITION 2.6.2.4. Let M be a smooth manifold, Γ a group acting on M by diffeo-
morphisms and U ,V ⊂ M arbitrary open subsets. Assume that there exists a Γ-invariant
partition of unity {φU ,φV } subordinate to {U ,V }. Then the short exact sequence (2.15) in-
duce the following long exact cohomology sequence:

· · ·→Hp(Ωc(U∩V )Γ)
ιΓ→Hp(Ωc(U)Γ)⊕Hp(Ωc(V )Γ)

ρΓ→Hp(Ωc(U∪V )Γ) ∂→Hp+1(Ωc(U∩V )Γ)
ιΓ→ . . .

(2.16)
where ∂ : Hp(Ωc(U ∪V )Γ)−→Hp+1(Ωc(U ∩V )Γ) denote the connecting homomorphism.
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2.7 Examples with infinite dimensional co-invariant cohomology

The goal of this part is to show that without additional hypothesis on the nature of a group
action on a smooth manifold (for instance being properly discontinuous or an isometric
action), the co-invariant cohomology is not well-behaved in general. To illustrate this we
give examples in which the co-invariant cohomology is actually infinite-dimensional on a
compact smooth manifold contrary to the de Rham cohomology.

2.7.1 The Hyperbolic Torus

Let A ∈ SL(2,Z) such that tr(A) > 2. It is easy to check that A = PDP−1 with P ∈ GL(2,R)
and D = diag(λ,λ−1). Clearly λ> 0 and λ 6= 1. Hence it makes sense to set D t = diag(λt,λ−t)
and define At = PD tP−1 for any t ∈R. Next we define the Lie group homomorphism:

φ :R−→Aut(R2), t 7→ At

The hyperbolic torus T3
A is the smooth manifold defined as (R2oφR)/(Z2oφZ). The natural

projection R2oφR
p−→ R induce a fiber bundle structure T3

A
p−→S1 with fiber type T2 such

that p[x, y, t] = [t]. If (1,a) and (1,b) are the eigenvectors of A respectively associated to
the eigenvalues λ and λ−1 then:

v = (1,a,0), w = (1,b,0) and e = (0,0,− log(λ)−1),

forms a basis of g=Lie(R2oφR), and we can check that:

[v,w]g3 = 0, [e,v]g3 =−v, and [e,w]g3 = w. (2.17)

Denote X , Y and Z the left invariant vector fields on R2 oφ R associated to v, w and e
respectively, then {X ,Y , Z} defines a parallelism on TA

3 , a direct calculation leads to:

X =λt
(
∂

∂x
+a

∂

∂y

)
, Y =λ−t

(
∂

∂x
+b

∂

∂y

)
and Z =− log(λ)−1 ∂

∂t
. (2.18)

Now denote α, β and θ the dual forms associated to X , Y and Z respectively. It is clear
that the vector fields X and Y of T3

A are tangent to the fibers of the fiber bundle T3
A

p−→S1,
and that θ =−(logλ)p∗(σ) where σ is the invariant volume form on S1 satisfying

∫
S1σ= 1.
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Suppose in what follows that the eigenvalue λ of A is irrational, then from the relation:

A

(
1
a

)
=λ

(
1
a

)

we deduce that a ∈R\Q. This remark leads to:

PROPOSITION 2.7.1.1. The orbits of the vector field X defined in (2.18) are dense in the
fibers of the fiber bundle T3

A
p−→S1. In particular for any f ∈C ∞(T3

A), X ( f )= 0 is equivalent
to f = p∗(φ) for some φ ∈C ∞(S1).

Proof. We shall identify S1 with R/Z. Fix [t] ∈S1 and consider the diffeomorphism:

Φt :T2 −→ p−1[t], [x, y] 7→ [x, y, t].

Then define the vector field X̂ on T2 given by:

X̂[x,y] = T[x,y,t]φ
−1
t (X[x,y,t])=λt

(
∂

∂x
+a

∂

∂y

)
.

Since a is irrational we get that the family {1,a} is Q-linearly independent and thus the
orbits of X̂ are dense in T2, consequently the orbits of X̂ are dense in p−1[t], this proves
the assertion since t is arbitrary.

Put M =T3
A. It is straightforward to check that:

dα=−α∧θ, dβ=β∧θ, dθ = 0

and that LXα=−θ and LXβ= LXθ = 0 thus LX (α∧β∧θ)= 0. The vector field X induce a
discrete action ρ :Z−→Diff(M) given by ρ(n)(x)=φX

n (x). For convenience, denote γ := ρ(1).

CALCULATING H0(Ω(M)ρ): Choose f ∈Ω0(M)ρ such that d f = 0, then f is a constant func-
tion equal to g−γ∗g for some g ∈C ∞(M). Consequently we obtain that:∫

M
fα∧β∧θ =

∫
M

(g−γ∗g)α∧β∧θ =
∫

M
gα∧β∧θ−

∫
M
γ∗(gα∧β∧θ)= 0.

Thus f = 0 and we conclude that H0(Ω(M)ρ)= 0.

CALCULATING H1(Ω(M)ρ): We prove that H1(Ω(M)ρ) is infinite dimensional. In order to do
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so, we prove that the map p∗ :Ω1(S1)−→H1(Ω(M)ρ) is well-defined and injective or equiv-
alently we show that p∗(Ω1(S1))⊂ Z1(Ω(M)ρ) and p∗(Ω1(S1))∩B1(Ω(M)ρ)= 0. An element
η ∈ p∗(Ω1(S1)) can always be written as η= p∗(φ)θ where φ ∈ C ∞(S1). Since LXθ = 0 and
X (p∗φ)= 0 then LXη= 0 and thus η= (φX

t )∗η. Therefore we get that:

η=
∫ 1

0
(φX

t )∗ηdt =−p∗(φ)
∫ 1

0
(φX

t )∗(LXα)dt = p∗(φ)α−γ∗(p∗(φ)α).

Moreover observe that dη= 0, hence we deduce that p∗(Ω1(S1))⊂ Z1(Ω(M)ρ). Now assume
that η = d(g−γ∗g) then clearly X (g−γ∗g) = 0 and Z(g−γ∗g) = p∗(φ), thus according to
Proposition 2.7.1.1, there exists ψ ∈C ∞(S1) such that g−γ∗g = p∗ψ. By induction we can
show that for any n ∈N, g = ρ(n)∗g+np∗ψ which then leads to:

|p∗ψ| ≤ 1
n
|g−ρ(n)∗g| ≤ 2

n
‖g‖∞ −→

n→+∞ 0.

Hence p∗ψ= g−γ∗g = 0 and so η= 0. Thus p∗(Ω1(S1))∩B1(Ω(M)ρ)= 0.

CALCULATING H2(Ω(M)ρ): We will show that p∗(Ω1(S1))∧β ⊂ H2(Ω(M)ρ). To do this, we
fix a 2-form η = p∗(φ)θ∧β with φ ∈ C ∞(S1). We can easily check that dη = 0, moreover
from the previous calculations and the fact that LXβ= 0 we get that β= γ∗β, therefore:

p∗(φ)θ∧β= (p∗φα∧β)−γ∗(p∗(φ)α∧β).

Hence p∗(Ω1(S1))∧β⊂ Z2(Ω(M)ρ). Now assume that η= d(ω−γ∗ω), in order to proceed we
need the following lemma:

LEMMA 2.7.1.1. Let f ∈C ∞(T3
A) then for every s ∈R we have the following formula:

Z
(
(φX

s )∗( f )
)=−s(φX

s )∗
(
X ( f )

)+ (φX
s )∗

(
Z( f )

)
. (2.19)

In particular Z(γ∗ f )=−X (γ∗ f )+γ∗(Z( f )) and iZ ◦γ∗ =−γ∗ ◦ iX +γ∗ ◦ iZ .
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Proof. For any (x, y, t) ∈R3, a straightforward computation gives that:

Z
(
(φX

s )∗( f )
)
(x, y, t) = − 1

logλ
d( f ◦φX

s )(x,y,t)(0,0,1)

= − 1
logλ

d
du |u=0

( f ◦φX
s )(x, y, t+u)

= − 1
logλ

d
du |u=0

f (sλt+u + x,asλt+u + y, t+u)

= − 1
logλ

(d f )φX
s (x,y,t)(s log(λ)λt,as log(λ)λt,1)

= −s(d f )φX
s (x,y,t)(λ

t,aλt,0)− 1
logλ

(d f )φX
s (x,y,t)(0,0,1)

= −s(X ( f )◦φX
s )(x, y, t)+ (Z( f )◦φX

s )(x, y, t).

Which achieves the proof.

COROLLARY 2.7.1.1. Let f ∈C ∞(M) and assume that f = γ∗ f . Then X ( f )= 0 and conse-
quently f = p∗ψ with ψ ∈C ∞(S1).

Proof. Since f = γ∗ f we get that for every n ∈ Z, f = (γn)∗( f ) thus the preceding lemma
gives that:

Z( f )=−nX ( f )+ (γn)∗(Z( f )).

Consequently we obtain that for every n ∈Z:

|X ( f )| ≤ 1
n

(‖Z( f )‖∞+‖(γn)∗(Z( f ))‖∞
)≤ 2

n
‖Z( f )‖∞,

which leads to X ( f )= 0 and achieves the proof.

From η = d(ω− γ∗ω) and [X ,Y ] = 0 we get that iX iY (dω) = γ∗(iX iY dω) and therefore
according to Corollary 2.7.1.1 we can write iX iY dω = p∗ψ for some ψ ∈ C ∞(S1). On the
other hand we get from Lemma 2.7.1.1 that:

p∗φ− iX iY (dω)= γ∗(iZ iY dω)− iZ iY dω.

It follows that p∗(φ−ψ)= γ∗(iZ iY dω)− iZ iY dω, as before we can prove that p∗(φ−ψ)= 0,
so we deduce that p∗φ = p∗ψ = iX iY (dω). Now if we write ω = fα+ gβ+hθ, then we get
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that p∗φ= X (g)−Y ( f ). From X (p∗φ)=Y (p∗φ)= 0 we get that for every s ∈R:

s2 p∗φ =
∫ s

0

∫ s

0
(φX

t )∗(φY
u )∗(p∗φ)dudt

=
∫ s

0

∫ s

0
(φX

t )∗(φY
u )∗(X (g))dudt−

∫ s

0

∫ s

0
(φX

t )∗(φY
u )∗(Y ( f ))dudt

=
∫ s

0
(φX

t )∗X
(∫ s

0
(φY

u )∗(g)du
)

dt−
∫ s

0
(φY

u )∗Y
(∫ s

0
(φX

t )∗( f )dt
)

du

= (φX
s )∗

(∫ s

0
(φY

u )∗(g)du
)
−

∫ s

0
(φY

u )∗(g)du− (φY
s )∗

(∫ s

0
(φX

t )∗( f )dt
)
+

∫ s

0
(φX

t )∗( f )dt.

It follows that:

s2|p∗φ| ≤ 2
∥∥∥∥∫ s

0
(φY

u )∗(g)du
∥∥∥∥∞

+2
∥∥∥∥∫ s

0
(φX

t )∗( f )dt
∥∥∥∥∞

≤ 2|s|(‖g‖∞+‖ f ‖∞)

Hence |p∗φ| ≤ 1
s

(‖g‖∞+‖ f ‖∞) −→
s→+∞ 0. Thus η = 0 and p∗(Ω1(S1))∧β∩B2(Ω(M)ρ) = 0, in

particular this proves that H2(Ω(M)ρ) is infinite dimensional.

CALCULATING H3(Ω(M)ρ): The elements of Ω3(M)ρ are of the form ( f −γ∗ f )α∧β∧θ for
some f ∈C ∞(M). Put:

c =
∫

M fα∧β∧θ
α∧β∧θ , then

∫
M

( f − c)α∧β∧θ = 0.

Thus ( f −c)α∧β∧θ = dω and since LX (α∧β∧θ)= 0 it follows that (γ∗ f −c)α∧β∧θ = d(γ∗ω)
and therefore:

( f −γ∗ f )α∧β∧θ = d(ω−γ∗ω),

i.e H3(Ω(M)ρ)= 0.
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Chapter 3

On a type of maximal abelian torsion free
subgroups of connected Lie groups

In this chapter
3.1 Introduction and statement of main results 35

3.2 Generalities on p(G) and q(G) . . . . . . . . 36

3.3 Finite cover of Lie groups . . . . . . . . . . . 41

3.4 The case of an exponential Lie group . . . . 43

3.5 The case of a nilpotent Lie group . . . . . . 45

3.1 Introduction and statement of main results

For an arbitrary Lie group G we can define the two integers:

p(G)=max{p ∈N, Zp is isomorphic to a discrete subgroup of G}.

q(G)=max{q ∈N, Rq is isomorphic to a closed subgroup of G}.

The main purpose of this chapter is to find situations where it is possible to give explicit
calculations of these invariants and relationships with other Lie algebra invariants. In
[11] the authors were interested by the maximum among the dimensions of abelian sub-
algebras of a given Lie algebra g, so they introduced an integer M (g) which they called
the maximal abelian dimension of g and they had given explicit calculations of M (g) for
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some nilpotent Lie algebras. We shall see how M (g) relates to p(G), q(G) in the case of an
exponential Lie group G with Lie algebra g and in the case of a nilpotent Lie group G.

Another problem closely related to our work is treated in [21] where the author intro-
duced the notion of an envelope of an abelian subgroup of a Lie group, in mathematical
terms given a Lie group G and an abelian subgroup A of G, an envelope of A in G is any
connected abelian subgroup of G containing A. The author has shown that in general an
envelope of an abelian subgroup might not exist and had given a counter-example in the
nilpotent case, however he proved [21, Proposition 2 p. 142] that an abelian subgroup of
a connected nilpotent linear Lie group always has an envelope. We inspect nilpotent Lie
groups and give in Theorem 3.5.0.2 a result in the same spirit, showing where lies the
difference between p(G) and q(G). Discrete cyclic subgroups of a Lie group G have also
been studied from a theoretical measure point of view one can see [50] for details.

The chapter is organised as follows: in the first paragraph we give general results con-
cerning p(G) and q(G) and we show that p(G) is finite for connected Lie groups. In the
next section, we treat the effect of a finite cover on p(G), the following section specializes
in describing the invariants p(G) and q(G) when G is an exponential Lie group, a class that
includes simply connected nilpotent Lie groups. We then drop the simple connectedness
condition and focalize on describing p(G) and q(G) for connected nilpotent Lie groups, this
gives a way of comparing p(G) and q(G) in this case.

Acknowledgement

This work started with the natural question of whether a noncompact Lie group contains
an infinite cyclic discrete subgroup. The authors wish to thank Aziz El Kacimi Alaoui for
giving them a first proof of the Proposition 3.2.0.1.

3.2 Generalities on p(G) and q(G)

Let G be a Lie group. It is then clear that p(G)= q(G)= 0 when G is compact, so we will be
interested throughout the whole paper by the non-compact case. We should note that Zp

is isomorphic to a discrete subgroup of G means that we can find elements γ1, · · · ,γp of G
satisfying γiγ j = γ jγi for all i, j such that the following map

Zp →G, (m1, · · · ,mp) 7→ γ
m1
1 · · ·γmp

p
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is injective and the generated group 〈γ1, · · · ,γp〉 is a discrete subgroup of G. Likewise, the
abelian group Rp is isomorphic to a closed subgroup of G means that there exists com-
muting one parameter subgroups exp(t1X1), · · · ,exp(tp X p) such that the following group
homomorphism

Rp →G, (t1, · · · , tp) 7→ exp(t1X1) · · ·exp(tp X p)

is a topological isomorphism onto a closed subgroup of G. When H ⊂G is a closed subgroup
we have evidently p(H)≤ p(G) and q(H)≤ q(G).

PROPOSITION 3.2.0.1. Let G be a noncompact connected Lie group then:

1≤ q(G)≤ p(G).

Proof. From [9, Theorem 6] or [6], there exists a compact subgroup K ⊂G and 1-parameter
subgroups H1, . . . ,Hp of G such that the map:

φ : K ×H1 ×·· ·×Hp −→G, (k,h1, . . . ,hp) 7→ kh1 . . .hp

is a diffeomorphism. Thus G = KH̄1 . . . H̄p where H̄i is the closure of Hi in G, and since
the group G is noncompact there must exist some noncompact H̄i. Combining this with
the fact that Hi is a 1-parameter subgroup we get that Hi must be closed in G and hence
isomorphic to R, which proves that q(G) ≥ 1. For the right hand inequality, we observe
that any Lie group imbedding ψ :Rq −→G can be restricted to an injective homomorphism
ϕ : Zq −→ G with discrete image in G by setting ϕ :=ψ|Zq , thus q ≤ p(G) and since q was
arbitrary we get that q(G)≤ p(G).

The equality p(G) = 1 does occur, this is the case when G is isomorphic to R, a non trivial
situation when this occurs is illustrated in the following explicit calculation:

EXAMPLE 3.2.0.1 (Explicit calculation for the Affine group of R).
Denote G := Aff(R)◦ the identity component of the affine group of R, which can be defined

as the matrix group:

Aff(R)◦ =
{(

a b
0 1

)
/ a > 0, b ∈R

}
It is known that Aff(R)◦ ' R×+nρ R with ρ : R×+ → Aut(R), ρ(a)(b) = a · b. For any injective
homomorphism ϕ : Z2 −→ Aff(R)◦ we will show that ϕ(Z2) cannot be discrete in Aff(R)◦.
Denote γ1 :=ϕ(0,1) = (a1,b1) and γ2 :=ϕ(1,0) = (a2,b2). From the equality γ1γ2 = γ2γ1, we
get that:

b1(a2 −1)= b2(a1 −1).
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By the injectivity of ϕ, it follows that b1 = 0 if and only if b2 = 0 (i.e γ1,γ2 ∈R×+), similarly we
have that a1 = 1 if and only if a2 = 1 (i.e γ1,γ2 ∈R). In either case, ϕ(Z2) cannot be discrete
in Aff(R)◦. Therefore we can suppose that γ1 and γ2 are neither in R×+ nor R i.e a1 6= 1, a2 6= 1
and b1b2 6= 0. We can easily check that for all n,m ∈Z:

ϕ(n,m)= γn
1γ

m
2 =

(
an

1am
2 ,

b1

1−a1
(1−an

1am
2 )

)
.

Since ϕ is injective we get that for all n ∈ Z and m ∈ Z\ {0}, an
1am

2 6= 1 or in other terms
that ln(a1)/ ln(a2) 6= n/m hence α := ln(a1)/ ln(a2) ∈ R\Q. Now Z+αZ is dense in R, we can
therefore choose non-stationary sequences (pn)n and (qn)n in Z such that:

pn +αqn = ln(apn
1 aqn

2 )
ln(a1)

−→
n→+∞ 0, thus lim

n→+∞apn
1 aqn

2 = 1.

If we put An = γ
pn
1 γ

qn
2 , we get that (An)n is a non-stationary sequence of ϕ(Z2) which

converges to I2, therefore ϕ(Z2) cannot be discrete in Aff(R)◦. We conclude that p(Aff(R)◦)= 1
and by Proposition 3.2.0.1, q(Aff(R)◦)= 1.

It is clear that the quantity q(G) is finite and in fact q(G)≤ dim(G), however the finiteness
of p(G) is not as clear so we address it in what follows.

PROPOSITION 3.2.0.2. Let G be a connected Lie group. Then:

1≤ q(G)≤ p(G)≤ dim(G/K),

where K is a maximal compact subgroup of G. In particular p(G) is finite.

Proof. Let K be a maximal compact subgroup G, it is well-known that K exists and is
unique up to conjugation since G has finitely many connected components, moreover the
quotient space G/K is a contractible manifold. Let Γ be a discrete subgroup of G which is
isomorphic to Zp, the natural action of Γ on G/K given by:

Γ×G/K −→G/K , (γ, [g]) 7→ [γg],

is properly discontinuous since K is compact. This action is also free, indeed since the ac-
tion is properly discontinous, the isotropy groups Γx, x ∈G/K are finite hence trivial which
follows from the fact that Γ is isomorphic to Zp which has no nontrivial finite subgroups.
This gives that the natural projection G/K π−→ Γ\G/K is a covering of smooth manifolds,
and since G/K is contractible we get that Γ\G/K is a classifying space for Γ (cf. [38]). Now
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since the group Γ is isomorphic to Zp and the p-dimensional torus Tp is a classfying space
for Zp, we obtain that Γ\G/K must be homotopy equivalent to Tp and in particular they
have the same de-Rham cohomology:

Hk(Tp)∼=Hk(Γ\G/K).

Now suppose by contradiction that we can choose p > dim(G/K), the preceding remark
would give that Hp(Γ\G/K) ∼= Hp(Tp) ∼= R, but this is clearly impossible since the dou-
ble quotient Γ\G/K is a smooth manifold with dim(Γ\G/K) = dim(G/K) hence Hk(Γ\G/K)
must be trivial for any k > dim(G/K). Since p was arbitrary we get that p(G) ≤ dim(G/K).

COROLLARY 3.2.0.1. Let G be a connected Lie group and C any compact subgroup of G.
Then:

p(G)≤ dim(G)−dim(C).

EXAMPLE 3.2.0.2. Choose a compact connected Lie group K and put G =Rp ×K . Then it
is clear that p ≤ p(G)≤ dim(G/K), and so p(G)= dim(G/K) in this case.

EXAMPLE 3.2.0.3. Let G = Aff(R)◦ the identity component of the affine group of R. It is
clear that any compact subgroup of G is trivial thus K = {eG} is a maximal compact sub-
group of the group G which means that dim(G/K)= dim(G)= 2, however p(G)= 1 according
to Example 3.2.0.1. So p(G)< dim(G/K) in this case.

PROPOSITION 3.2.0.3. Let G1 and G2 be connected Lie groups and G =G1 ×G2, then:

q(G)= q(G1)+q(G2).

Proof. It is clear that if A i is a closed abelian subgroup of G i isomorphic to Rqi for i = 1,2
then the subgroup A1 × A2 is closed in G and isomorphic to Rq1+q2 thus q1 + q2 ≤ q(G)
and therefore q(G1)+q(G2) ≤ q(G). Conversely, let A be a closed abelian subgroup of G
isomorphic to Rr, let pri : G −→ G i be the projection on the i-th component for i = 1,2.
Next, denote A i := pri(A) then its closure A i in G i is a closed connected abelian subgroup
of G i thus isomorphic to some Rqi ×Tki , i = 1,2. Clearly A ⊂ A1 × A2 and therefore:

r = dim(A)≤ q(A1 × A2)= q1 + q2 ≤ q(G1)+q(G2).

We conclude that q(G)≤ q(G1)+q(G2).
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An analogous claim for the discrete setting is more subtle, so before addressing it we need
a lemma:

LEMMA 3.2.0.1. Let K be a compact Lie group and Γ be a discrete subgroup of Rp ×K
isomorphic to Zr then r ≤ p.

Proof. Let ϕ :Zr −→ Rp ×K be an injective group homomorphism such that ϕ(Zr) = Γ and
denote pr1 :Rp ×K −→Rp the first projection. Put ψ := pr1 ◦φ, then:

ψ−1(0)=ϕ−1(pr−1
1 (0))=ϕ−1(Γ∩ {0}×K),

since Γ∩ ({0}×K) is finite and ϕ is injective we get that ψ−1(0) is a finite subgroup of Zr

thus trivial, it follows that ψ : Zr −→ Rp is injective. Next choose a sequence (γn)n in Rp

converging to 0 , then (γn)n is contained in some compact neighborhood Ū of 0 in Rp. For
any n ∈ N, put γn = ψ(gn) , we can write ϕ(gn) = (γn,kn) for some kn ∈ K , then (γn,kn)
belongs to (Ū ×K)∩Γ which is finite since Γ is discrete in Rp ×K , therefore (γn,kn)n can
only take finitely many values and it follows that the sequence (γn)n is stationary. We
conclude that ψ(Zr) is a discrete subgroup of Rp isomorphic to Zr thus r ≤ p.

PROPOSITION 3.2.0.4. Let G1 and G2 be connected Lie groups and G =G1 ×G2, then:

p(G)= p(G1)+p(G2).

Proof. Let ϕi : Zpi −→ G i i = 1,2 be an injective homomorphism with discrete image then
the map ϕ : Zp1 ×Zp2 −→ G given by ϕ(u1,u2) = (ϕ1(u1),ϕ2(u2)) is an injective homomor-
phism with discrete image therefore p1+ p2 ≤ p(G) and since the p1, p2 were arbitrary we
get that p(G1)+p(G2) ≤ p(G). Conversely, let ϕ : Zr −→ G be an injective homomorphism
with discrete image and put Γ :=ϕ(Zr). For i = 1,2, define Hi := pri(Γ) where pri : G −→G i

is the projection on the i-th component and put H := H1 × H2. It is clear that Hi is an
abelian closed subgroup of G i thus H is an abelian closed subgroup of G containing Γ.
According to [51] each Hi is isomorphic to Rqi ×Zpi ×Tki ×Fi where Fi is a finite abelian
group, hence H is isomorphic to Rq ×Zp ×Tk ×F with q = q1 + q2, p = p1 + p2, k = k1 + k2

and F = F1 ×F2. Consequently H can be realized as a closed subgroup of Rp+q ×Tk ×F so
by Lemma 3.2.0.1:

r ≤ p+ q ≤ p1 + p2 + q1 + q2 ≤ p(G1)+p(G2).

Since the integer r was arbitrary we get that p(G)≤ p(G1)+p(G2).
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3.3 Finite cover of Lie groups

In this paragraph we discuss the behavior of p(G) and q(G) with respect to some finite
cover of Lie groups G̃ π→G.

PROPOSITION 3.3.0.1. Let G̃ π→G be a finite cover of connected Lie groups. Then:

p(G)= p(G̃).

Proof. Write F := ker(π), then F is a finite central subgroup of G̃, i.e F ⊂ Z(G̃). We start
by showing that p(G̃)≤ p(G). Let ϕ :Zp −→ G̃ be an injective homomorphism with discrete
image, define ψ := π◦ϕ, we claim that ψ is injective. Indeed ker(ψ) = ϕ−1(F) and since ϕ
is injective and F is finite, ϕ−1(F) is a finite subgroup of Zp hence trivial and kerψ = {0}.
To show that ψ(Zp) is discrete in G it suffices to show that V ∩ψ(Zp) = {eG} for some
neighborhood V of eG in G. Since ϕ(Zp) is discrete in G̃ and F is finite then ϕ(Zp) ·F is
discrete in G̃, thus U∩(ϕ(Zp)·F)= {eG̃} for some open neighborhood U of eG̃ , put V =π(U).
Let z ∈ V ∩ψ(Zp), we can find u ∈U and y ∈ϕ(Zp) such that π(u) = π(y) = z, then u = y · f
and therefore u = eG̃ and y= f −1, consequently we obtain that z =π( f −1)= eG . We conclude
that ψ(Zp) is a discrete subgroup of G, choosing p = p(G̃) we get that p(G̃)≤ p(G).
Conversely, we show that p(G)≤ p(G̃). Let ϕ :Zp −→G be an injective homomorphism such
that ϕ(Zp) is discrete in G. If {e1, . . . , ep} is the canonical basis of Rp and write γi :=ϕ(e i),
then ϕ(Zp) = 〈γ1, . . . ,γp〉. Now choose γ̃1, . . . , γ̃p ∈ G̃ such that π(γ̃i) = γi, since γiγ j = γ jγi

and π : G̃ −→G is a group homomorphism with ker(π)= F we obtain that

γ̃iγ̃i = (γ̃ jγ̃i) · f i j for some f i j ∈ F.

Since F is finite we can find k ∈ N∗ such that f k = eG̃ for every f ∈ F. We can check that
for every p ∈N, γ̃p

i γ̃ j = γ̃ jγ̃
p
i f p

i j thus γ̃k
i γ̃ j = γ̃ jγ̃

k
i and consequently γ̃k

i γ̃
k
j = γ̃k

j γ̃
k
i .

Therefore we get an homomorphism ϕ̃ : Zp −→ G by setting ϕ̃(e i) := γ̃k
i , moreover if we

define ψ : Zp −→ G by ψ(u) = ϕ(u)k we get that ψ is an injective homomorphism, also ψ

has a discrete image in G, this follows from ψ(Zp)=ϕ(kZ×·· ·×kZ), furthermore ψ=π◦ϕ̃,
in particular ϕ̃ is also injective. To show that ϕ̃(Zp) is a discrete subgroup of G̃, let V be an
evenly covered open neighborhood of eG in G such that V ∩ψ(Zp) = {eG} and let U be an
open neighborhood of eG̃ in G̃ such that the restriction π|U : U −→ V is a diffeomorphism.
Let y ∈ U ∩ ϕ̃(Zp) then it is clear that π(y) ∈ V ∩ψ(Zp) and thus π(y) = eG or in other
terms that y ∈ F. Consequently, yk = eG̃ but since y is also in ϕ̃(Zp) we get that y= eG̃ . We
conclude that ϕ̃(Zp) is discrete in G̃, if we set p = p(G) then we get p(G)≤ p(G̃).
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EXAMPLE 3.3.0.1. Let PSL(2,R) be the projective special linear group, which is defined
as:

PSL(2,R) :=SL(2,R)/{±Id};

this group cannot admit a discrete subgroup isomorphic to Z2 [27, Corollary 2.3.7]. This is
equivalent to saying that p(PSL(2,R))= 1. Hence, from Proposition 3.3.0.1 we obtain:

p(SL(2,R))= 1,

although we knew that as a manifold SL(2,R) is diffeomorphic to S1 ×R2.

We now show that the same result holds for the invariant q(G) as well.

PROPOSITION 3.3.0.2. Let G̃ π→G be a finite cover of Lie groups. Then q(G̃)= q(G).

Proof. Denote F := kerπ⊂ Z(G̃) and consider the commutative diagram:

Rq G̃

G

ψ̃

ψ
π

Then ψ̃ is an imbedding of Lie groups if and only if ψ is an imbedding of Lie groups. In-
deed we have that ker(ψ)= ψ̃−1(F), assume that ψ :Rq −→ψ(Rq) is an isomorphism of Lie
groups, then ψ̃ :Rq −→ G̃ is injective. Let (vn)n be a sequence in Rq such that (ψ̃(vn))n con-
verges to eG̃ then (ψ(vn))n converges to eG and since ψ is an isomorphism onto its image, it
follows that (vn)n converges to 0, thus ψ̃ is an isomorphism onto its image. Conversely, sup-
pose that ψ̃ :Rq −→ ψ̃(Rq) is an isomorphism, then ker(ψ) is a finite subgroup of Rq which
is torsion-free, therefore ker(ψ)= {0}. Let (vn)n be a sequence in Rq such that (ψ(vn))n con-
verges to eG in G, since ψ̃= π◦ψ we can find fn ∈ F such that ( fnψ̃(vn))n converges to eG̃ .
Thus ( fnψ̃(vn))k = ψ̃(kvn) when k = |F| and since (ψ̃(vn)k)n converges to eG̃ and ψ̃ is an
isomorphism onto its image, it follows that (kvn)n converges to 0 in Rq and therefore the
sequence (vn)n converges to 0 in Rq and ψ is an isomorphism onto its image.
In particular this implies that q(G̃) ≤ q(G), on the other hand if ψ : Rq −→ G is an imbed-
ding of Lie groups put A =ψ(Rq) and a= Lie(A) then the restriction expG |a : (a,+) −→ A is
an isomorphism. Now define ψ̃ :Rq −→ G̃ by the formula:

ψ̃(v)= expG̃ ◦(π′)−1 ◦ (expG |a)−1 ◦ψ(v).
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It is straightforward to check that ψ̃ is a Lie group homomorphism satisfying π◦ψ̃=ψ thus
by the preceding remarks ψ̃ is a Lie group imbedding and we conclude that q(G)≤ q(G̃).

The following examples show that Propositions 3.3.0.1 and 3.3.0.2 are not true for an
infinite covering of Lie groups G̃ π−→G:

EXAMPLE 3.3.0.2. An obvious counter-example is the case of G̃ =R and G =S1, it is clear
that p(G̃)= q(G̃)= 1 and p(G)= q(G)= 0.

The next example illustrates a situation where the claim of Proposition 3.3.0.2 does hold
and Proposition 3.3.0.1 does not:

EXAMPLE 3.3.0.3. Take G̃ := S̃L(2,R) the universal cover of G :=SL(2,R). It is well known
that π1(SL(2,R)) = Z which can be identified with a central subgroup of G̃, namely ker(π).
Let Γ := 〈γ〉 be any discrete subgroup of G isomorphic to Z and put Γ̃ := π−1(Γ). Clearly Γ̃
is a discrete subgroup of G̃ (it is the inverse image of a discrete subgroup by the covering
map). Moreover if we choose γ1 ∈ G̃ such that π(γ1)= γ, then:

Γ̃= 〈γ1〉 ·ker(π)= {γn
1γ

m
2 , n,m ∈Z},

where γ2 is any generator of ker(π) ' Z, in particular Γ̃ is abelian. To conclude we show
that Γ̃ is torsion-free, indeed if γn

1γ
m
2 = e then e = π(γn

1γ
m
2 ) = γn and since Γ is torsion-free

we get that n = 0 and hence γm
2 = e, again since ker(π) is torsion-free m = 0. In summary

we conclude that G̃ admits a discrete subgroup isomorphic to Z2, this means that p(G̃) ≥ 2
while according to Example 3.3.0.1, p(G)= 1= q(G).
In contrast, the Lie algebra sl(2,R) only admits 1-dimensional abelian subalgebras and
therefore the dimension of closed connected abelian subgroups of both G and G̃ cannot
exceed 1, in particular using Proposition 3.2.0.2, q(G)= q(G̃)= 1.

3.4 The case of an exponential Lie group

Let G be a Lie group with Lie algebra g. We say that G is exponential when the expo-
nential map exp : g−→ G is a diffeomorphism. In particular, G is a simply connected and
contractible Lie group.

LEMMA 3.4.0.1. Let G be an exponential Lie group and let α,β : R −→ G be 1-parameter
subgroups of G such that α(1)=β(1). Then α=β.

Proof. If we write α(t)= exp(tX ) and β(t)= exp(tY ), then the condition α(1)=β(1) is equiv-
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alent to exp(X ) = exp(Y ) which gives that X = Y since the group G is exponential, and so
we conclude that α=β.

LEMMA 3.4.0.2. Let G be an exponential Lie group and let X ,Y ∈ g. Then [X ,Y ]= 0 if and
only if exp(X )exp(Y )= exp(Y )exp(X ).

Proof. Define the 1-parameter subgroups α and β on G given by:

α(t)= exp(Y )exp(tX )exp(−Y ) and β(t)= exp(tX ).

Then exp(X )exp(Y ) = exp(Y )exp(X ) is equivalent to α(1) = β(1) which by the preceding
lemma gives that α=β, i.e for every t ∈R:

exp(Y )exp(tX )exp(−Y )= exp(tX ),

hence exp(Y )exp(tX )= exp(tX )exp(Y ). Now applying this reasoning a second time we get
that for every t, s ∈R:

exp(tX )exp(sY )= exp(sY )exp(tX ),

which is equivalent to [X ,Y ]= 0. The converse is straightforward.

Since the exponential map is a diffeomorphism, any abelian subgroup A of G is of the
form A = exp(a) where a = Lie(A), thus q(G) is equal to the maximal possible dimension
of abelian Lie subalgebras in g, which is denoted M (g) and called the maximal abelian
dimension of g (see [11]). The same holds for p(G) by the following proposition:

PROPOSITION 3.4.0.1. Let G be an exponential Lie group. Then:

p(G)= q(G)=M (g).

Proof. Let ϕ :Zp −→G be an injective homomorphism with discrete image. For i = 1, . . . , p,
denote ϕ(e i)= exp(X i) and a= span{X1, . . . , X p}. Since:

exp(X i)exp(X j)= exp(X j)exp(X i),

we obtain from the preceding lemma that [X i, X j]= 0, hence a is an abelian Lie subalgebra
of g of dimension ≤ p. Furthermore A = exp(a) is a closed abelian subgroup of G, and
since ϕ(Zp) is a discrete subgroup of A we get necessarily that dim A ≥ p, hence dima= p.
Conversely, given any p-dimensional abelian Lie subalgebra a of g, choose a basis v1, . . . ,vp
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of a and consider the map:

ϕ :Zp −→G, (n1, . . . ,np) 7→ exp(n1v1 +·· ·+npvp).

Then ϕ : Zp −→ G is clearly an injective homomorphism with discrete image. In partic-
ular, we obtain that p(G) is equal to the maximal possible dimension of an abelian Lie
subalgebra of g.

3.5 The case of a nilpotent Lie group

A simply connected nilpotent Lie group is a particular case of an exponential Lie group, so
Propostion 3.4.0.1 applies to this case. More generally we have the following result:

PROPOSITION 3.5.0.1. Let G be a linear connected nilpotent Lie group, then:

p(G)= q(G)=M (g)−rank(π1(G)). (3.1)

Proof. Recall from ([24], Theorem 15.2.7) that a connected linear Lie group is isomorphic
to the semi-direct product BoH where B is a simply connected solvable Lie group and
H is linearly real reductive, moreover the radical R of G is isomorphic to the semi-direct
product BoT where T is a maximal torus in H. In the case where the group G is solvable
we get that G = R ' BoT, in particular when G is nilpotent then B is a nilpotent simply
connected Lie group and since T is compact it must be central in G, therefore G ' B×T.
It follows from Propositions 3.2.0.3, 3.2.0.4 and 3.4.0.1 that:

p(G)= p(B)= q(B)= q(G). (3.2)

Next denote b = Lie(B) and t = Lie(T), it is clear since g is isomorphic to the Lie algebra
product b×t that M (b)+dim(t)≤M (g). Conversely, it is possible to assume g= b×t so that
we have b ' g/t as a Lie algebra, hence if a ⊂ g is an abelian Lie subalgebra of maximal
dimension we get that a/t is an abelian subalgebra of b and thus M (g)−dim(t)≤M (b). In
summary using formula (3.2) and Proposition 3.4.0.1 we get that:

p(G)= q(G)=M (b)=M (g)−dim(t),

we conclude by noticing that dim(t)= rank(π1(T))= rank(π1(G)).

Proposition 3.5.0.1 gives a glimpse of how things might turn out in a general setting. In
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fact, we next show that equation (3.1) still holds for q(G) for any connected nilpotent Lie
group G. Henceforth, we denote L1(G) = span{ker(expG)}, then L1(G) ⊂ Z(g) is an ideal
of g. Next put K1(G) := expG(L1(G)), this is a torus i.e. a compact connected abelian Lie
subgroup of G (see [24] p. 439) whose dimension is equal to rank(π1(G)) (see [45] p.32 for
a more general situation).

Now we are in a position to state our first main result concerning q(G).

THEOREM 3.5.0.1. Let G be a connected nilpotent Lie group, then:

q(G)=M (g)−rank(π1(G)).

Proof. Choose a closed subgroup V of G isomorphic to Rq(G) and denote its Lie algebra v,
then expV : (v,+) −→ V is an isomorphism of Lie groups, in particular v∩ker(expG) = {0}.
We claim that L1(G)∩ v = {0}, indeed suppose by contradiction that there exists some
nontrivial element Y ∈ L1(G)∩v, then we get expG(RY ) ⊂ V ∩K1(G). Since Y ∈ v we get
that the group expG(RY ) is closed in G and isomorphic to R, on the other hand expG(RY )
is contained in K1(G) so it must be compact, which is impossible. Now choose a maximal
abelian Lie subalgebra b with v⊂ b⊂ g and a maximal dimensional Lie subalgebra a⊂ g.
Using the maximality of both a and b, we get that Z(g) ⊂ a∩b hence L1(G) ⊂ a∩b and
therefore v⊕L1(G)⊂ b. Now:

M (g)= dim(a)≥ dim(b)≥ dim(L1(G))+dim(v).

Since dim(v)= q(G) and dimL1(G)= rank(π1(G)) we conclude that:

M (g)−rank(π1(G))≥ q(G).

Conversely let a ⊂ g be an abelian Lie subalgebra of maximal dimension and define the
subroup A = expG(a), we claim that A is a closed in G. Indeed, denote by Ā the closure of A
which is a Lie subgroup of G by the classical closed subgroup theorem, and put ā=Lie(Ā).
Since A is abelian and connected, then the same is true for Ā and thus Ā = expG(ā). Now
from A ⊂ Ā we get that a ⊂ ā and by maximality of a we get that ā = a therefore Ā = A.
On the other hand, L1(G)⊂ Z(g)⊂ a so we can write a=w⊕L1(G). Put W = expG(w), it is
straightforward to check that the map:

φ :w×K1(G)−→ A, (w,h) 7→ expG(w)h,
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is an isomorphism of Lie groups, in particular W = φ(w) is closed in A hence closed in G.
Thus we obtain:

q(G)≥ dim(W)= dim(a)−dim(L1(G))=M (g)−rank(π1(G)).

which ends the proof.

The following example shows that in contrast to the simply connected case, it can occur
that p(G) 6= q(G) for a connected nilpotent Lie group G:

EXAMPLE 3.5.0.1. Let g be the 3-dimensional Heisenberg Lie algebra with its usual Lie
bracket structure given by [X1, X2] = X3, it is clear that Z(g) = [g,g] = RX3. Next consider
the nilpotent Lie group G := (g,∗)/ZX3,1 then clearly π1(G)∼=ZX3 and thus rank(π1(G))= 1.
From [11] we get that M (g)= 2 and therefore Theorem 3.5.0.1 gives that:

q(G)=M (g)−rank(π1(G))= 1.

We will show that p(G)≥ 2. Denote X̄ the equivalence class of X ∈ g, from the relation:

X1 ∗ X2 = X1 + X2 + 1
2

[X1, X2]= X2 ∗ X1 + X3, (3.3)

we deduce that X̄1 ∗ X̄2 = X̄2 ∗ X̄1, and therefore the homomorphism ϕ : Z2 −→ G given by
the expression ϕ(e i) = X̄ i for i = 1,2 is well-defined. We claim that ϕ is injective and has
discrete image in G. Indeed let n,m ∈ Z such that ϕ(n,m) = eG , thus (nX̄1)∗ (mX̄2) = eG .
Using formula (3.3), we can find p ∈Z for which:

2nX1 +2mX2 +nmX3 = pX3,

hence n,m = 0. On the other hand if gn = (pn X̄1)∗ (qn X̄2) is a sequence in ϕ(Z2) converging
to eG , then ((pnX1)∗ (qnX2)∗ (rnX3))n converges in (g,∗) to the identity element for some
integer sequence (rn)n. Using relation (3.3) we obtain that:

(pnX1)∗ (qnX2)∗ (rnX3)= pnX1 + qnX2 + ((pnqn)/2+ rn)X3,

thus the sequences (pn)n and (qn)n converge to 0 in Z and are therefore stationary, conse-
quently (gn)n is stationary. In summary, we get that p(G)≥ 2> q(G).

Now we are going to give a similar description for the invariant p(G) for an arbitrary

1This is not a linear group as it is shown in [24] p. 336
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connected nilpotent Lie group G. In order to prove the main result of this paragraph (The-
orem 3.5.0.2), we need some preparation. For this, we use some results concerning lattices
in nilpotent Lie groups, the necessary details can be found in Appendix (C). Our theorem
is stated as follows:

THEOREM 3.5.0.2. Let G be a connected nilpotent Lie group and denote g its Lie algebra.
Then:

p(G)= dim(n0)−rank(π1(G)),

where n0 is of maximal dimension among all 2-step nilpotent Lie subalgebras n of g such
that the Lie group (n,∗) admits a lattice Γ satisfying [Γ,Γ]⊂ ker(expG)⊂Γ.

We start by proving a series of important lemmas:

LEMMA 3.5.0.1. Let Ñ be a simply connected nilpotent Lie group and Γ be a lattice in Ñ.

1. If Γ is abelian then Ñ is abelian.

2. Let N1 be a connected closed subgroup of Ñ and Γ1 a lattice in N1. Assume that Γ1CΓ,
then N1C Ñ and Γ/Γ∩N1 is a lattice in Ñ/N1.

Proof.
1. Since Γ is a lattice in Ñ then Γ must be finitely generated and torsion-free according to
Theorem C.3.0.6, hence isomorphic to a certain Zk, denote σ : Zk −→ Γ this isomorphism.
Since Zk is a lattice of Rk, it follows by Corollary C.3.0.6 that σ can be extended to an
isomorphism Rk −→ Ñ so Ñ is abelian.

2. First note that N1 is also simply connected, this follows from N1 = expÑ(n1) and the
fact that expÑ is a diffeomorphism, where n1 is the Lie algebra of N1. Since Γ1 CΓ, then
for any γ ∈Γ:

Γ1 = γΓ1γ
−1 ⊂ γN1γ

−1,

thus Γ1 ⊂ N1 ∩ (γN1γ
−1) ⊂ N1, but Γ1 is a lattice in N1 hence N1 ⊂ γN1γ

−1. It follows that
the subgroup N1 is normalized by Γ and since Γ is a lattice in Ñ we get that N1 is normal
in Ñ according to Corollary C.3.0.1. Let π : Ñ −→ Ñ/N1 the natural projection and choose
a compact subset C ⊂ N1 such that N1 =Γ1C. Then:

π−1(π(Γ))=Γ ·N1 =Γ ·Γ1 ·C =Γ ·C,

thus π(Γ) is a closed subgroup of Ñ/N1 and since it is countable at most then it must be
discrete in Ñ/N1. To prove that π(Γ) is a lattice in Ñ/N1, let H ⊂ Ñ/N1 be a connected
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subgoup containing π(Γ), then Γ⊂ π−1(H) ⊂ Ñ. Now since H ' π−1(H)/N1 and N1 are con-
nected we get that π−1(H) is connected as well, therefore π−1(H) = Ñ and H = Ñ/N1. The
result then follows from Theorem C.3.0.1.

LEMMA 3.5.0.2. Let G be a connected nilpotent Lie group with Lie algebra g and denote
by Γ a discrete subgroup of (g,∗) satisfying ker(expG)⊂Γ. Then the subgroup Γ0 := expG(Γ)
is discrete in G.

Proof. Choose a sequence (Xn)n in Γ such that (expG(Xn))n converges to eG in G. Next
fix an open neighborhood U of eG in G and a neighborhood V of 0 in g such that the
restriction expG |V : V −→ U is a diffeomorphism. Since expG(Xn) ∈ U for n ≥ N, we can
find Yn ∈V such that expG(Yn)= expG(Xn). Then (Yn)n converges to 0 in g moreover there
exists Zn ∈ ker(expG) such that Yn = Xn ∗Zn and since ker(expG)⊂Γ we get that Yn ∈Γ. It
follows from the discreteness of Γ in g that (Yn)n must be stationary hence (expG(Xn))n is
stationary which shows that Γ0 is discrete in G.

LEMMA 3.5.0.3. Let G be a nilpotent Lie group with Lie algebra g and Γ a discrete sub-
group of (g,∗). Denote h := span(ker(expG)) and Γ0 := expG(Γ). Suppose that Γ satisfies:

[Γ,Γ]⊂ ker(expG)⊂Γ.

Then expG(Γ∩h) is a finite central subgroup of G and Γ0/expG(Γ∩h) ⊂ G/expG(Γ∩h) is a
discrete abelian, finitely generated, torsion-free subgroup isomorphic as an abstract group
to Γ/Γ∩h.

Proof. It is clear that Γ∩h is a discrete abelian subgroup of (h,+) containing ker(expG). If
we let π : h−→ h/ker(expG) be the natural projection then:

π−1(π(Γ∩h))=Γ∩h+ker(expG)=Γ∩h.

It follows that π(Γ∩h) is a closed countable subgroup of h/ker(expG) so it must be discrete,
and since h/ker(expG) is compact then π(Γ∩h)'Γ∩h/ker(expG) is finite. Now the exponen-
tial map expG induce a bijection Γ∩h/ker(expG) 7→ expG(Γ∩h) hence expG(Γ∩h) is finite.
On the other hand Γ∩h ⊂ Z(g) gives that expG(Γ∩h) is a central subgroup in G. Using
Lemma 3.5.0.2, we obtain that Γ0 is discrete in G hence the quotient Γ0/expG(Γ∩h) is a
discrete subgroup of G/expG(Γ∩h).
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Now from [Γ,Γ] ⊂ Γ∩ h we obtain that Γ∩ h is a normal subgroup of Γ and Γ/Γ∩ h is
abelian, moreover since Γ and Γ∩h are finitely generated, it follows that Γ/Γ∩h is finitely
generated as well. Let X ∈ Γ such that nX ∈ Γ∩h for some n ∈Z then X ∈ h thus X ∈ Γ∩h

and it follows that Γ/Γ∩h is torsion-free. Consider now the homomorphism:

ψ :Γ/Γ∩h−→Γ0/expG(Γ∩h), X̄ 7→ [expG(X )].

It is straightforward to check that ψ is a well-defined isomorphism of abstract groups,
which achieves the proof.

Proof of Theorem 3.5.0.2. Let n be a 2-step nilpotent subalgebra of g such that (n,∗) admits
a lattice Γ with the property [Γ,Γ]⊂ ker(expG)⊂Γ. Denote N := expG(n) and Γ0 := expG(Γ).
According to Lemma 3.5.0.2 Γ0 is a discrete subgroup of G. Choose a compact subset C ⊂ n

such that n=Γ∗C then:

N = expG(n)= expG(Γ)expG(C)=Γ0 expG(C).

thus N is closed in G. On the other hand, expG(Γ∩L1(G)) is a finite central subgorup of G
by Lemma 3.5.0.3. Let N0 := N/expG(Γ∩L1(G)) and denote by π : N −→ N0 the canonical
projection, again Lemma 3.5.0.3 gives that Γ0/expG(Γ∩L1(G)) is a discrete abelian, finitely
generated, torsion-free subgroup of N0 isomorphic as an abstract group to Γ/Γ∩L1(G) thus:

p(N0)≥ rg(Γ/Γ∩L1(G))= rg(Γ)−rg(Γ∩L1(G))= dimn−dimL1(G).

Since N π−→ N0 is a finite cover, Proposition 3.3.0.1 gives that p(N) = p(N0), moreover
the closedness of N in G results in p(G) ≥ p(N). Finally, using dimL1(G) = rg(π1(G)) we
conclude that:

p(G)≥ dim(n)−rg(π1(G)).

Conversely, put p(G) := p and let ϕ :Zp −→G be an injective homomorphism with discrete
image. Denote G̃ π−→ G the universal cover of G and put Γ = π−1(ϕ(Zp)), then ker(π) ⊂ Γ

and since π is a covering map we get that Γ is discrete in G̃. Moreover for any γ1,γ2 ∈Γ we
have that:

π(γ1γ2γ
−1
1 γ−1

2 )=π(γ1)π(γ2)π(γ1)−1π(γ2)−1 = eG .

Thus π[Γ,Γ] = {eG} which means that [Γ,Γ] ⊂ ker(π) ⊂ Z(G̃) so Γ is 2-step nilpotent. Let Ñ
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be the Zariski closure of Γ in G̃ then denote n := Lie(Ñ) and N := π(Ñ). Choose a compact
subset C ⊂ Ñ such that Ñ = Γ ·C, then N = ϕ(Zp)expG(C) and since ϕ(Zp) ⊂ G is discrete
we get that N is closed in G, in particular p(G) ≤ p(N). On the other hand K1(G) is a
compact subgroup of G and is contained in N, therefore by Corollary 3.2.0.1 we get that:

p(G)≤ dim(N)−dim(K1(G))= dim(n)−rg(π1(G)).

We now prove that n is 2-step nilpotent. Indeed let N1 the Zariski closure of [Γ,Γ] in Ñ,
and put n1 = Lie(N1). It is clear that since Γ is 2-step nilpotent then [Γ,Γ] is an abelian
normal subgroup of Γ hence by Lemma 3.5.0.1, N1 is an abelian normal subgroup of Ñ
and Γ/Γ∩ N1 is a lattice in Ñ/N1. Now since [Γ,Γ] ⊂ Γ∩ N1 it follows that Γ/Γ∩ N1 is an
abelian group, thus the quotient Ñ/N1 must be abelian according to Lemma 3.5.0.1. This
means that [n,n] ⊂ n1. From [Γ, [Γ,Γ]] = {eG} we obtain that γ = τγτ−1 for any γ ∈ Γ and
for any τ ∈ [Γ,Γ], so στ|Γ = IdΓ where στ : Ñ −→ Ñ is given by στ(g) = τgτ−1. Since στ

and IdÑ coincide on Γ, they must coincide on Ñ in view of Theorem C.3.0.4 which means
that τgτ−1 = g for any g ∈ Ñ which is the same as [Γ,Γ] ⊂ Z(Ñ) thus N1 ⊂ Z(Ñ) and
consequently we deduce that [n,n] ⊂ n1 ⊂ Z(n). Hence n is 2-step nilpotent Lie subalgebra
of g. Finally observe that in the case where G̃ = (g,∗) and π= expG , we get that Ñ = (n,∗)
and Γ is a lattice of (n,∗) satisfying:

[Γ,Γ]⊂ ker(expG)⊂Γ,

which achieves the proof.

REMARK 3.5.0.1. Notice that in the proof of the preceding result, we can actually deduce
that any discrete subgroup of a connected nilpotent Lie group G isomorphic to Zp is con-
tained in a connected closed 2-step nilpotent subgroup of G.

COROLLARY 3.5.0.1. Let G be a connected nilpotent Lie group and T a maximal compact
subgroup of G. Denote A := T ∩ [G,G], then G/A is a linear Lie group and p(G)≤ p(G/A).

Proof. First observe that since T is a compact subgroup of the nilpotent Lie group G,
then T is central and therefore A is a compact normal subgroup of G. Moreover T/A is a
maximal compact subgroup of G/A. Since G/A is a nilpotent Lie group, according to [24,
Theorem 15.2.9] G/A is linear if and only if:

t/a∩ [g/a,g/a]= {0},
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where g = Lie(G), t = Lie(T) and a = Lie(A). Let π : G −→ G/A be the natural projection
then from π−1([G/A,G/A])= [G,G] · A ⊂ [G,G] we get that:

π−1(T/A∩ [G/A,G/A])=π−1(T/A)∩π−1([G/A,G/A])⊂ T ∩ [G,G].

It follows that T/A∩ [G/A,G/A] is trivial and therefore its Lie algebra t/a∩ [g/a,g/a] must
also be trivial, thus G/A is a linear nilpotent Lie group. For the second claim recall that
according to Theorem 3.5.0.2:

p(G)= dim(n0)−rg(π1(G)),

where n0 is of maximal dimension among all 2-step nilpotent Lie subalgebras n ⊂ g such
that (n,∗) admits a lattice Γ satisfying the inclusion [Γ,Γ] ⊂ ker(expG) ⊂ Γ. Now [Γ,Γ] is
a lattice in [n0,n0]2 and t := span{ker(expG)}3 therefore we get that [n0,n0] ⊂ t ⊂ n0 and
since [n0,n0]⊂ [g,g] it follows that [n0,n0]⊂ a⊂ n0. On the other hand since G/A is a linear
nilpotent Lie group, Proposition 3.5.0.1 gives that:

p(G/A)=M (g/a)−rg(π1(G/A)).

Let b ⊂ g/a be an abelian subalgebra of maximal dimension then denote π0 : g −→ g/a the
natural projection and n̂ := π−1

0 (b) where . From [b,b] = 0 we get that [n̂, n̂] ⊂ a ⊂ Z(g) and
we deduce that n̂ is a 2-step nilpotent Lie subalgebra of g containing a, in fact from the
maximality of b we obtain that n̂ is of maximal dimension among all 2-step nilpotent Lie
algebras n ⊂ g satisfying [n,n] ⊂ a ⊂ n, in particular from the previous observation we get
that dimn0 ≤ dim n̂. In summary:

p(G)≤ dim(n̂)−rg(π1(G)) ≤ dim(b)+dim(a)−rg(π1(G))

≤ M (g/a)+dim(a)−rg(π1(G))

≤ p(G/A)+dim(a)+rg(π1(G/A))−rg(π1(G)).

Since T and T/A are maximal compact subgroups of G and G/A respectively, it follows
that π1(G) ' π1(T) and π1(G/A) ' π1(T/A), moreover since both T and T/A are tori we
deduce that rg(π1(G/A)) = dim(T)−dim(A) = rg(π1(G))−dim(A). Thus from the previous

2 To see this let N1 be the Zariski closure of [Γ,Γ] in N := (n0,∗) then [Γ,Γ] ⊂ N1 ⊂ [N, N], it follows from Lemma
3.5.0.1 that Γ/Γ∩N1 is a lattice in N/N1, but since Γ/Γ∩N1 is abelian, Lemma 3.5.0.1 gives that N/N1 is abelian and so
[N, N]⊂ N1. Therefore [Γ,Γ] is a lattice in [N, N].

3 The maximal compact subgroup T ⊂G is exactly K1(G).
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computation we conclude that p(G)≤ p(G/A).

COROLLARY 3.5.0.2. Let g be a 2-step nilpotent Lie algebra such that (g,∗) admits a
lattice Γ and put G = (g,∗)/Γ∩Z(g). Then:

p(G)= dim(g)−dimZ(g).

Proof. Clearly ker(expG) = Γ∩Z(g). Since g is 2-step nilpotent then [g,g] ⊂ Z(g) and it fol-
lows that [Γ,Γ]⊂ ker(expG)⊂Γ. From Theorem 3.5.0.2 we have p(G)= dimg−rank(π1(G)).
Now Γ∩Z(g) is a lattice in Z(g) by Corollary C.3.0.7, and since π1(G)'Γ∩Z(G) we conclude
that rank(π1(G))= dimZ(g).

EXAMPLE 3.5.0.2. Let g = hk be the (2k+1)-dimensional Heisenberg Lie algebra, i.e the
Lie algebra with basis B = {e1, . . . , e2k+1} and Lie bracket given by:

[e2i, e2i+1]= e1, i = 1, . . . ,k.

The Lie algebra g is 2-step nilpotent with Z(g) = span{e1}, put G = (g,∗)/Ze1. As before the
Lie algebra structure on g is rational with respect to B hence the group Γ := 〈spanZ(B)〉 is
a lattice in (g,∗) and it is straightforward to check that Γ∩Z(g)=Ze1. By Corollary 3.5.0.2
we get that:

p(G)= 2k.

On the other hand, M (g) = k+1 by [11, Theorem 5.4]. Thus from Proposition 3.4.0.1 and
Theorem 3.5.0.1 we get that:

q(G)= k and p(g,∗)= q(g,∗)= k+1.
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In what follows, unless otherwise stated a space will always mean a Hausdorff, paracom-
pact topological space and a map will always mean a continuous map.

A.1 Group Actions

DEFINITION A.1.0.1. Let G be a topological group. We call a continuous action of the
group G on a space B any map ϕ : G×B −→ B, satisfying the following properties:

1. For any x ∈ B, ϕ(e, x)= x.

2. For any x ∈ B and any g,h ∈G, ϕ(gh, x)=ϕ(g,ϕ(h, x)).

When there is no ambiguity, we write ϕ(g, x) := g ·x. This definition says that a continuous
action ϕ : G×B −→ B is just a group homomorphism ρ : G −→Homeo(B) that is continuous
when Homeo(B) is endowed with the compact-open topology, the corresponding action of
G on B is then obtained by setting ϕ(g, x) := ρ(g)(x). The orbit of an element x ∈ B under



APPENDIX A. GROUP ACTIONS, FIBER BUNDLES AND CLASSIFYING BUNDLES

the action of the group G is the subset G · x := {g · x, g ∈ G}. The isotropy subgroup at an
element x ∈ B is the subgroup Gx = {g ∈G, g · x = x} of G.

DEFINITION A.1.0.2. A continuous group action of G on B is called:

1. (Effective): If the associated group homomorphism ρ : G −→Homeo(B) is injective.

2. (Transitive): If for some (hence all) x ∈ B, B =G · x.

3. (Free): If for every x ∈ B the isotropy subgroup Gx is trivial.

4. (Proper): If for any compact subset C ⊂ B, the set:

GC := {g ∈G, g ·C∩C 6= ;},

is a compact subset of G. When the topology of G is discrete we say that the action is
properly discontinuous, in which case GC is finite.

A continuous group action ϕ : G × M −→ M is called smooth if G is a Lie group, M is a
smooth manifold and ϕ is a smooth map. In view of the preceding remark, this induces
a continuous homomorphism ρ : G −→ Diff(M). Denote g the Lie algebra of G and χ(M)
the Lie algebra of vector fields on the manifold M, the action of the Lie group G on the
manifold M can naturally give rise to a Lie algebra homomorphism ρ′ : g−→χ(M) by the
formula:

ρ′(X )x := d
dt |t=0

(expG(tX ) · x).

This is called the infinitesimal action of G on M associated to ϕ. More generally, let M be a
smooth manifold and let g be a finite dimensional Lie algebra, any Lie algebra homomor-
phism ρ′ : g −→ χ(M) is called a Lie algebra action and the vector fields ρ′(X ) are called
fundamental vector fields, in this case we say that M is a g-manifold. Every such action
defines a singular foliation on the manifold M as follows:
Given x ∈ M, the leaf through x (also the g-orbit of x) is the immersed submanifold g(x)⊂ M
consisting of points of the form y = φ

X1
t1

◦ · · · ◦φXr
tr

for some X1, . . . , Xr ∈ g, t1, . . . , tr ∈ R and
where φX the flow of the fundamental vector field ρ′(X ). The topology of g(x) is the finest
topology for which the maps:

(t1, . . . , tk) 7→φ
X1
t1

◦ · · · ◦φXk
tk

(x),

are continuous (when these maps are well-defined) for every X1, . . . , Xk ∈ g. Let gx be the
kernel of the linear map ρ′x : g−→ TxM, X 7→ ρ′(X )x, then dimg(x) = dimg−dimgx. Given
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a smooth map f : M −→ N between two g-manifolds, we say that it is g-equivariant if it
satisfies f (g(x)) ⊂ g( f (x)). Finally for any y, z ∈ M, declare y ∼ z if and only if g(y) = g(z),
the set of equivalence classes with respect to this relation will be denoted M/g, it is called
the orbit space of the g-action and is endowed with the quotient topology.

PROPOSITION A.1.0.1. Let ϕ : G × M −→ M be a smooth action of a Lie group G on a
smooth manifold M. Denote ρ′ : g −→ χ(M) the corresponding infinitesimal action. Then
for any x ∈ M we have g(x) = G · x and therefore M/g = M/G. Moreover, let N be another
G-manifold, a smooth map f : M −→ N is g-equivariant if and only if it is G-equivariant,
i.e f (g · x)= g · f (x).

A Lie algebra action ρ′ : g −→ χ(M) is called complete if ρ′(X ) is a complete vector field
for every X ∈ g, the action is called weakly complete if there exists a subset S ⊂ g that
generates g such that ρ′(X ) is complete for every X ∈ S.

REMARK A.1.0.1. Let ρ′ : g −→ χ(M) be the infinitesimal action corresponding to a Lie
group action ϕ : G × M −→ M. By definition, it is clear that the integral curve of ρ′(X )
through a point x ∈ M is exactly the curve:

γ :R−→ M, γ(t) := exp(tX ) · x.

In this sense infinitesimal actions are always complete.

THEOREM A.1.0.1 (PALAIS). Every weakly-complete Lie algebra action can be seen as the
infinitesimal description of a global action of a connected simply connected Lie group. In
particular, weakly complete Lie algebra actions are complete.

A.2 Fiber bundles, Vector bundles and Principal bundles

DEFINITION A.2.0.1. A fiber bundle over a space B is a triple (E,π,F) of topological
spaces E and F and a surjective map π : E −→ M such that E is locally trivial over B: There
exists an open cover (Uα)α of M and a family of homeomorphisms φα : Uα×F −→ π−1(Uα)
called local trivializations such that the following diagram is commutative:

Uα×F π−1(Uα)

Uα

φα

π
pr1

In the preceding definition, B is called the base space and E the total space of the fiber
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bundle (E,π,F). It is clear that π−1(x)' F for any x ∈ B therefore F is called the fiber type
of the fiber bundle. Fiber bundles will be denoted F ,→ E π−→ B or simply E π−→ B when
there is no ambiguity. A natural example of a fiber bundle is the trivial bundle B×F

pr1−→ B.
Finally, a fiber bundle is said to be smooth if the spaces B, E and F are smooth manifolds
and all the maps involved are smooth.

DEFINITION A.2.0.2. Let E π−→ B be a fiber bundle over B with fiber type F and let F

be a family of local trivializations φα : Uα×F −→ π−1(Uα) covering B. We call transition
functions of E π−→ B (relative to F ) the family of maps gαβ : Uα∩Uβ −→ Homeo(F) given
by:

(φ−1
β ◦φα)(x, p)= (x, gαβ(x)(p)),

for any x ∈Uα∩Uβ and p ∈ F.

In these notations, if G is a subgroup of Homeo(F) with gαβ(Uα∩Uβ)⊂G then G is called
the structure group of E π−→ B. It can be shown that transition maps are continuous when-
ever Homeo(F) is given the compact-open topology.

DEFINITION A.2.0.3. A (continuous) section of a fiber bundle E π−→ B is a map σ : B −→ E
satisfying π◦σ= IdB.

DEFINITION A.2.0.4. Given fiber bundles E i
πi−→ Bi, i = 1,2, a fiber bundle homomor-

phism is a pair of maps f : B1 −→ B2 and g : E1 −→ E2 such that the following diagram is
commutative:

E1 E2

B1 B2

g

π2

f

π1

The pair ( f , g) is called an isomorphism if g : E1 −→ E2 is a homeomorphism (in which case
the map f : B1 −→ B2 is automatically a homeomorphism).

DEFINITION A.2.0.5. If E i
πi−→ B, i = 1,2 are fiber bundles over the same base space B,

then a bundle morphism over B is just a map g : E1 −→ E2 satisfying π2◦g =π1 (in the sense
of the preceding definition, this is just the pair (IdB, g) ). It is called a bundle isomorphism
over M if the map g : E1 −→ E2 is an homeomorphism.

When a fiber bundle E π−→ B is isomorphic to the trivial bundle B×F
pr1−→ B, it is called

trivial. Every fiber bundle is by definition locally isomorphic to the trivial bundle.

DEFINITION A.2.0.6. We call a K-vector bundle over a space B any fiber bundle E π−→ B
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whose fiber type F is a K-vector space and whose structure group is GL(F,K), K=R or C.

It follows that the fibers of a K-vector bundle E π−→ B are naturally endowed with a K-
vector space structure.

DEFINITION A.2.0.7. An homomorphism of K-vector bundles E i
πi−→ Bi, i = 1,2 is a bun-

dle homomorphism ( f , g) : (B1,E1) −→ (B2,E2) such that g is K-linear when restricted to
the fibers of E1

π1−→ B1.

A local frame of a vector bundle E π−→ B is any family σ1, . . . ,σr : U −→ E of local sections
defined on an open subset U ⊂ B such that {σ1(x), . . . ,σr(x)} forms a basis of the fiber π−1(x)
for all x ∈U .

PROPOSITION A.2.0.1. A vector bundle E π−→ M is trivial if and only if it admits a global
frame.

DEFINITION A.2.0.8. Let G be a topological group. A principal G-bundle over a space B
is a fiber bundle P π−→ B whose total space is endowed with a fiber preserving continuous
group action P×G −→ P, (p, g) 7→ p·g such that there exists a family φα : Uα×G −→π−1(Uα)
of G-equivariant local trivializations covering B (the action of G on Uα×G is naturally
given by (x, g) ·h := (x, g ·h)).

Let P π−→ B be a principal G-bundle and let φα : Uα ×G −→ π−1(Uα) be a family of G-
equivariant local trivializations covering B. We can check that the domain of the tran-
sition maps gαβ : Uα∩Uβ −→ Homeo(G) is always contained in R(G) the group of right
translations of G and which can naturally be identified to G, thus we can say that G is the
structure group of the principal G-bundle.

DEFINITION A.2.0.9. A morphism of principal G-bundles Pi
πi−→ Bi, i = 1,2 is a mor-

phism of fiber bundles ( f , g) : (M1,B1)−→ (M2,B2) such that g is G-equivariant.

PROPOSITION A.2.0.2. A principal G-bundle P π−→ B is trivial if and only if it admits a
global continuous section.

When a principal G-bundle P π−→ B is smooth as a fiber bundle and G is a Lie group
that acts by diffeomorphisms on P, we say that it is a smooth principal G-bundle. For a
principal G-bundle the group G acts properly and freely on the total space P and the base
space B is homeomorphic to P/G. A partial converse was proven by R. S. Palais in [44], it
can be stated as follows:

THEOREM A.2.0.1. Let G be a Lie group acting smoothly, properly and freely on a smooth
manifold M, then M/G admits a unique structure of smooth manifold such that the natural
projection M π−→ M/G is a smooth principal G-bundle.
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A.3 Operations on Fiber bundles

PULL-BACK: Fix a map f : X −→ B and let E π−→ M be a fiber bundle over B with fiber type
F. Set:

f −1E := {(x,v) ∈ X ×E, f (x)=π(v)}.

It is straightforward to check that f −1E
pr1−→ X is a fiber bundle over X with the same fiber

type F. It is called the pull-back of E π−→ B via f and it satisfies that the following diagram
is commutative:

f −1E E

X B

pr2

π

f

pr1

If E π−→ B is a vector bundle (resp. principal G-bundle) , the pull-back f −1E
pr1−→ X is also a

vector bundle (resp. a principal G-bundle).

THEOREM A.3.0.1. Let E π−→ B be a fiber bundle and suppose that the maps f0 : X −→ B
and f1 : X −→ B are homotopic. Then the respective pull-back bundles via f0 and f1 are
isomorphic, i.e f ∗0 (E)' f ∗1 (E).

When f0, f1 : X −→ B are homotopic maps and E π−→ B is a principal G-bundle then the
pullbacks f ∗0 (E) and f ∗1 (E) are isomorphic as principal G-bundles. Similarly, if E is a vector
bundle we get that the pullbacks f ∗0 (E) and f ∗1 (E) are isomorphic as vector bundles.

COROLLARY A.3.0.1. Let E π−→ B be a fiber bundle and suppose that B is a contractible
space. Then E is trivial.

FIBERED PRODUCT: Let E i
πi−→ B, i = 1,2 be two fiber bundles over B with respective fiber

types Fi. Define:
E1 ×B E2 = {(u,v) ∈ E1 ×E2, π1(u)=π2(v)}.

The map π : E1 ×B E2
pri−→ E i

πi−→ B is surjective and E1 ×B E2
π−→ B is a fiber bundle with

fiber type F1×F2, it is called the fibered product of E1 and E2 over B. If E i
πi−→ B are vector

bundles then the resulting fibered product is a vector bundle, it is called the Whitney sum
of E1 and E2 and its total space is usually denoted E1 ⊕E2.

ASSOCIATED BUNDLES: Let P π−→ B be a principal G-bundle, F a topological space and
fix a continuous action ρ : G −→ Homeo(F). Consider the continuous action of G on P ×F
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given by the expression:
(p, z) · g := (p · g,ρ(g−1)(z)),

and denote the corresponding orbit space P ×ρ F := (P ×F)/G . The map π0 : P ×ρ F −→ B
given by π0([p, z]) = π(p) is well-defined and P ×ρ F π0−→ B is a fiber bunder over B with
fiber type F associated to the principal G-bundle P π−→ M. When F is a vector space and
and the action of G on F is linear i.e ρ(G) ⊂ GL(F), the resulting associated bundle is a
vector bundle.

A.4 Classifying bundles

Let P π−→ B is a principal G-bundle and denote [X ,B] the space of homotopic classes of
maps X −→ B. Let PrinG(X ) be the space of isomorphism classes of principal G-bundles
over X . According to the remark following Theorem A.3.0.1, the pullback operation induces
a correspondence:

[X ,B]−→PrinG(X ), [ f ] 7→ [ f ∗P].

DEFINITION A.4.0.1. A principal G-bundle EG π−→ BG is called universal if the total
space EG is contractible.

J. Milnor have shown in [38] that universal principal G-bundles always exists for any
topological group G.

THEOREM A.4.0.1. Suppose that EG π−→ BG is a universal principal G-bundle and X is
a CW-complex. Then the correspondance [X ,BG] −→ PrinG(X ) given by [ f ] 7→ [ f ∗(EG)] is
bijective.

The space BG will be called a classifying space for the group G, and if P π−→ X is a princi-
pal G-bundle, any map f : X −→BG such that P ' f ∗(EG) will be called a classifying map
for P.

Concerning uniqueness properties of universal principal G-bundles, we state the following
results:

COROLLARY A.4.0.1. The classifying space BG can be taken to have the homotopy type of
a CW-complex.

In what follows a classifying space BG will always be assumed a CW-complex.

THEOREM A.4.0.2. Let EG−→BG and E′G−→B′G be two universal principal G-bundles.
There exists a homotopy equivalence B′G −→ BG that is covered by a G-equivariant homo-
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topy equivalence E′G−→EG. In this sense, universal principal G-bundles are unique up to
homotopy equivalence.

We thus have a well-defined correspondence G 7→ BG from the category of topological
groups to the category of homotopy classes of CW-complexes, which is functorial according
to the following theorem:

THEOREM A.4.0.3. To each homomorphism φ : G −→ H of topological groups is associated
a natural homotopy class Bφ ∈ [BG,BH] such that if φ ∈ Hom(G,H) and ψ ∈ Hom(H,K)
then [B(φ◦ψ)]= [Bφ◦Bψ] and BId= Id.

We achieve this section with a result on the universal bundle associated to a subgroup of
a given topological group:

PROPOSITION A.4.0.1. Let H
ι
,−→ G be an inclusion of topological groups such that the

canonical projection G −→ G/H is a principal H-bundle. Then we can take EH = EG for a
total space and BH=EG×G (G/H) for a classifying space.

If H is a closed subgroup of a Lie group G, then the canonical projection G −→ G/H is
always a principal H-bundle and thus the preceding result holds in this case.
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B.1 Differential Complexes and Cohomology

Let V = ⊕pV p be a graded vector space. a linear map d : V −→ V is called a differential
on V if it satisfies d(V p)⊂V p+1 and d2 = 0. The couple (V ,d) consisting of a graded vector
space and a differential is called a differential complex, in this case we call a d-cochain
any element v ∈ V . We say that v ∈ V is a d-cocycle if dv = 0, and we say that v is a d-
coboundary if w = du for some u ∈ V , we denote by Zd(V ) the set of d-cocycles and Bd(V )
the set of d-coboundaries. It is clear that Zd(V ) :=⊕pZp

d (V ) and Bd(V ) :=⊕pBp
d (V ) with:

Zp
d (V )= ker(d : V p −→V p+1), Bp

d (V )= Im(d : V p−1 −→V p),

hence we can see that Zd(V ) and Bd(V ) are graded vector subspaces of V . Moreover the
relation d2 = 0 implies that Bp

d (V ) ⊂ Zp
d (V ). The p-th cohomology group of the differential

complex (V ,d) is defined as the vector space:

Hp
d (V ) := Zp

d (V )/Bp
d (V )= ker(d : V p −→V p+1)

Im(d : V p−1 −→V p)
.



APPENDIX B. DE RHAM COHOMOLOGY

Finally we call the cohomology of (V ,d) the graded vector space Hd(V ) = ⊕pHp
d (V ), the

cohomology class of a d-cocycle v ∈ V will be denoted [v]d. We call a subcomplex of a
differential complex (V ,d) is any graded vector subspace W := ⊕pW p such that W p ⊂ V p

and which is stable under the differential operator d, it is clear that (W ,d) is a differential
complex in its own right. Consider the following sequence of sets and arrows:

. . .
f i−1−→Vi

f i−→Vi+1
f i+1−→Vi+2

f i+1−→ . . . (B.1)

We say that (B.1) is an exact sequence of vector spaces if the sets Vi are vector spaces, the
maps f i : Vi −→ Vi+1 are linear and ker( f i+1) = Im( f i), in this case the sequence (B.1) is
called short if it is of the form 0−→V1

f1→V2
f2→V3 → 0, otherwise we say that (B.1) is a long

exact sequence. In this sense, the cohomology of a differential complex (V ,d) is an artifact
measuring the exactness of the sequence of vector spaces . . . d→V p d→V p+1 d→V p+2 d→ . . .

Given two graded vector spaces V1 = ⊕pV p
1 and V2 = ⊕pV p

2 , an homomorphism of graded
vector space is any linear map f : V1 −→V2 which respects the graduation i.e f (V p

1 )⊂V p
2 , in

the case where Vi is a differential complex with differential operator di, then f : V1 −→ V2

is called a complex homomorphism it it further satisfies the relation f ◦ d1 = d2 ◦ f . It
is straightforward to see that any complex homomorphism f : (V1,d1) −→ (V2,d2) induce
maps f : Hp

d1
(V1) −→ Hp

d2
(V2) at the cohomology level. Finally, an exact sequence of differ-

ential complexes is any exact sequence of vector spaces provided that the involved spaces
are differential complexes and the involved maps are complex homomorphisms.

THEOREM B.1.0.1 (FIVE LEMMA). Let (Vi,di) be a differential complex. Any short exact
sequence 0 −→ V1

f1→ V2
f2→ V3 → 0 of differential complexes induce the following long exact

sequence in cohomology:

· · · −→Hp
d1

(V1)
f1−→Hp

d2
(V2)

f2−→Hp
d3

(V3) ∂−→Hp+1
d1

(V1)
f1−→ . . . .

The boundary operator ∂ : Hp
d3

(V3)−→Hp+1
d1

(V1) is given by ∂[u]d3 = f −1
1 (d2( f −1

2 [u]d3)) i.e for
any class [u]d3 ∈ Hp

d3
(V3), ∂[u]d3 = [w]d1 such that f1(w) = d2v and f2(v) = u, the definition

of ∂[u]d3 is independant of the choice of v and w. ∂ is called the connecting homomorphism.

B.2 Generalities on De Rham Cohomology

Let M be a smooth manifold, denote Ωp(M) the vector space of smooth p-forms on the
manifold M and Ω

p
c (M) the vector space of smooth p-forms on M with compact support.

64



APPENDIX B. DE RHAM COHOMOLOGY

Denote Ω(M)=⊕pΩ
p(M) and Ωc(M)=⊕pΩ

p
c (M), it is clear that Ωc(M)⊂Ω(M) with equal-

ity when M is compact. Define the linear map d :Ω(M)−→Ω(M) by the expression:

dω(X0, .., X p)=
p∑

i=0
(−1)i X iω(X0, .., X̂ i, .., X p)+∑

i< j
(−1)i+ jω([X i, X j], X0, .., X̂ i, .., X̂ j, .., X p).

Clearly d(Ωp(M)) ⊂Ωp+1(M) and d2 = 0. The operator d is called the de Rham differential
of the manifold M, it follows that (Ω(M),d) is a differential complex, i.e the de Rham
complex, moreover d(Ωc(M)) ⊂Ωc(M) making Ωc(M) a subcomplex of (Ω(M),d). In these
notations, a d-cocycle is called a closed form and a d-coboundary is called an exact form.

DEFINITION B.2.0.1. Let M be a smooth manifold. The p-th de Rham cohomology group
of the manifold M, denoted Hp

dR(M) is defined as the p-th cohomology group of the dif-
ferential complex (Ω(M),d), the graded vector space HdR(M) := ⊕pHp

dR(V ) is called the de
Rham cohomology of M. Finally, the cohomology of the complex (Ωc(M),d), denoted Hc(M)
is called the cohomology with compact support on M.

Recall that Ωp(M) = 0 for p > n when M is an n-dimensional manifold, as a consequence
we get that Hp

dR(M) = 0 and Hp
c (M) = 0 for p > n. On the other hand if M is connected

any function f ∈ C ∞(M) satisfying d f = 0 is constant moreover if f has compact support
and M is non-compact then f = 0, in terms of cohomology groups of M this simply states
that H0

dR(M) = R and H0
c(M) = 0 when M is non-compact. As a consequence if M consists

of a single point then Hp(M) = 0 for p > 0. Now suppose that M = qαMα is the union of
its connected components. A differential form on M is smooth if and only if it is smooth on
each connected component, it follows that Ωp(M)=⊕αΩ

p(Mα) and Hp
dR(M)=⊕αHp

dR(Mα).

DEFINITION B.2.0.2. Let M and N be smooth manifolds and let f , g : M −→ N be smooth
maps. Then f and g are said to be homotopic if there exists a smooth map F : R×M −→ N
such that for any x ∈ M:

F(t, x)= f (x), t ≤ 0 and F(t, x)= g(x), t ≥ 1.

We say that F is a proper homotopy if for any compact K ⊂ N the subset F−1(K)∩ [0,1] is
compact, that is F|[0,1]×M is a proper map.

Any smooth map f : M −→ N defines a pull-back operation on differential forms, i.e a
linear map f ∗ :Ω(N)−→Ω(M) given by:

( f ∗ω)x(v1, . . . ,vp) :=ω( f (x))(Tx f (v1), . . . ,Tx f (vp)).
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It is straightforward to check that f ∗ ◦d = d ◦ f ∗ therefore we get a well-defined induced
map f ∗ : HdR(N) −→ HdR(M). Any vector field X on M can be naturally extended over
the manifold M ×R by setting X̂ := (X ,0). Let iX : Ωp(M) −→ Ωp−1(M) the contraction
corresponding to the vector field X ∈ χ(M), to any form η ∈Ωp(M ×R), one can associate
the form ξ ∈Ωp−1(M) given by:

ξx(X1|x, . . . , X p−1|x) :=
∫ 1

0
(i ∂

∂t
η)(x,s)(X̂1|(x,s), . . . , X̂ p−1|(x,s))ds, (B.2)

where ∂
∂t is the vector field generating TR. Let f , g : M −→ N be homotopic smooth maps

and denote F : R×M −→ N. Composing F∗ with the map Ωp(M ×R) 7→Ωp−1(M) given by
formula (B.2), one gets a linear operator K :Ωp(N)−→Ωp−1(M) explicitely given by:

(Kω)x(X1|x, . . . , X p−1|x) :=
∫ 1

0
(i ∂

∂t
F∗ω)(x,s)(X̂1|(x,s), . . . , X̂ p−1|(x,s))ds. (B.3)

We can check by a direct computation that K(dω)+d(Kω)= f ∗ω− g∗ω, more generally:

DEFINITION B.2.0.3. Let f , g : (V ,d) −→ (W ,d) be two complex homomorphisms. Call f
and g chain homotopic if there exists a linear map K : V −→W such that:

K ◦d−d◦K = f − g.

PROPOSITION B.2.0.1. Assume f , g : (V ,d)−→ (W ,d) are chain homotopic complex homo-
morphisms, then the induced maps f , g : Hd(V )−→Hd(W) are the equal, i.e f ([u]d)= g([u]d)
for any [u]d ∈Hd(V ).

In the case of smooth manifolds M and N we have seen that homotopic maps induce a
chain homotopy between the pull-backs f ∗ and g∗ given by formula (B.3). As a conse-
quence of proposition (B.2.0.1) we get the following result:

THEOREM B.2.0.1. Let f , g : M −→ N be smooth homotopic maps between smooth mani-
folds M and N. Then the induced maps f ∗, g∗ : HdR(N)−→HdR(M) are equal.

Recall that two manifolds M and N are said to be homotopy equivalent if we can find
smooth maps f : M −→ N and g : N −→ M such that f ◦ g is homotopic to IdN and g ◦ f
is homotopic to IdM . If M ⊂ N we call a retraction any a smooth map r : N −→ M such
that r ◦ ι= IdM , if we further have that ι◦ r is homotopic to IdN we say that M is a retract
by deformation of N this is a particular case of a homotopy equivalence. Finally if the
manifold M is a point we say that N is contractible.

COROLLARY B.2.0.1. Let M and N be smooth manifolds and f : M −→ N an homotopy
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equivalence, then f ∗ : HdR(N)−→HdR(M) is an isomorphism. If M is a retract by deforma-
tion of N the inclusion ι : M −→ N induces an isomorphism in cohomology, in particular
when M is a point we get Hp

dR(N)= 0 for any p > 0.

Let M be a smooth n-dimensional manifold. We say that M is orientable if we can find a
nowhere vanishing n-form on M.

THEOREM B.2.0.2 (POINCARÉ DUALITY). Let M be a orientable smooth manifold of di-
mension n. Then the bilinear map:

B : Hp(M)×Hn−p
c (M)−→R, ([ω], [η]c) 7→

∫
M
ω∧η,

is non-degenerate, hence it defines an isomorphism B# : Hp(M) '−→Hn−p
c (M).

Let M be a smooth manifold and let U , V be open subset of M. Consider the following
sequence of differential complex homomorphisms:

0→Ω(U ∪V )
j→Ω(U)⊕Ω(V ) k→Ω(U ∩V )→ 0, (B.4)

where j :Ω(U ∪V )−→Ω(U)⊕Ω(V ) and k :Ω(U)⊕Ω(V )−→Ω(U ∩V ) are given by:

j(ω)=ω|U ⊕ω|V , k(ω⊕η)=ω|U∩V −η|U∩V .

We can check that (B.4) is an exact sequence of differential complexes, hence the Five-
lemma B.1.0.1 gives the following consequence:

THEOREM B.2.0.3 (MAYER-VIETORIS SEQUENCE). Let M be a smooth manifold and
choose open subsets U ,V ⊂ M, then (B.4) gives rise to the following exact cohomology se-
quence:

. . .Hp(U ∪V )
j→Hp(U)⊕Hp(V ) k→Hp(U ∩V ) ∂→Hp+1(U ∪V )→ . . . .

where ∂ : Hp(U ∩V ) −→ Hp+1(U ∪V ) is the connecting homomorphism. This sequence is
called the Mayer-Vietoris sequence for de Rham cohomology.

Let U ⊂ M be an open subset and ω ∈Ωp
c (U). One can naturally extend ω into a smooth

p-form with compact support on any open subset W ⊂ M containing U by setting ω = 0
on W \U . Therefore for open subsets U ,V ⊂ M, this remark allows one to define complex
homomorphisms r :Ωc(U ∩V )−→Ωc(U)⊕Ωc(V ) and ρ :Ωc(U)⊕Ωc(V )−→Ωc(U ∪V ) given
by r(ω)= (ω,−ω) and ρ(ω,η)=ω+η. We check that the following sequence is exact:

0→Ωc(U ∩V ) r→Ωc(U)⊕Ωc(V )
ρ→Ωc(U ∩V )→ 0. (B.5)
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Again by the Five-lemma B.1.0.1 we obtain:

THEOREM B.2.0.4 (MAYER-VIETORIS FOR COMPACT SUPPORTS). Let M be a smooth
manifold and let U ,V be open subsets of M, then (B.5) gives the following exact cohomology
sequence:

. . .Hp
c (U ∩V ) r→Hp

c (U)⊕Hp
c (V )

ρ→Hp
c (U ∪V ) ∂→Hp+1

c (U ∩V )→ . . . .

where ∂ : Hp
c (U ∪V ) −→ Hp+1

c (U ∩V ) is the connecting homomorphism. This sequence is
called the Mayer-Vietoris sequence for de Rham cohomology.

B.3 Harmonic forms on compact manifolds

We devote this section to review the main notions and results of Hodge theory on compact
manifolds. In this paragraph, (M,〈 , 〉) will always denote a compact, orientable Rieman-
nian manifold with volume element dV . The Riemannian structure on M allows us to
define a Euclidean structure on the vector bundle ΛpT∗M for all p ∈N as follows:
Fix an open subset U ⊂ M and choose a local orthonormal frame {E1, . . . ,En} on U then
denote {ε1, . . . ,εn} its dual frame. Define on ΛpT∗M the Euclidean structure ( , ) given by:

(εI ,εJ)= δIJ , (B.6)

with I = {i1 ≤ ·· · ≤ i p} and εI = εi1 ∧·· ·∧εi p .

PROPOSITION B.3.0.1. Let (M,〈 , 〉) be a Riemannian manifold. The local Euclidean
structure ( , ) given by (B.6) does not depend on the choice of the local orthonormal frame, as
a result it defines a global Euclidean structure on the vector bundle ΛpT∗M for all p ∈N.

PROPOSITION B.3.0.2. Let (M,〈 , 〉) be a compact oriented Riemannian manifold with
Riemannian volume element dV .

1. For all η ∈ΛpT∗M, there exists a unique element ∗η ∈Λn−pT∗M defined by the rela-
tion ω∧∗η= (ω,η)dV , for all ω ∈ΛpT∗M.

2. The map ∗ : ΛpT∗M −→ Λn−pT∗M given by η −→ ∗η is an isomorphism of vector
bundles satisfying ∗∗η= (−1)p(n−p)η. It is called the Hodge ∗-operator.

3. Let {ε1, . . . ,εn} an orthonormal co-frame on M defined on some open subset U , then

∗(εi1 ∧·· ·∧εi p )= sgn(σ)ε j1 ∧·· ·∧ε jn−p .
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with sgn(σ) being the signature of the permutation σ := (i1, . . . , i p, j1, . . . , jn−p) of the
set {1, . . . ,n}.

DEFINITION B.3.0.1. Let M be a compact oriented Riemannian manifold. The Laplace-
Beltrami operator ∆ :Ω(M)−→Ω(M) is the linear map given by:

∆= δd+dδ.

where δ :Ωp(M)−→Ωp−1(M) called the co-differential is given by δω= (−1)n(p+1)+1 ∗d∗ω.

PROPOSITION B.3.0.3. Let M be a compact oriented Riemannian manifold. For all p ∈N
the mapping Ωp(M)×Ωp(M)−→R given by:

〈α,β〉 =
∫

M
α∧∗β

defines a scalar product on Ωp(M). It can be further extended to a scalar product on Ω(M)
by declaring 〈Ωp(M),Ωq(M)〉 = 0 for p 6= q. We denote ‖α‖= 〈α,α〉 1

2 .

PROPOSITION B.3.0.4. Let M be a compact oriented Riemannian manifold. We have the
following properties:

1. The Laplace-Beltrami operator ∆ commutes with the Hodge ∗-operator, i.e: ∗∆=∆∗.

2. The co-differential δ and the differential d are conjugates in (Ω(M),〈 , 〉), more pre-
cisely:

〈dα,β〉 = 〈α,δβ〉.

3. The Laplace-Beltrami operator ∆ is self-adjoint in (Ω(M),〈 , 〉).

4. For all α ∈Ω(M), ∆α= 0 if and only if dα= 0 et δα= 0.

DEFINITION B.3.0.2. Let M be a compact oriented Riemannian manifold. Define the vec-
tor space H p(M) = {ω ∈Ωp(M), ∆ω = 0}. The elements of H p(M) are called the harmonic
p-forms on M.

THEOREM B.3.0.1 (HODGE DECOMPOSITION). Let M be a compact oriented Riemannian
manifold. The vector space H p(M) is finite dimensional for all 0 ≤ p ≤ n and we have the
following decomposition of Ωp(M):

Ωp(M) = ∆(Ωp(M))
⊥⊕H p(M)

= dδ(Ωp(M))
⊥⊕δd(Ωp(M))

⊥⊕H p(M)

= d(Ωp−1(M))
⊥⊕δ(Ωp+1(M))

⊥⊕H p(M)
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As a consequence of this theorem, we have the following results:

COROLLARY B.3.0.1. Any cohomology class in Hp
dR(M) possesses a unique harmonic rep-

resentative, more precisely the mapping  : H p(M) −→ Hp
dR(M) given by (ω) = [ω] is an

isomorphism of vector spaces.

COROLLARY B.3.0.2. Let M be a compact orientable manifold, then its de Rham coho-
mology HdR(M) is finite dimensional.
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Lattices of Nilpotent Lie groups
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C.1 Generalities on Lattices of Topological Groups

Let G be a locally compact topological group. A subgroup H of G is said to be a lattice if H
is discrete in G and the quotient G/H carries a finite G-invariant measure. We say that H
is uniform in G if the quotient G/H is compact. The goal of this paragraph is to present in
a unified manner the general results concerning lattices of topological groups. Assume in
what follows that G is a locally compact topological group and H ⊂G is a closed subgroup.
It is known (see [17, Th. 2.10 and 2.20]) that G carries a left Haar measure µG which is
unique up to scaling by a positive factor, this corresponds to a continuous positive linear
functional:

C 0
c (G)−→R, f 7→

∫
G

f (g)dg, (C.1)

i.e a Radon measure. For any x ∈ G, denote `x : G −→ G the corresponding left group
multiplication, in view of the correspondence (C.1) the left invariance of µG translates to
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the relation: ∫
G

f ◦`x(g)dg :=
∫

G
f (x · g)dg =

∫
G

f (g)dg,

for any f ∈ C 0
c (G). Denote rx : G −→ G the right multiplication by x ∈ G, then the positive

linear functional:

C 0
c (G)−→R, f 7→

∫
G

f ◦ rx(g)dg =
∫

G
f (g · x)dg,

defines a Borel measure on G which is left-invariant since `y ◦ rx = rx ◦`y hence a Haar
measure on G and so by uniqueness of µG there exists ∆G(x) ∈R+ such that:∫

G
f (g · x)dg =∆G(x)

∫
G

f (g)dg.

Continuity under integral symbol implies that ∆G : G −→R+ is a continuous function called
the modular function of G, it is clearly independant of the choice of the Haar measure µG .
Moreover if we choose f ∈ C0

c(G) such that
∫

G f (g)dg 6= 0, then using the relations reG = IdG

and rxy−1 = rx ◦ r−1
y we obtain that:

∆G(eG)= 1 and ∆G(xy−1)=∆G(x)∆G(y)−1.

Hence ∆G : G −→ R+ is a group homomorphism into the multiplicative group (R+,×) i.e
a character. Likewise, H being a locally compact topological group in its own right, it
does admit a left Haar measure µH and a modular function ∆H . The group G is said to
be unimodular if ∆G = 1. Let µ be a Borel measure on the homogeneous space G/H and
choose a continuous homomorphism χ : G −→ R+. Then µ is said to be semi G-invariant
with character χ if for every g ∈G and any measurable subset E ⊂G/H we have:

µ(g ·E)= χ(g)µ(E).

THEOREM C.1.0.1. Let G be a locally compact topological group and H a closed subgroup
of G. The homogeneous space G/H admits a semi G-invariant measure if and only if the
homomorphism ∆G∆

−1
H : H −→ R+ can be extended to a continuous homomorphism on all

of G. Moreover, given any homomorphism u : G −→ R+ such that u|H = ∆G∆
−1
H , then G/H

admits a semi G-invariant Borel measure with character u and this measure is unique up
to a scalar multiple.

A semi G-invariant measure µ on G/H is said to be G-invariant if it corresponds to the
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trivial character 1. Now assume that G/H admits a finite semi G-invariant measure µ with
character χ, then choosing a function f ∈C 0

c (G/H) with
∫

G/H f (x)dµ(x) 6= 0 one obtains for
any g ∈G:

χ(g)
∣∣∣∣∫

G/H
f (x)dµ(x)

∣∣∣∣= ∣∣∣∣∫
G/H

f (g · x)dµ(x)
∣∣∣∣≤ ‖ f ‖∞

∣∣∣∣∫
G/H

dµ(x)
∣∣∣∣ .

It follows that χ is a bounded group homomorphism, which is only possible if χ is trivial.
On the other hand when H is discrete in G, the Borel measure on H defined by the linear
functional:

C 0
c (H)−→R, f 7→ ∑

h∈H
f (h),

is a Haar measure on H which is also right invariant, hence ∆H = 1 in this case. It follows
that if H is a lattice in G then G/H admits a finite semi G-invariant measure with obvious
character ∆G , and by the finiteness of the measure the preceding remark leads to ∆G = 1.
So in summary:

COROLLARY C.1.0.1. Let G be a locally compact group. If G admits a lattice then it is
unimodular

In particular all compact groups are unimodular. For a Lie group G, one can speak of
smooth functions and since C ∞

c (G) is dense in C 0
c (G) any Haar measure C 0

c (G) −→ R is
completely determined by its behavior on C ∞

c (G). Therefore in order to construct a Haar
measur on a Lie group G, we fix an orientation on G then consider a left-invariant volume
form ω on G corresponding to this orientation (which is entirely determined by a generator
of

∧n(g∗) with g = Lie(G) and n = dim(G)). The Haar measure on G is then given by the
usual integration operator:

C ∞
c (G)−→R, f 7→

∫
G

fω.

Since the modular function ∆G is a continuous group homomorphism, it is automatically
smooth and in fact for any x ∈G:∫

G
( f ◦ rx)ω=

∫
G

r∗x( f r∗x−1ω)=
∫

G
r∗x( f c∗x−1ω)= det(Adx−1)

∫
G

fω.

Thus ∆G(x) = det(Adx−1) for any x ∈ G, and the relation detexp(A) = etr(A) leads to the
following result:

COROLLARY C.1.0.2. Let G be a connected Lie group with Lie algebra g. If G admits a
lattice then tr(adX )= 0 for any X ∈ g.
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C.2 Generalities on Nilpotent Lie Groups

Let G be a Lie group with Lie algebra g. For g,h ∈ G set [g,h] := ghg−1h−1. Let A,B be
subsets of G and denote [A,B] the subgroup of G generated by [g,h] where g ∈ A, h ∈ B.
The derived series of G (resp. of g) is the sequence of normal subgroups of G (resp. ideals
of g) defined by:

D0(G) :=G, Dk(G) := [Dk−1(G),Dk−1(G)] (resp. D0(g) := g, Dk(g) := [Dk−1(g),Dk−1(g)]).

Similarly, the sequence of normal subgroups of G (resp. of ideals of g):

C 0(G) :=G, C k(G) := [C k−1(G),G] (resp. C 0(g) := g, C k(g) := [C k−1(g),g]),

is the descending central series of G (resp. of g). Clearly Dk(G)⊂C k(G) and Dk(g)⊂C k(g).

DEFINITION C.2.0.1. A Lie group G (resp. Lie algebra g) is called nilpotent if its descend-
ing central series is trivial.

PROPOSITION C.2.0.1. A connected Lie group is nilpotent if and only if its Lie algebra is
nilpotent.

Let G be a connected nilpotent Lie group and denote g its Lie algebra. Then the polynomial
product ∗ : g×g→ g given by Campbell-Dynkin-Baker-Hausdorff formula:

X ∗Y = X +Y + 1
2

[X ,Y ]+ 1
12

[X , [X ,Y ]]− 1
12

[Y , [X ,Y ]]+·· ·

defines a simply connected nilpotent Lie group structure (g,∗) with exponential map given
by expg = Idg and Lie algebra Lie(g,∗) = g, moreover the center Z(g,∗) of the group (g,∗)
coincides with the center Z(g) of the Lie algebra g. The exponential map expG : g −→ G
is the universal covering morphism of G and in particular it is surjective and therefore
the fundamental group π1(G) of G can be identified with the subgroup ker(expG)⊂ Z(g,∗).
For any x, y ∈ ker(expG) we can check that x+ y = x∗ y, so ker(expG) can also be seen as a
discrete subgroup of the additive group (g,+). Hence there exists an integer r, that will be
called the rank of π1(G) and denoted by rank(π1(G)), such that π1(G)∼=Zr.

PROPOSITION C.2.0.2. Any nilpotent Lie group is unimodular.

74



APPENDIX C. LATTICES OF NILPOTENT LIE GROUPS

C.3 Lattices of Nilpotent Lie Groups

In order to state results concerning lattices of nilpotent Lie groups, we need to introduce
some preliminary notions from algebraic geometry:

Given a polynomial ideal I ⊂ C[X1, . . . , Xn] we define Z (I) ⊂ Cn to be the set of zeroes of
polynomial elements in I. A subset A ⊂Cn is said to be algebraic in Cn if A =Z (I) for some
polynomial ideal I. We can check that the family of all algebraic subsets of Cn forms the
closed (Zariski-closed) sets of a topology on Cn called the Zariski topology. Let A ⊂ Cn be
any subset and denote I(A) the ideal consisting of polynomials P on Cn such that P|A = 0.
The Zariski closure of A in Cn is exactly the subset B = Z (I(A)). Finally, any algebraic
subset of Cn with the induced Zariski topology is referred to as an affine algebraic variety.

Let us give GL(n,C) a structure of affine algebraic variety using the following remark:
Let g := (g i j)i, j be any element of GL(n,C), then the condition det(g) 6= 0 is equivalent
to stating that ydet(g)− 1 = 0 for some y ∈ C which we may rewrite as the polynomial
equation P(y, g)= 0 with P ∈C[Y , (X i j)i, j]. Now consider the imbedding:

GL(n,C) ,→Cn2+1, g 7→ (g,det(g)−1).

Use this imbedding to identify GL(n,C) with its image, it is clear by the preceding remark
that GL(n,C) = Z (P) thus GL(n,C) can be given the structure of an affine algebraic va-
riety. A linear algebraic group is any Zariski-closed subgroup G ⊂ GL(n,C). Since linear
algebraic groups are zeroes of polynomials, they are therefore Lie groups for the usual
topology of GL(n,C).
A matrix A ∈ GL(n,C) is said to be unipotent if (A − In)n = 0. Let Un(C) be the set of all
unipotent matrices, then Un(C) is an algebraic subgroup of GL(n,C), its Lie algebra u is
the set of all nilpotent elements of gl(n,C) and the exponential map:

exp : u−→Un(C),

is a diffeomorphism and in fact a polynomial map. Any subgroup of Un(C) will be called
a unipotent group. The following theorem determines when a closed subgroup of a simply
connected nilpotent Lie group is a lattice. The proof of this theorem and all the results in
this paragraph can be found in [45].
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THEOREM C.3.0.1. Let N be a simply connected nilpotent Lie group and Γ ⊂ N a closed
subgroup. The following assertions are equivalent:

1. There exists a faithful unipotent representation ρ : N −→GL(n,R) such that ρ(N) and
ρ(Γ) have the same Zariski closure in GL(n,C).

2. The quotient group N/Γ is compact.

3. The quotient group N/Γ carries a finite invariant measure.

4. There are no proper connected closed subgroups of N containing Γ.

5. For any faithful unipotent representation ρ : N −→ GL(n,R), ρ(N) and ρ(Γ) have the
same Zariski closure.

Next we state some straightforward consequences of this Theorem:

COROLLARY C.3.0.1. Let H be a uniform subgroup of a simply connected nilpotent Lie
group N then H ∩Dk(N) is a uniform subgroup of Dk(N) and H ∩C k(N) is a uniform
subgroup of C k(N).

PROPOSITION C.3.0.1. Let N be a simply connected nilpotent Lie group and H ⊂ N a
closed uniform subgroup. A connected Lie group U of N is normal in N if and only if it is
normalized by H.

COROLLARY C.3.0.2. Let H be a closed uniform subgroup of a nilpotent Lie group N and
let H0 be the identity component of H. Then H0 is a normal subgroup of N

The next proposition expresses what the Zariski closure of a subgroup H in a simply con-
nected Lie group N means in terms of the Lie group topology without requiring an external
algebraic group.

PROPOSITION C.3.0.2. Let N be a simply connected nilpotent Lie group and H any sub-
group. Then H is contained in a unique minimal connected closed subgroup H̃ of N. If
furthermore H is closed in N then H̃/H is compact.

In what follows, the Zariski closure of a closed subgroup H in a simply connected nilpotent
Lie group N is defined to be the smallest closed connected subgroup H̃ ⊂ N containing H.
We now state some results about the structure of lattices of nilpotent Lie groups:

THEOREM C.3.0.2. Any subgroup of a finitely generated nilpotent group is finitely gener-
ated.

Let Γ be a finitely generated nilpotent group, we call a filtration of Γ any sequence of
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subgroups Γ = Γ0 ⊃ Γ1 ⊃ ·· · ⊃ Γk = {e} such that Γi /Γi−1 and Γi−1/Γi is abelian. Such a
filtration always exists and we define the rank of Γ to be the integer:

rg(Γ) :=
k∑

i=1
rg(Γi−1/Γi).

This integer is independant of the choice of the filtration.

THEOREM C.3.0.3. Let N be a simply connected nilpotent Lie group and Γ a discrete
subgroup of N. Denote Γ̃ the Zariski closure of Γ in N, then Γ is finitely generated and:

rg(Γ)= dim(Γ̃).

COROLLARY C.3.0.3. Let N be a nilpotent simply connected Lie group and H a closed
subgroup. Let H0 be the identity component of H and H̃ the Zariski closure of H in N.
Then:

dim H̃ = dimH+rg(H/H0).

COROLLARY C.3.0.4. Let N be a connected nilpotent Lie group (not necessarily simply
connected) and let Γ⊂ N be any discrete subgroup. Then Γ is finitely generated.

The next set of results shows how a homomorphism of simply connected nilpotent Lie
groups is completely determined by its behavior on a lattice. As a consequence, two simply
connected nilpotent Lie groups giving rise to the same nilmanifolds (quotient by a lattice)
are the same.

THEOREM C.3.0.4. Let N and V be two nilpotent simply connected groups and let H be a
uniform subgroup of N. Then any continuous homomorphism ρ : H −→ V can be extended
in a unique manner to a continuous (hence smooth) homomorphism ρ̃ : N −→V.

COROLLARY C.3.0.5. Let N be a simply connected nilpotent Lie group and H ⊂ N a closed
uniform subgroup. Then any automorphism of H extends to a unique automorphism of N.

COROLLARY C.3.0.6. Let N1 and N2 be simply connected nilpotent Lie groups and H1,H2

uniform closed subgroups of N1 and N2 respectively. Any isomorphism of H1 on H2 extends
to an isomorphism of N1 on N2. In particular, N1/H1 and N2/H2 are homeomorphic. Con-
versely if H1 and H2 are uniform lattices such that N1/H1 and N2/H2 are homeomorphic
then N1 and N2 are isomorphic.

We end this paragraph with the famous Malcev criterion which allows to decide whether
a simply connected nilpotent Lie group admits a lattice just by looking at its Lie algebra
structure.
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THEOREM C.3.0.5 (MALCEV). Let N be a simply connected Lie group and denote n its
Lie algebra. Then N admits a lattice if and only if n admits a basis with respect to which
the constants of structure are rational.

A more precise statement of the preceding theorem is the following: Let n be a nilpotent
Lie algebra with respect to which the constants of structure are rational. Let n0 be the
Q-vector space spanned by this basis, if L is a lattice of maximal rank in (n,+) contained
in n0 then the group generated by expL is a lattice in N. Conversely if Γ is a lattice in N,
then the Z-span of exp−1Γ is a lattice of maximal rank in (n,+) such that the constants of
structure of n with respect to any basis in L := spanZ(exp−1Γ) are rational. We conclude
with two important consequences of Malcev’s Theorem, but first some terminology:
The ascending central series of a Lie group G is the family of ideals (C ′

k(G))k defined in-
ductively by C ′

0(G)= {eG} and C ′
k(G)= π−1(Z(G/C ′

k−1(G))) where π : G −→G/C ′
k−1(G) is the

natural projection. Explicitly, we get that:

C ′
k(G)= {g ∈G, ghg−1h−1 ∈C ′

k−1(G) for any h ∈G}.

In particular, C ′
1(G) = Z(G) and it can be shown that the Lie group G is nilpotent if and

only if the sequence (C ′
k(G))k reaches G i.e C ′

k(G)=G for k large enough.

COROLLARY C.3.0.7. Let N be a simply connected nilpotent Lie group and Γ⊂ N a lattice.
Then C ′

k(N)∩Γ is a lattice in C ′
k(N), in particular the intersection of Γ with the center of N

is a lattice of the center.

THEOREM C.3.0.6. A group Γ is isomorphic to a lattice in a simply connected nilpotent
Lie group if and only if Γ is nilpotent, torsion-free and finitely generated.
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