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Abstract
The Gauss-Bonnet theorem is an important result in differential geometry.

It gives a link between the geometry of some regular surfaces, namely the
Gaussian curvature, the geodesic curvature of the boundary of the surface
and the angles at the vertices of that boundary, and a topologically invari-
ent number named the Euler-Poincaré characteristic of the surface. We will
approach the subject in the following way:

1. In Chapter 1, we will present a proof of a theorem called Hopf’s Um-
laufsatz. It applies to simple closed regular curves in the plane to form
a particular case of the Gauss-Bonnet theorem for planar surfaces. We
will achieve this after studying notions such as liftings, the rotation in-
dex of a closed curve and path homotopies. We will then apply the
theorem to find some well known results about the sum of interior an-
gles of a polygon in Euclidean geometry.

2. In Chapter 2, we will study the theory of classical differential geome-
try on regular surfaces to set up the ground for presenting a proof of
a local version of the theorem: as regular surfaces being locally home-
omorphic to the plane, we can use Hopf’s Umlfausatz locally. We will
apply the theorem to generalize the results of Chapter 1 about polygons
to regular surfaces. We will also give some insight about the theorem
in Riemannian geometry and apply the results to hyperbolic geometry.

3. In Chapter 3, we will globalize the local theorem of Chapter 2 using
what is called triangulation. We will then present some of the many
applications of this theorem, from studying possible ways to design a
soccer ball to proving the fundamental theorem of algebra.

The document was typeset in LATEX. Figures and animations were de-
signed using Asymptote [12], Convertio [16], Geogebra [25], RecordMyDesk-
top [32], Adobe Photoshop [38], TikZ [39] and Wolfram Mathematica [44].
The following website contains a PDF version of this document as well as
the animations accompanying it:
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My advisor’s e-mail: a.abouqateb@uca.ac.ma

http://www.tinyurl.com/BATHGB
mailto:bentbibrachad@gmail.com
mailto:a.abouqateb@uca.ac.ma




vii

Contents

Acknowledgements iii

Abstract v

List of Figures ix

1 Hopf’s Umlaufsatz 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Lifting, Degree and Homotopy . . . . . . . . . . . . . . . . . . 9
1.3 Hopf’s Umlaufsatz . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 The Local Gauss-Bonnet Theorem 29
2.1 Regular Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 The Local Gauss-Bonnet Theorem . . . . . . . . . . . . . . . . . 49

3 The Global Gauss-Bonnet Theorem 61
3.1 Triangulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 The Global Gauss-Bonnet Theorem . . . . . . . . . . . . . . . . 66

Bibliography 75

Index 79





ix

List of Figures

1.1 A triangle with its interior and exterior angles . . . . . . . . . 1
1.2 Triangulation of a simple polygon . . . . . . . . . . . . . . . . 2
1.3 Another way to perceive the result . . . . . . . . . . . . . . . . 3
1.4 Triangle in 1.1 with a curved edge . . . . . . . . . . . . . . . . 4
1.5 Heinz Hopf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Illustration of an evenly covered set . . . . . . . . . . . . . . . 11
1.7 A covering map of S1 . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 A non simple closed curve . . . . . . . . . . . . . . . . . . . . . 16
1.9 Homotopy between α0 and α1 . . . . . . . . . . . . . . . . . . . 25

2.1 Gauss and Bonnet . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Illustration of a regular surface . . . . . . . . . . . . . . . . . . 30
2.3 A plane in R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Coordinate neighborhoods of S2 . . . . . . . . . . . . . . . . . 31
2.5 Elliptic Paraboloid . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 The surface x4 + y3 + z2 = 1 . . . . . . . . . . . . . . . . . . . . 32
2.7 Torricelli’s Trumpet . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8 Torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.9 Ellispoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.10 Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.11 Tangent plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.12 Mobius strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.13 The Gauss maps of S2 . . . . . . . . . . . . . . . . . . . . . . . 39
2.14 Simple region on a torus . . . . . . . . . . . . . . . . . . . . . . 53
2.15 A geodesic triangle on a sphere . . . . . . . . . . . . . . . . . . 55
2.16 A geodesic triangle in H . . . . . . . . . . . . . . . . . . . . . . 58
2.17 Another geodesic triangle in H . . . . . . . . . . . . . . . . . . 58
2.18 A geodesic pentagon in H . . . . . . . . . . . . . . . . . . . . . 59
2.19 A geodesic hexagon in H . . . . . . . . . . . . . . . . . . . . . . 59

3.1 Walther von Dyck . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Triangulation of a regular region . . . . . . . . . . . . . . . . . 62
3.3 A triangulation of a disk . . . . . . . . . . . . . . . . . . . . . . 65
3.4 A triangulation of a sphere . . . . . . . . . . . . . . . . . . . . . 65
3.5 Regular region on a torus . . . . . . . . . . . . . . . . . . . . . 68
3.6 A soccer ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.7 A triangulation of a pentagon . . . . . . . . . . . . . . . . . . . 69
3.8 A ball with pentagons [10] . . . . . . . . . . . . . . . . . . . . . 70
3.10 Surfaces with genus 2 and 3 . . . . . . . . . . . . . . . . . . . . 72





xi

To my parents Naila and Abdeslem Hafid,
my brother Yassine and Karima.





1

Chapter 1

Hopf’s Umlaufsatz1

In this chapter, we present the proof of Hopf’s Umlaufsatz, a particular
case of the Gauss-Bonnet Theorem that will be, however, used to prove the
latter.

1.1 Motivation

Consider a triangle ABC as shown below:

FIGURE 1.1: A triangle with its interior and exterior angles

In red, the angles α1, α2 and α3 are the interior angles of the triangle and in
green, the angles β1, β2 and β3 are the exterior angles of the triangle, defined
by

β1 = π − α1

β2 = π − α2

β3 = π − α3.

Recall that the sum
∑3

i=1 αi of the interior angles of a triangle is π. Summing
the three equations above, we get

3∑
i=1

βi = 3π −
3∑
i=1

αi

= 3π − π
= 2π.

1From the German words Umlauf (circulation) and Satz (theorem). Mentionned in other
books as The Turning Tangents Theorem or The Rotation Angle Theorem.
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A more general result is that the sum of the oriented interior angles of
any simple n-sided polygon2 is ±(n− 2)π. There is a proof that relies on the
fact that any such polygon can be partitioned into triangles which vertices
are the polygone’s vertices and which edges do not intersect each other un-
less they’re common between two triangles (such a partitionning is called a
triangulation of a polygon), and that the number of these triangles is always
n− 2 [17, p. 47].

FIGURE 1.2: Triangulation of a simple polygon

Thus the sum of the oriented interior angles of the polygon is the sum of
the oriented interior angles of all the n − 2 triangles, which is ±(n − 2)π. As
in above, let αi and βi denote, respectively, the interior and exterior angles of
a simple n-gon. Then

n∑
i=1

βi =
n∑
i=1

±(π − αi)

= ±nπ ∓
n∑
i=1

αi

= ±nπ ∓ (n− 2)π

= ±2π.

(1.1)

This proves the theorem below:

Theorem 1.1. The sum of the oriented exterior angles of any simple polygon is±2π.

See 2.1.gif for an animation [34].
The exterior angle at a vertex of a simple polygon are in fact the angle dif-

ference between the left and right tangent lines to the curve at that point.
Imagine a vehicle V moving on the polygon in a counter-clockwise way.
Keep track of the angle θ between the tangent lines at his different positions
and the tangent line he had at his starting point V0. Whenever the vehicle
changes direction at a vertex, the exterior angle at this point adds up to θ.
When the point reaches back V0, θ is 2π.

2A polygon which edges intersect only at vertices.

https://drive.google.com/open?id=0B4VKWHjd3zqtZ2VpbzFBakZPVHM
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FIGURE 1.3: Another way to perceive the result

What happens to this theorem when we bend the edges of a simple poly-
gon? Before answering this question, we recall the following:

Definition 1.2.

- A plane curve is a continuous map γ : I → R2 where I is an interval of
R.

- A regular curve of classCk is a plane curve of classCk such that ∀t ∈ I, γ′(t) 6= 0.
If the curve is injective, we say that it is simple. If I = [a, b] is a closed
bounded interval and ∀n ∈ {0, . . . , k}, γ(n)(a) = γ(n)(b), the curve is said
to be closed. If I = [a, b] and the curve is closed and injective on [a, b), it
is said to be a simple closed curve. If the class of the regular curve isn’t
stated, it shall be considered of class C∞.

- A polygonal curve of class Ck is a closed piecewise regular curve that
has nonzero derivative at the left and the right of the points t1, . . . , tn
of I where it is not differentiable. The points γ(t1), . . . , γ(tn) are called
vertices of γ, and for any i ∈ {1, . . . , n− 1}, γ |[ti,ti+1] is called an edge of
γ.

- A regular curve γ of class Ck is said to be an arc length parametrization
if
∀t ∈ I, ‖γ′(t)‖ = 1.

- For an arc length parametrization γ, let T = γ′. T (t) is the tangent
vector to γ at γ(t). The composition of T with the rotation of angle
π

2
is noted N . N(t) is called the normal vector to γ at γ(t). The map

k = 〈T ′, N〉 is called the curvature of γ.
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Definition 1.3. Let γ : I = [a, b]→ R2 and γ̃ : Ĩ = [c, d]→ R2 be parametrized
curves of classCk. We say that γ̃ is a reparametrization of γ if there exists aCk

diffeomorphism ϕ : [c, d]→ [a, b] such that the following diagram commutes:

Ĩ I

R2

ϕ

γ̃
γ

If furthermore ϕ is strictly increasing, then γ̃ is said to be an orientation pre-
serving reparametrization.

Definition 1.4.

- The argument of a unit vector v = (vx, vy) is

arg v =

2 arctan

(
vy

1 + vx

)
, vx 6= −1;

π, vx = −1.

For a nonunit vector, we set arg v = arg
v

‖v‖
.

- The angle or directed angle from a vector u = (ux, uy) to a vector v = (vx, vy)
is

∠(u, v) = arg

(
vx + ivy
ux + iuy

)
.

- Let γ : I → R2 be a polygonal curve of class Ck with vertices
γ(t1), . . . , γ(tn). Let i ∈ {1, . . . , n}. The interior angle of γ at γ(ti) is
∠(T (t−i ), T (t+i )) if it is different than ±π. If its value is ±π, γ(ti) is
called a cusp of γ. The exterior angle is ±π, the sign being the sign

of lim
ε→0+

∠(T (ti − ε), T (ti + ε))

|∠(T (ti − ε), T (ti + ε))|
. If βi is the exterior angle of γ at γ(ti),

the interior angle of γ at γ(ti) is αi = π − βi.

Let us answer now the previous question. For illustration, let’s bend the
edge BC of the triangle in figure 1.1 to make it an arc of a circle.

FIGURE 1.4: Triangle in 1.1 with a curved edge
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In the figure above, the purple lines are the tangents of the circle arc at B
and C. When we compare this figure with figure 1.1, we see that the interior
angles α2 and α3 became larger, and thus the exterior angles β2 and β3 became
smaller. Hence the sum of the exterior angles in this case is smaller than 2π,
i.e,

3∑
i=1

βi < 2π.

Therefore there is a positive number x such that

x+
3∑
i=1

βi = 2π.

In order to find out what does x represent, consider as previously a vehicle
on this curve. The angle θ doesn’t only vary at the vertices of this curve,
but also on the bended edge. The animation 2.2.gif suggests that x is the
difference between the angle θ(t−2 ) of the tangent vector atC from the left and
the angle θ(t+1 ) of the tangent vector at B. Since θ is differentiable on [t1, t2],
we infer that:

2π = θ(t−2 )− θ(t+1 ) +
3∑
i=1

βi

=

∫ t2

t1

θ′(t) dt+
3∑
i=1

βi.

Notice that since θ is constant on the edges AB and AC, θ′ vanishes on [t0, t1]
and [t2, t3]. Thus the equation above becomes∫ b

a

θ′(t) dt+
3∑
i=1

βi = 2π. (1.2)

Another thing that the animation 2.2.gif suggests is that θ′ is related to
how the segment bends, namely its curvature.

Proposition 1.5. Let γ : I → R2 be an arc length curve and θ be a smooth

function such that ∀t ∈ I, T (t) = (cos θ(t), sin θ(t)). Then k =
dθ

dt
.

Then equation (1.2) becomes:∫ b

a

k(t) dt+
3∑
i=1

βi = 2π.

The German mathematician Heinz Hopf generalized the equation above
to any polygonal curve ([24],1935). This theorem is called Hopf’s Umlaufsatz.

https://drive.google.com/open?id=0B4VKWHjd3zqtS2VVTWFDNHNPaGM
https://drive.google.com/open?id=0B4VKWHjd3zqtS2VVTWFDNHNPaGM
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FIGURE 1.5: Heinz Hopf (1894 - 1971) [1]

Theorem 1.6 (Hopf’s Umlaufsatz). Let γ : [a, b]→ R2 be an arc length polygonal
curve, k its curvature, n the number of its vertices and θi the exterior angle of γ at
its ith vertex, where i ∈ {1, · · · , n}. Then I(γ) = ±1 and∫ b

a

k(t) dt+
n∑
i=1

θi = 2πI(γ).

(see Definition 1.22 for the meaning of I(γ))
If the curve is of class C1 but not C2, we still have the following:

Theorem 1.7 (Hopf’s Umlaufsatz). Let γ : [a, b] → R2 be a polygonal curve of
class C1. Then I(γ) = ±1.

We will give Hopf’s proof of this theorem in section 1.3.
Here are examples that illustrate the theorem.

Example 1.8. Consider the parametrized curve

γ : [0, 4π]→ R2

t 7→


(1, 0) + (cos t, sin t) , t ∈ [0, π];

(−1, 0) + (cos (t− π), sin (t− π)) , t ∈ [π, 2π];

2

(
cos

t

2
, sin

t

2

)
, t ∈ [2π, 4π].

γ is parametrized by arc length. Its curvature is given by:

k : [0, 4π]→ R

t 7→


1, t ∈ [0, π] ∪ [π, 2π];

1

2
, t ∈ [2π, 4π].
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1
0

1

The curve has one vertex: the point (0, 0). It is in fact a cusp, and the
exterior angle at it is −π, as represented in red in the figure above. We have

∫ 4π

0

k(t) dt− π =

∫ 2π

0

dt+

∫ 4π

2π

1

2
dt− π

= 2π − π + π

= 2π

Example 1.9. Consider the parametrized curve

γ : [0, 4 + π]→ R2

t 7→


(t, 0), t ∈ [0, 2];

(2, 2) + 2

(
cos

(
−t− 2 + π

2

)
, sin

(
−t− 2 + π

2

))
, t ∈ [2, 2 + π];

(0,−t+ 4 + π), t ∈ [2 + π, 4 + π].

1
0

1

γ is parametrized by arc length. Its curvature is given by:



8 Chapter 1. Hopf’s Umlaufsatz

k : [0, 4 + π]→ R

t 7→


0, t ∈ [0, 2] ∪ [2 + π, 4 + π];

−1

2
, t ∈ [2, 2 + π].

The curve has three vertices: two cups at which the exterior angle is π,
and the point (0, 0) at which the exterior angle is

π

2
. We have:

∫ 4+π

0

k(t) dt+ π + π +
π

2
=

∫ 2+π

2

−1

2
dt+

5π

2

= −π
2

+
5π

2
= 2π.

Example 1.10. Consider the parametrized curve

γ :

[
−π

2
,
3π

2

]
→ R2

t 7→


(4 cos t, 2 sin t), t ∈

[
−π

2
,
π

2

]
;

(−4, 2) +
(

4 cos
(
−t+

π

2

)
, 2 sin

(
−t+

π

2

))
, t ∈

[π
2
, π
]
;

(−4,−2) +

(
4 cos

(
−t+

3π

2

)
, 2 sin

(
−t+

3π

2

))
, t ∈

[
π,

3π

2

]
.

10

1

We get:
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k :

[
−π

2
,
3π

2

]
→ R

t 7→



1
√

1 + 3 sin2 t
3 , t ∈

[
−π

2
,
π

2

]
;

− 1√
1 + 3 sin2

(
−t+

π

2

)3 , t ∈
[π

2
, π
]
;

− 1√
1 + 3 sin2

(
−t+

3π

2

)3 , t ∈
[
π,

3π

2

]
.

Since k |[−π2 , 3π2 ] is even, we have

∫ π
2

−π
2

k(t) dt = 2

∫ π
2

0

k(t) dt. (1.3)

Using the change of variable u = t− π

2
, we get

∫ π

π
2

k(t) dt = −
∫ π

2

0

k(u) du. (1.4)

Using the change of variable u = −t+
3π

2
, we get

∫ 3π
2

π

k(t) dt = −
∫ π

2

0

k(u) du. (1.5)

From (1.3), (1.4) and (1.5), we conclude that∫ 3π
2

−π
2

k(t) dt = 0.

There are three vertices, at which the exterior angles are
π

2
, π and

π

2
. Hence:

∫ 3π
2

−π
2

k(t) dt+ 2 · π
2

+ π = 2π.

1.2 Lifting, Degree and Homotopy

In this section, we introduce some mathematical notions that will be used
to prove Hopf’s Umlaufsatz.

Recall that any regular curve has an arc length reparametrization. In this
case, we consider that γ′ has the unit circle S1 as codomain. Since we need
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to work with angles, it is important for us that for any t ∈ [a, b], there exists
θ ∈ R such that γ′(t) = (cos θ, sin θ). According to the axiom of choice, there
exists a function θ : [a, b]→ R such that

∀t ∈ [a, b], γ′(t) = (cos θ(t), sin θ(t)) . (1.6)

Axiom of Choice. For any relation R, there exists a function f such that f ⊂ R
and dom f = domR.

Letting p : R → S1 defined by p(t) = (cos t, sin t) for all t ∈ R, (1.6) simply
becomes γ′ = p ◦ θ. The function θ is not unique by the periodicity of cos and
sin. However, γ′ and p being continuous, one might wonder if it is possible
to find a continuous function θ that satisfies (1.6). One might be tempted to
consider a continuous right inverse q of p and then take θ = q ◦ γ′ so that
p ◦ θ = (p ◦ q) ◦ γ′ = γ′. Unfortunately, this is not the case:

Proposition 1.11. There is no continuous function q : S1 → R such that
p ◦ q = idS1 .

Proof. Suppose by way of contradiction that such a function q exists. As q
has a left inverse, it is injective. Let I = q(S1). Since q is continuous and S1

is connected, so is I . Thus I is an interval in R. Furthermore, if we change
the codomain of q to I , q becomes a continuous bijection between S1 and I ,
which inverse, p |I , is continuous . Hence q is a homeomorphism between I
and S1. S1 being compact, so is I . Hence I = [a, b] for some a, b ∈ R.

Now let c =
a+ b

2
and d = p(c). Consider q̃ = q |S1\{d} and with [a, b]\{c}

as a codomain. Then q̃ is a homeomorphism between S1\d, a connected
space, and [a, c) ∪ (c, b], which is not connected. This is a contradiction as
connectedness is a topological property.

The proposition above is however true when restrecting the domain. Us-
ing this, it turns out that a continuous function θ that satisfies (1.6) does exist
as we shall prove in Theorem 1.17. This leads to the following definitions:

Definition 1.12. Let p : X → Y be a continuous surjective function. An open
set U of X is said to be evenly covered by p if p−1(U) can be written as the
union of a collection S of disjoint open sets such that for any V ∈ S , p |V is a
homeomorphism between V and U . Such a collection S is called a partition
of p−1(U) into slices.
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U

p

...p−1(U)

FIGURE 1.6: [45]

Definition 1.13. Let p : X → Y be a continuous surjective function. If every
element y ∈ Y has a neighborhood evenly covered by p, then p is called a
covering map, and X is said to be a covering space of Y .

In the definition above, the fact that every element in Y has a neighbor-
hood evenly covered by p can be simply reformulated as follows: Y has an
open covering consisting of evenly covered sets by p.

Proposition 1.14. The function

p : R→ S1

t 7→ (cos t, sin t)

is a covering map.

Proof. Consider the following open sets of S1:

U1 = p
( ]
−π

2
,
π

2

[ )
U2 = p

(]
π

2
,
3π

2

[)
U3 = p ( ]0, π[ )

U4 = p ( ]π, 2π[ ) .

It is easy to see that C = {U1, U2, U3, U4} is an open covering of S1. Let’s prove
that its elements are evenly covered by p.
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For all n ∈ Z, let:

An =
]
−π

2
+ 2πn,

π

2
+ 2πn

[
Bn =

]
π

2
+ 2πn,

3π

2
+ 2πn

[
Cn = ]2πn, π + 2πn[

Dn = ]π + 2πn, 2π + 2πn[ .

We have:

p−1(U1) =
⋃
n∈Z

An

p−1(U2) =
⋃
n∈Z

Bn

p−1(U3) =
⋃
n∈Z

Cn

p−1(U4) =
⋃
n∈Z

Dn.

FIGURE 1.7: A covering map of S1 [7]
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We will show that U1 is evenly covered by p. The proof is similar for the
other sets. We have for any n ∈ N, An is an open set, and for any m ∈ N such
that m 6= n, An ∩ Am = ∅. Indeed, A0 is an interval of length π < 2π and for
all n ∈ N, An is the translation of A0 by 2πn. Since p is 2π-periodic, it is clear
that if p |A0 is a homeomorphism between A0 and U1, then so will be p |An for
any n ∈ N∗.

Let

f : A0 → U1

t 7→ p(t).

f is clearly a bijective continuous function. Since A0 is compact and U1 is a
Hausdorff space3, f is a homeomorphism. Since f(A0) = U1, it clearly follows
that p |A0 is a homeomorphism between A0 and U1.

We’re now ready for the proof of theorem 1.17. We start by proving the
following lemma:

Lemma 1.15 (The Lebesgue number lemma). Let (X, d) be a compact metric
space and let C be an open covering of X . Then there exists a real number δ > 0 such
that every subset of X of diameter4 less than δ is included in some element of C.

The number δ is called a Lebesgue number for the covering C.

Proof. Suppose by way of contradiction that such a number doesn’t exist.

Then for any n ∈ N∗, 1

n
is not a Lebesgue number, i.e, there exists a subset Sn

of X such that

diamSn <
1

n
and ∀O ∈ C, Sn 6⊂ O. (1.7)

By the axiom of choice, there is a sequence (xn)n∈N∗ such that

∀n ∈ N∗, xn ∈ Sn.

Since (X, d) is compact, there is a subsequence (xφ(n))n∈N∗ of (xn)n∈N∗ that
converges. Call x its limit. Since C is an open covering ofX , there existsO ∈ C
that is a neighborhood5 of x. Thus there exists δ > 0 such that B(x, δ) ⊂ O.
Since (xφ(n))n∈N∗ converges to x, we have

∃N ∈ N∗,∀n ≥ N, xϕ(n) ∈ B
(
x,
δ

2

)
.

3A topological space (X, τ) such that any two distinct elements x and y ofX have disjoint
neighborhoods is called a Hausdorff space.

4In a metric space (X, d), the diameter of a subset S of X is: diamS = supx,y∈S d(x, y)
5A neighborhood of a point is an open set containing it. We recall this for clarification, as

some authors don’t require the set to be open.
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Let m ≥ N such that ϕ(m) >
2

δ
. We claim that Sϕ(m) ⊂ B(x, δ). Indeed, let

s ∈ Sϕ(m). Since diamSφ(m) <
1

ϕ(m)
, we have d(s, xϕ(m)) <

1

ϕ(m)
. Thus

d(s, x) ≤ d(s, xϕ(m)) + d(xϕ(m), x)

≤ 1

ϕ(m)
+
δ

2

≤ δ

2
+
δ

2
≤ δ.

Hence Sϕ(m) ⊂ B(x, δ) ⊂ O, contradicting (1.7). We conclude that such a
number exists.

Definition 1.16. Let X , Y and Z be topological spaces and f : X → Y and
p : Z → Y be a continuous functions. We call a lifting of f accross p a
continuous function f̃ : X → Z such that f = p ◦ f̃ .

Z

X Y

p

f

f̃

Theorem 1.17. Let Y and Z be topological spaces, p : Z → Y be a covering map,
y0 ∈ Y and z0 ∈ Z such that p(z0) = y0. Let I = [a, b] be a compact interval of
R. Then any continuous function f : I → Y with f(a) = y0 has a unique lifting f̃
accross p such that f̃(a) = z0.

Proof.

• Existence.
Let C be a covering of Y with sets evenly covered by p (which exists
since p is a covering map). Let A = {f−1(U) | U ∈ C}. Since f is
continuous, A is an open covering of I . Since I is a compact metric

space, A has a Lebesgue number δ. Let n =

⌊
b− a
δ

⌋
+ 1 and for all

k ∈ {0, . . . , n − 1}, let Ik =

[
a+ k

b− a
n

, a+ (k + 1)
b− a
n

]
. These inter-

vals have diameter less than δ. Thus

∀k ∈ {0, . . . , n− 1},∃U ∈ C, Ik ⊂ f−1(U).

Since for any U ∈ C, f(f−1(U)) ⊂ U , the statement above becomes

∀k ∈ {0, . . . , n− 1},∃U ∈ C, f(Ik) ⊂ U.

For simplicity, let s0, . . . , sn be such that

∀k ∈ {0, . . . , n− 1}, Ik = [sk, sk+1].
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The lifting f̃ will be constructed on these intervals recursively.

Firstly, we let f̃(a) = z0. Now let k ∈ {0, n − 1} and suppose that
f̃ is already defined on [s0, sk]. We have ∃U ∈ C, f(Ik) ⊂ U . Since
U is evenly covered by p, there exists a collection S of disjoint open
sets in Z which union is p−1(U) and such that for any V ∈ S, p |V is a
homeomorphism between V and U . Since f(sk) = p(f̃(sk)) ∈ U , we
have f̃(sk) ∈ p−1(U) = ∪S. Thus there is a unique Vk ∈ S that contains
f̃(sk). Then we define f̃ on Ik by:

∀s ∈ Ik, f̃(s) = (p |Vk)
−1 (f(s)).

Since f is continuous and f |Vk is a homeomorphism, f̃ |Ik is continuous.

It clearly follows from above that f̃ is continuous on I and that f = p◦f̃ .

• Uniqueness.
Suppose that g and h are two liftings of f accross p such that
g(a) = h(a) = z0. Let A = {t ∈ [a, b] | g(t) = h(t)}. As A ⊂ I and
A 6= ∅ because a ∈ A, and since I is connected, it’s enaugh to show that
A is clopen6 to conclude that A = I , and this shows that g = h.

- A is open: Let t ∈ A and x = g(t) = h(t). Since p is a covering
map, there exists an open set U of Y that contains p(x) such that
p−1(U) is the union of a collection S of disjoint open sets such that
p restricted on every element of S is a homeomorphism between it
and U . As x ∈ p−1(U), we have ∃V ∈ S, x ∈ V . Since g and h are
continous and g(t) = h(t), there exists an open interval J such that
g(J), h(J) ⊂ V . Since f = p ◦ g = p ◦ h and p is a homeomorphism
between V and U , we get g |J = h |J . Hence J ⊂ A. Therefore A is
open.

- A is closed: g and h are continuous, {0} is a closed set of R and
A = (g − h)−1({0}). Therefore A is closed.

Corollary 1.18. Let f : [a, b] → S1 be a continuous map and let p be the
map from proposition 1.14. Then there are functions f̃ : [a, b] → R such that
f = p ◦ f̃ . Furthermore, for any two such functions g and h, there is a unique
k ∈ Z such that

∀x ∈ [a, b], g(x)− h(x) = 2πk.

Proof. The existence of such functions clearly follows from the previous the-
orem. Now let g, h : [a, b] → R such that f = p ◦ g = p ◦ h. We have

∀x ∈ [a, b],
g(x)− h(x)

2π
∈ Z because p(g(x)) = p(h(x)). Since the function

x 7→ g(x)− h(x)

2π
is continuous and its domain, [a, b], is connected, so is its

6A clopen set is a set that is both open and closed.
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image. But since its image is a subset of Z which is totally disconnected, the
image is a singleton {k}. Hence

∀x ∈ [a, b], g(x)− h(x) = 2πk.

Definition 1.19. Let f : I → S1 be a continuous function. A continuous map
θ : I → R that satisfies f = p ◦ θ is called an angle function of f .

For functions that are of class Ck with k ≥ 2, we can construct liftings of
class Ck:

Proposition 1.20. Let f : I → S1 be a function of class Ck with k ≥ 2, f1 and
f2 its components, t0 ∈ I and θ0 ∈ R such that f(t0) = p(θ0). Then

θ : I → R

t 7→ θ0 +

∫ t

t0

(f1f
′
2 − f ′1f2)(t) dt

is a lifting of f of class Ck.

In the previous section, we motived Hopf’s Umlaufsatz using the angle
variation of the tangent lines of a simple closed curve γ : [a, b] → R2, which
are directed by γ′. If we restrict our attention for the moment to arc length
curves γ, there are no vertices in their trace. Using Hopf’s Umlaufsatz, we
can say that the difference in angle between γ′(a) and γ′(b) is ±2π, i.e, the
tangent line performed a complete turn when moving along the curve. It can
be more if the curve is not simple, as shown in figure below.

FIGURE 1.8: A non simple closed curve

This motivates the following definitions:

Definition 1.21. Let θ be an angle function of a continuous map f : [a, b]→ S1.
If f(a) = f(b), f is called a closed path on S1. In this case, the degree of f is

the integer deg f =
θ(b)− θ(a)

2π
.
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The fact that the degree of closed path doesn’t depend on the chosen angle
function follows by Corollary 1.18.

Definition 1.22. Let γ : [a, b] → R2 be a closed arc length curve. An angle
function of T is called a tangent angle function of γ. The degree of T is called
the rotation index of γ and is noted I(γ). If I(γ) is positive, we say that γ is
positively oriented.

For arc length polygonal curves, the tangent vector is piecewise continu-
ous. We need to apply Definition 1.22 to such curves in such a way that the
rotation index still matches our intuition. For this purpose, it is enough to
define the angle function of the tangent vector in such a case.

Definition 1.23. Let γ : I = [a, b] → R2 be an arc length polygonal curve,
t1, . . . , tn the points of I where γ is not differentiable and θ1, . . . , θn be the
exterior angles at, respectively, γ(t1), . . . , γ(tn). We can assume without loss
of generality that t1 6= a and tn 6= b. We define an angle function θ of T
recursively: firstly, we let θ |[a,t1) be any angle function of T |[a,t1). Set t0 = a
and tn+1 = b. Then for any i ∈ {0, . . . , n − 1}, we let θ |[ti+1,ti+2) be the angle
function of θ |[ti+1,ti+2) that satisfies θ(ti+1) = θi+1 + θ(t−i+1). Finally, we let
θ(b) = θ(b−).

We now introduce the notion of homotopy. It will be crucial for the proof
of Hopf’s Umlaufsatz.

Definition 1.24. Let X and Y be topological spaces and f and g two contin-
uous functions from X into Y . A homotopy between f and g is a continuous
map h : X × [0, 1] → Y such that ∀x ∈ X, h(x, 0) = f(x) ∧ h(x, 1) = g(x).
When such a map exists, f and g are said to be homotopic.

Definition 1.25. Two paths7 f, g : I = [a, b] → X are said to be path homo-
topic if x0 = f(a) = g(a) and x1 = f(b) = g(b) and there exists a homotopy
h : I × [0, 1] → X such that ∀t ∈ [0, 1], h(a, t) = x0 and h(b, t) = x1. In this
case, h is called a path homotopy between f and g.

Homotopies and path homotopies can be lifted as well.

Theorem 1.26. Let p : Z → Y be a covering map, y0 ∈ Y and z0 ∈ Z such that
p(z0) = y0. Let I = [a, b], J = [0, 1] be compact intervals of R. Then any continuous
function h : I × J → Y with h(a, 0) = y0 has a unique lifting h̃ accross p such that
h̃(a, 0) = z0. Furthermore, if h is a path homotopy, then so is h̃.

Proof.

• Existence. We shall construct h̃ recursively. Firstly, we let h̃(a, 0) = z0.
Then we use Theorem 1.17 to define h̃ on I × {0} and {a} × J as, re-
spectively, the lifting of x 7→ h(x, 0) and t 7→ h(a, t) accross p that satisfie
h̃(a, 0) = z0. For what remains of I×J , we firstly use the Lebesgue num-
ber lemma to construct, similarly to the proof of Theorem 1.17, intervals

7A path on a topological space X is a continuous function mapping a compact interval of
R to X .
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Ii = [xi, xi+1], i ∈ {0, . . . ,m} and Jj = [tj, tj+1], j ∈ {0, . . . , n} such that
every Ii×Jj is mapped by h into an open set of Y that is evenly covered
by p. Then we construct h̃ recursively as follows: let i0 ∈ {0, . . . ,m}
and j0 ∈ {0, . . . , n} and assume that h̃ is defned on all Ii × Jj such that
j = j0 ∧ i < i0 or j < j0. Let U be an open set of Y that is evenly covered
by p and contains h(Ii0 × Jj0). Let S be a partition of p−1(U) into slices.
Note that h̃ is already defined in R = {xi0} × Jj0 ∪ Ii0 × {jj0}, which is
connected. Its image by h̃ is thus connected. Hence ∃!V ∈ S, h̃(R) ⊂ V .
Then let h̃ |Ii0×Jj0 = (p |V )−1 ◦ h. Clearly h̃ is a lifting of h accross p.

• Uniqueness. Similar to the proof uniqueness proof in Theorem 1.17.

It is also clear that if h is a path homotopy, then so is h̃.

An important link between degrees and path homotopies is the following:

Theorem 1.27. Let f0, f1 : [a, b] → S1 be two closed paths on S1. f0 and f1 are
path homotopic if and only if their degrees are equal.

For the proof, we will need some facts.

Lemma 1.28. Let I = [a, b] be an interval of length at least two, i.e, b−a ≥ 2. Then
the interval contains two successive integers. In particular, it contains odd and even
integers.

Proof.
b ≥ a+ 2 ≥ bac+ 2 ≥ a+ 1 ≥ bac+ 1 ≥ a.

Proposition 1.29. Let f1, f2 : [a, b] → S1 be continuous functions such that
f1(a) = f1(b) and f2(a) = f2(b). If deg f1 6= deg f2, then ∃t ∈ [a, b], f1(t) = −f2(t).

Proof. Assume that degf1 6= deg f2, which is equivalent to | deg f2−deg f1| ≥ 1
because the degrees are integers.

Let θ1, θ2 : [a, b] → R be angle functions for f1 and f2. Let δ = θ2 − θ1 We
have

|δ(b)− δ(a)| = |(θ2(b)− θ2(a))− (θ1(b)− θ1(a))| = 2π| deg f2 − deg f1| ≥ 2π.

Thus
∣∣∣∣δ(b)π − δ(a)

π

∣∣∣∣ ≥ 2, which means that the interval with endpoints
δ(a)

π

and
δ(b)

π
has length at least 2. According to Lemma 1.28, there exists an odd

integer k between
δ(a)

π
and

δ(b)

π
. Hence, kπ is an element of the interval

with endpoints δ(a) and δ(b), which is the image of δ. Since δ is continuous
on [a, b], the intermediate value theorem implies that ∃t0 ∈ [a, b], δ(t0) = kπ.
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Thus θ2(t0) = kπ + θ1(t0). Therefore

f2(t0) = (cos θ2(t0), sin θ2(t0))

= (cos (kπ + θ1(t0)), sin (kπ + θ1(t0)))

= − (cos θ1(t0), sin θ1(t0)) (k is odd)
= −f1(t0).

Definition 1.30. Let X and Y be non-empty topological spaces.
A function f : X → Y is said to be locally constant if every point of X

has a neighborhood on which the function is constant.

Proposition 1.31. Let X and Y be non-empty topological spaces and f a
locally constant function from X to Y . Then:

1. The preimages of the singletons in P(Y ) under f are open.

2. f is continuous.

3. f is constant on every connected subspace of X .

Proof.

1. Let y ∈ Y and x ∈ F = f−1({y}). Since f is locally constant, there
exists a neighborhood N of x on which f is constant. Thus x ∈ N ⊂ F ,
showing that F is open.

2. Let U be an open set of Y . Clearly f−1(U) =
⋃
u∈U f

−1({u}). Using 1
in this proposition, we conclude that f−1(U) is open as a union of open
sets. Hence f is continuous.

3. Let A be a connected subspace of X . Let a0 ∈ X and y0 = f(a0).
Let U = f−1({a0}) ∩ A and V = A\U . U and V are disjoint and their
union is X . Furthermore, as f−1({a0}) is open in X according to 1, U
is open in A. Since U 6= ∅ because a0 ∈ U , if we show that V is open
in A, then as this space is connected, it will follow that V = A\U = ∅,
and we get U = A, showing that f is constant on A. So, let x ∈ V ⊂ A.
There exists a neighborhood W of x in τX on which f is constant. Thus
∀w ∈ W, f(w) = f(x) 6= y0. Thus x ∈ W ∩ A ⊂ V , which shows that V
is open in A;

Now we prove the theorem.

Proof of Theorem 1.27.

⇒
We present two proofs:
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1. Let h : [a, b] × [0, 1] → S1 be a path homotopy between f0 and f1.
Let h̃ be a lifting of h. Note that θ0 : x 7→ h̃(x, 0) and θ1 : x 7→ h̃(x, 1)
are, respectively, angle functions of f0 and f1. Let θ ∈ R such that
f0(a) = f1(a) = p(θ). We have h̃({a} × [0, 1]) ⊂ {θ + 2kπ | k ∈ Z}.
Since h̃ is continuous and {a} × [0, 1] is connected, t 7→ h̃(a, t) is
constant. In particular:

θ0(a) = h̃(a, 0) = h̃(a, 1) = θ1(a).

Similarly, θ0(b) = θ1(b). Hence deg f0 = deg f1.

2. Let h : [a, b] × [0, 1] → S1 be a path homotopy between f0 and f1.
Let

∀s ∈ [0, 1], fs : [a, b]→ S1

t 7→ h(t, s)

and

D : [0, 1]→ Z
s 7→ deg fs.

Our goal is to show thatD(0) = D(1). We will achieve this through
Proposition 1.29 by proving that D is locally constant, and then
using Proposition 1.31.
Let s ∈ (0, 1) and ε = 1. h is continuous on [a, b] × [0, 1] which is
a compact of R2. Thus h is uniformly continuous on [a, b] × [0, 1].
R2 being a finite-dimensional normed vector space, its norms are
equivalent. We can thus work with the∞-norm. By uniform con-
tinuity:

∃α > 0,∀x, y ∈ [a, b]×[0, 1], ‖x−y‖∞ < α =⇒ ‖h(x)−h(y)‖ < ε = 1
(1.8)

and we can take α small enaugh so that (s − α, s + α) ⊂ (0, 1),
because (0, 1) is an open set. Notice that for any u ∈ (s− α, s + α)
and t ∈ [0, 1],

‖(t, u)− (t, s)‖∞ = ‖(0, u− s)‖∞ = |u− s| < α.

Using this and (1.8), we get

∀u ∈ (s− α, s+ α),∀t ∈ [0, 1], ‖h(t, u)− h(t, s)‖ < 1,

or equivalently,

∀u ∈ (s− α, s+ α),∀t ∈ [0, 1], ‖fu(t)− fs(t)‖ < 1. (1.9)

Let u ∈ (sα, s+ α) and assume that

∃t ∈ [0, 1], fu(t) = −fs(t).
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Then according to (1.9), 2‖fs(t)‖ < 1. Therefore ‖fs(t)‖ <
1

2
< 1,

which contradicts the assumption ran fs ⊂ S1. Therefore

∀t ∈ [0, 1], fu(t) 6= −fs(t).

According to Proposition 1.29, D(u) = deg fu = deg fs = D(s).
Since u was arbitrary in the neighborhood (s − α, s + α) of s, and
since s was arbitrary in [0, 1], we conclude that D is locally con-
stant on (0, 1). We can do the same for the cases s = 0 and s = 1,
taking neighborhoods of the form, respectively, [0, α) and (1−α, 1]
(these sets are open in the subspace topology on [0, 1]). Hence, we
conclude that D is locally constant on [0, 1], which is a connected
space. Hence D is contant on [0, 1] according to Proposition 1.31.
We conclude that D(0) = D(1) as desired.

⇐
Suppose that deg f0 = deg f1. Let θ0 be an angle function of f0, and
let θ1 be the angle function of f1 that satisfies θ1(a) = θ0(a). Since
deg f0 = deg f1, we have θ1(b) = θ0(b). Then let

ψ : [a, b]× [0, 1]→ R
(x, t) 7→ (1− t)θ0(x) + tθ1(x)

and h = p ◦ ψ. h is a path homotopy between f0 and f1.

1.3 Hopf’s Umlaufsatz

In this section, we will prove Hopf’s Umlaufsatz. We start by proving the
following lemma:

Lemma 1.32. Let γ : [a, b]→ R2 be a polygonal curve, and p2 be the second canon-
ical projection of R2, i.e,

p2 : R2 → R
(x, y) 7→ y.

Then ∃t0 ∈ [a, b], p2(γ(t0)) = min{p2(γ(t)) | t ∈ [a, b]}.
Proof. This is because p2◦γ is continuous on [a, b] which is a compact of R.

Theorem 1.7 (Hopf’s Umlaufsatz). Let γ : [a, b] → R2 be a polygonal curve of
class C1. Then I(γ) = ±1.
Theorem 1.6 (Hopf’s Umlaufsatz). Let γ : [a, b]→ R2 be an arc length polygonal
curve, k its curvature, n the number of its vertices and θi the exterior angle of γ at
its ith vertex, where i ∈ {1, · · · , n}. Then I(γ) = ±1 and∫ b

a

k(t) dt+
n∑
i=1

θi = 2πI(γ).
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Proof. We begin by proving the theorem for a simple closed curve. Let C be
the trace of γ and p = γ(t0) ∈ C, where t0 ∈ [a, b], the point which ordinate is
the lowest in C, and which existence was established in Lemma 1.32. We can
assume without loss of generality that γ(a) = p . In fact, if that’s not the case,
let Ĩ = [ã, b̃] = [t0, t0 + b − a], I = [a, b], φ : t 7→ t + a − t0 and γ̃ such that the
following diagram commutes:

Ĩ I

R2

φ

γ̃
γ

γ̃ is an arc length reparametrization of γ by the diffeomorphism φ satisfying
γ̃(ã) = p, having the same rotation index as γ. Indeed, let θ and θ̃ be the
tangent angle functions of, respectively, γ and γ̃. Since γ̃′ = γ′ ◦ φ, it is clear
that θ̃ = θ ◦ φ. Thus

I(γ̃) =
θ̃(b̃)− θ̃(ã)

2π

=
θ(φ(b̃))− θ(φ(ã))

2π

=
θ(b)− θ(a)

2π
= I(γ)

as desired. So, let’s make this assumption.
Let T = {(t1, t2) ∈ R2 | a ≤ t1 ≤ t2 ≤ b} and

ψ : T → S1

(t1, t2) 7→


γ′(t1), t1 = t2;

−γ′(a), (t1, t2) = (a, b);
γ(t2)−γ(t1)
|γ(t2)−γ(t1)| , otherwise.

For any (t1, t2) ∈ T\({(a, b)} ∪ ∆), where ∆ = {(u, v) ∈ T | u = v}, ψ(t1, t2)
is the unit vector which initial point is γ(t1) and points towards γ(t2). When
t2 gets closer to t1, we can see by geometric intuition that ψ(t1, t2) gets closer
to γ′(t1). The case where (t1, t2) → (a, b) can also be viewed inutuitively (see
[31] for nice animations). This convinces us that ψ is continuous on T . Let’s
prove it.

It is clear that ψ is continous on T\(∆∪ {(a, b)}). The function is also con-
tinuous on ∆. Indeed if t ∈ [a, b] then according to the mean value theorem
we have:

∀(t1, t2) ∈ T, t1 < t2 =⇒ ∃c1, c2 ∈ (t1, t2),
γ(t2)− γ(t1)

t2 − t1
= (cos θ(c1), sin θ(c2)).
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Thus

lim
(t1,t2)→(t,t)

t1<t2

γ(t2)− γ(t1)

t2 − t1
= (cos θ(t), sin θ(t))

= γ′(t).

Therefore

lim
(t1,t2)→(t,t)

t1<t2

ψ(t1, t2) = lim
(t1,t2)→(t,t)

t1<t2

γ(t2)− γ(t1)

t2 − t1

∣∣∣∣ t2 − t1
γ(t2)− γ(t1)

∣∣∣∣
=

1

‖g′(t)‖
γ′(t)

= γ′(t).

(1.10)

To conclude, let ε > 0. By continuity of γ′ at t, we have

∃δ1 > 0,∀x ∈ (t− δ1, t+ δ1), ‖ψ(x, x)− γ′(t)‖ < ε.

On the other hand, by (1.10), we have

∃δ2 > 0,∀(t1, t2) ∈ T\∆, ‖(t1, t2)− (t, t)‖∞ < δ2 =⇒ ‖ψ(t1, t2)− γ′(t)‖ < ε.

Taking δ = min{δ1, δ2}, we conclude that

∀(t1, t2) ∈ T, ‖(t1, t2)− (t, t)‖∞ < δ =⇒ ‖ψ(t1, t2)− γ′(t)‖ < ε

which shows that ψ is continuous at (t, t). For continuity at (a, b), it is slightly
more complicated as if we use the mean value theorem just as we did earlier,
the numbers c1 and c2 belong to the interval (t1, t2), and when we take the
limit (t1, t2) → (a, b), we can’t conclude anything about their behavior. To
solve this issue, we extend γ periodically to a function γ̃ defined as follows:
Let L = b− a. We know that

∀t ∈ R,∃!r ∈ [a, b),∃!k ∈ Z, t = kL+ r.

This defines a function r : R → [a, b). Now let γ̃ = γ ◦ r. Since γ is a closed
curve, it is easy to see that γ̃ is smooth and γ̃′ = γ′ ◦ r. We have by the mean
value theorem applied to γ̃:

∀(t1, t2) ∈ T,∃c1, c2 ∈ (t2 − L, t1),
γ(t2)− γ(t1)

t2 − L− t1
=
γ̃(t2 − L)− γ̃(t1)

t2 − L− t1
= (cos θ(r(c1)), sin θ(r(c2))).

Now c1, c2 → a as (t1, t2)→ (a, b). Therefore

lim
(t1,t2)→(a,b)

γ(t2)− γ(t1)

t2 − L− t1
= (cos θ(a), sin θ(a))

= γ′(a).



24 Chapter 1. Hopf’s Umlaufsatz

Hence

lim
(t1,t2)→(a,b)

γ(t2)− γ(t1)

|γ(t2)− γ(t1)|
= lim

(t1,t2)→(t,t)
−γ(t2)− γ(t1)

t2 − L− t1

∣∣∣∣ t2 − L− t1γ(t2)− γ(t1)

∣∣∣∣
= − 1

|γ′(a)|
γ′(a)

= −γ′(a).

We conclude that ψ is continuous on T .
Why bother with this function? Notice that for

α0 : [0, 1]→ ∆

t 7→ (1− t)(a, a) + t(b, b)

which trace is exaclty ∆, ψ ◦ α0 = γ′. On the other hand, for

α1 : [0, 1]→ T

t 7→


(1− 2t)(a, a) + 2t(a, b), t ∈

[
0,

1

2

]
;

2(1− t)(a, b) + 2

(
t− 1

2

)
(b, b), t ∈

[
1

2
, 1

]
,

the degree of the function f = ψ ◦ α1 is easy to calculate. See [31] for nice
animations. If we show that γ′ and f are pathhomotopic, we would be able
to find the rotation index of γ using Theorem 1.27.

Let

β : [0, 1]→ T

t 7→ 1− t
2

(a+ b, a+ b) + t(a, b)

and

h : [0, 1]× [0, 1]→ T

(t, s) 7→


(1− 2t)(a, a) + 2tβ(s), t ∈

[
0,

1

2

]
;

2(1− t)β(s) + (2t− 1)(b, b), t ∈
[

1

2
, 1

]
.

It is clear that h is a path homotopy between α0 and α1. To visualize β and h,
let A = (a, a), C = (a, b) and B = (b, b). The triangle ABC is the boundary of
T . It has a right angle at C and is isoscele, as CA = CB = b− a. The segment
[AB] is the trace of α0 while the reunion of the segments [AC] and [CB] is the
trace of α1. Let H be the perpendicular projection of C on [AB]. Then [CH]
is the trace of β. At each instant t, β(t) is a point on [CH]. β goes up from
H to C. Then at each moment s ∈ [0, 1], the curve t 7→ h(t, s) is the reunion
of the segments [Aβ(s)] and [β(s)B]. See the figure below for an illustration,
and Homotopy in Hopf’s Umlaufsatz.gif for an animation.

https://drive.google.com/open?id=0B4VKWHjd3zqtaWp4cnZGcWZJSVU
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FIGURE 1.9: Homotopy between α0 and α1

Since h and ψ are continuous and ranh ⊂ domψ, so is ψ ◦ h. Hence ψ ◦ h
is a path homotopy between ψ ◦ α0 = γ′ and ψ ◦ α1 = f . Therefore

I(γ) = deg γ′

= deg f.

Let’s calculate deg f . We have p2(γ(a)) = min p2 ◦ γ([a, b]) = min p2 ◦ γ̃(R).
Thus (p2 ◦ γ̃)′(a) = 0. We have:

(p2 ◦ γ̃)′(a) = dp2(g̃(a)) · γ̃′(a)

= p2(γ̃′(a)) (p2 is a linear map)
= p2(γ′(a)).

Therefore p2(γ′(a)) = 0. Hence f(0) = γ′(a) = ±e1 where Bc = (e1, e2) is
the canonical basis of R2. We can aassume without loss of generality that
f(0) = e1. Now let θ be the angle function of f that satisfies θ(0) = 0.
All the points of γ are in the higher half plane {(x, y) ∈ R | y ≥ 0}. Thus

∀t ∈
[
0,

1

2

]
, θ(t) ∈ [0, π]. Furthermore, as f

(
1

2

)
= −f(0), we have θ

(
1

2

)
= π.

Notice that f is antisymmetric at
1

2
, i.e, ∀t ∈ [0, 1], f

(
1

2
− t
)

= −f(t). Thus

we have ∀t ∈
[

1

2
, 1

]
, θ(t) ∈ [π, 2π] and f(1) = −f

(
1

2

)
, thus θ(1) = 2π.

Hence deg f = 1. Similarly, we find that if f(0) = −e1, deg f = −1. Therefore
I(γ) = ±1. Lastly, let θ̃ be a tangent angle function for γ. We have:∫ b

a

k(t) dt = θ̃(b)− θ̃(a)

= 2πI(γ).

Now, assume that γ is a polygonal curve without cusps8 and let θ be a
tangent angle function for γ. Let t1, . . . , tn be the numbers in [a, b] for which

8The theorem still holds even when there are cusps
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γ(ti) is a vertex, and θ1, . . . , θn be the external angles of γ at, respectively,
γ(t1), . . . , γ(tn). We can assume without loss of generality that γ(a) is not a

vertex. Let i ∈ {1, . . . , n} and ε =
π − |θi|

4
. We have limt→t−i

θ(t) = θ(ti) − θi
and limt→t+i

θ(t) = θ(ti). Thus there exists δ > 0 such that

∀t ∈ (ti − δ, ti), |θ(t)− (θ(ti)− θi)| < ε

and
∀t ∈ (ti, ti + δ), |θ(t)− θ(ti)| < ε.

Since γ is continuous, S = γ([a, b]\(ti − δ, ti + δ) is compact. It also doesn’t
contain γ(ti). Thus ∃r > 0, C ∩ S = ∅where

C = B̄(γ(ti), r) = {p ∈ R2 | ‖p− γ(ti)‖ ≤ r}.

Let ti1 = min{t ∈ (ti− δ, ti + δ) | ‖γ(t)− γ(ti)‖ = r}. It is easy to see that such
a number does exist and that it describes the first moment in (ti − δ, ti + δ)
where γ enters C. Similarly, let ti2 = max{t ∈ (ti−δ, ti+δ | ‖γ(t)− γ(ti)‖ = r}
be the last moment in (ti−δ, ti+δ) where γ exits C. We have |θ(ti2)−θ(ti)| < ε
and |θ(ti)− θi − θ(ti1)| < ε. Thus

|θ(ti2)− θ(ti1)| ≤ |θ(ti2)− θ(ti1)− θi|+ |θi|
≤ |θ(ti2)− θ(ti)|+ |θ(ti)− θi − θ(ti1)|+ |θi|
< 2ε+ |θi|

<
|θi|+ π

2
< π

We consider a new curve γ̃i which is the result of replacing γ |[ti1,ti2] in γ with
an arc length regular curve such that the tangent angle function θ̃i of γ̃i is ei-
ther increasing or decreasing in [ti1, ti2]. Hence θ̃i(ti2)− θ̃i(ti1) = θ(ti2)−θ(ti1).
Doing this for all i ∈ {1, . . . , n}, we end up with a simple closed curve γ̃
that is equal to γ outside of the intervals [ti1, ti2] for i ∈ {1, . . . , n} such that
I(γ̃) = I(γ). Let θ̃ denote its tangent angle function that verifies θ̃(a) = θ(a),
and k̃ its curvature. According to what we showed earlier, we have

2πI(γ̃) =

∫ b

a

k̃(t) dt

=

∫
[a,t11]∪[tn2,b]

k̃(t) dt+

∫ tn2

t11

k̃(t) dt

=

∫
[a,t11]∪[tn2,b]

k(t) dt+
n∑
i=1

∫ ti2

ti1

k̃(t) dt+
n−1∑
i=1

∫ t(i+1)1

ti2

k̃(t) dt

=

∫
[a,t11]∪[tn2,b]

k(t) dt+
n∑
i=1

∫ ti2

ti1

k̃(t) dt+
n−1∑
i=1

∫ t(i+1)1

ti2

k(t) dt

(1.11)
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and
n∑
i=1

∫ ti2

ti1

k̃(t) dt =
n∑
i=1

∫ ti2

ti1

θ̃′(t) dt

=
n∑
i=1

θ̃(ti2)− θ̃(ti1)

=
n∑
i=1

θ(ti2)− θ(ti1)

=
n∑
i=1

(θ(ti2)− θ(ti)) + (θ(ti)− θi − θ(ti1)) + θi

=
n∑
i=1

∫ ti2

ti

θ′(t) dt+

∫ ti

ti1

θ′(t) dt+
n∑
i=1

θi

=
n∑
i=1

∫ ti2

ti1

k(t) dt+
n∑
i=1

θi.

(1.12)

Combining (1.11) and (1.12), we conclude that

2πI(γ) = 2πI(γ̃)

=

∫
[a,t11]∪[tn2,b]

k(t) dt+
n∑
i=1

∫ ti2

ti1

k(t) dt+
n−1∑
i=1

∫ t(i+1)1

ti2

k(t) dt+
n∑
i=1

θi

=

∫ b

a

k(t) dt+
n∑
i=1

θi.

We give now an a proof of the result below using Hopf’s Umlaufsatz in-
stead of triangulations as mentioned in the beginning of this chapter.

Corollary 1.33. The sum of the interior angles of any simple n-sided polygon
is ±(n− 2)π.

Proof. Let γ : [a, b] → R2 be an arc length polygonal curve which trace is the
boundary of the polygon. Then the exterior angles β1, . . . , βn of γ are those
of the polygon. Since the edges have no curvature, we have

∫ b
a
k(t) dt = 0.

According to Hopf’s Umlaufsatz

n∑
i=1

βi = 2πI(γ)

= ±2π.

Then we use (1.1) to find the desired result.
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Chapter 2

The Local Gauss-Bonnet Theorem

In this chapter, we present a proof of a local version of the Gauss-Bonnet
theorem. The proof will involve Hopf’s Umlaufsatz, the main theorem of
the previous chapter. Historically, however, the local Gauss-Bonnet theorem
was proved much earlier. The German mathematician Johann Carl Friedrich
Gauss proved a special case of it 1 ([22],1827), while the French mathemati-
cian Pierre Ossian Bonnet proved the local Gauss-Bonnet theorem ([11],1848).

(A) Carl Friedrich Gauss (1777 - 1855) [26] (B) Pierre Ossian Bonnet (1819 - 1892) [2]

FIGURE 2.1: Gauss and Bonnet

2.1 Regular Surfaces

In this section, we recall some elementary concepts on regular surfaces.

Definition 2.1. A regular curve2 is a smooth map γ : I → R3, where I is an
interval, such that ∀t ∈ I, γ′(t) 6= 0.

1See Corollary 2.69.
2Whether the curve is plane or in the space (R3) is usually clear from context.
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Definition 2.2. A regular surface is a subset S of R3 such that for each point
p on S there is a neighborhood V ⊂ R3 of p, an open set U ⊂ R2 and a map
ϕ : U → V ∩ S such that:

1. ϕ is a homeomorphism;

2. ϕ is of class C∞ on U ;

3. for any q ∈ U , dϕq is injective.

Such a map ϕ is called a local parametrization of S at p. The neighborhood
V ∩ S is called a coordinate neighborhood. A collection of local parametriza-
tion which range covers S is called an atlas for S.

FIGURE 2.2: [40, p. 126]

Example 2.3. An affine plane P in R3 given by p + span(u, v) where u and v
are two linearly independent vectors of R3 and p ∈ R3 is a regular surface. In
fact, it has a global parametrization

ϕ : R2 → P
(x, y) 7→ p+ xu+ yv

(see figure 2.3) that satisfies the three conditions in the previous definition.

FIGURE 2.3: A plane in R3
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Example 2.4. The sphere S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} is a regular
surface. In fact, it has an atlas consisting of two parametrizations:

ϕ1 : (0, π)× (0, 2π)→ Imϕ1

(θ, φ) 7→ (sin θ cosφ, sin θ sinφ, cos θ)

and ϕ2 = g ◦ φ1 (see figure 2.4 with g = (r2 ◦ r1) |Imϕ1 where r1 and r2 are the
rotation operators which corresponding matrices are

R1 =

−1 0 0
0 0 −1
0 −1 0

 and R2 =

1 0 0
0 0 −1
0 1 0

 .

(A) Imϕ1 (B) Imϕ2

FIGURE 2.4: Coordinate neighborhoods of S2

We recall now some theorems that can be used to prove that a subset of
R3 is a regular surface.

Proposition 2.5. Let f : U → R be a smooth function on the open set U of
R2. Then the graph of f , that is the set S = {(x, y, z) ∈ R3 | z = f(x, y)}, is a
regular surface.

Example 2.6. Let

f : R2 → R
(x, y) 7→ x2 + y2.

The graph S of f (figure 2.5), called an elliptic paraboloid, is a regular surface.

Proposition 2.7. Let F : U → R be a smooth function on the open set U of
R3, and let a ∈ R. Suppose that ∀M ∈ F−1({a}), ~∇F (M) 6= ~0. Then F−1({a})
is a regular surface.

Example 2.8. Let

F : R3 → R
(x, y, z) 7→ x4 + y3 + z2 − 1.
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FIGURE 2.5: Elliptic Paraboloid

We have ∀(x, y, z) ∈ R3, ~∇F (x, y, z) = (4x3, 3y2, 2z). Thus

∀(x, y, z) ∈ R3, ~∇F (x, y, z) = ~0⇔ (x, y, z) = 0,

and as F (0, 0, 0) = −1, we conclude that ∀M ∈ F−1({0}), ~∇F (M) 6= ~0. Hence
S = {(x, y, z) ∈ R3 | x4 + y3 + z2 = 1}(figure 2.6) is a regular surface.

FIGURE 2.6: The surface x4 + y3 + z2 = 1

Proposition 2.9. Let

γ : I = (a, b)→ R3

t 7→ (x(t), 0, z(t))

be a regular curve in the xz-plane of classe C1 such that

1. γ never interesects the z-axis, which means that either x > 0 or x < 0;

2. γ is injective, which means that the curve never interesects itself.
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Let S = {(x(v) cosu, x(v) sinu, z(v)) | u ∈ (0, 2π), v ∈ I}. Then S is a regular
surface that has the global parametrization:

ϕ : (0, 2π)× I → S

(u, v) 7→ (x(v) cosu, x(v) sinu, z(v)).

S is called a surface of revolution. The curve γ is called the generating curve
of S.

Example 2.10. Let

γ : (1,+∞)→ R3

t 7→
(

1

t
, 0, t

)
.

This curve is defined on an unbounded interval. But since x 7→ 1

x
is a dif-

feomorphism between (1,+∞) and (0, 1), we conclude that γ has a repara-
metrization with a bounded open interval as a domain. The surface of revo-
lution that we obtain is called Torricelli3’s trumpet (figure 2.7) and is famous
for being a surface with infinite area and finite volume π.

FIGURE 2.7: Torricelli’s Trumpet

Remarks 2.11. Let γ : [a, b] → R3 be a regular curve in the xz-plane of
classe C1 such that γ |(a,b) satisfies the conditions of the previous theorem.
Let S = {(x(v) cosu, x(v) sinu, z(v)) | u ∈ (0, 2π), v ∈ [a, b]}. Then, in each of
these cases, S is a regular surface:

1. γ is a simple closed curve, and γ still never intersects the z-axis;

2. γ(a) and γ(b) are in the z-axis, and γ′(a) and γ′(b) are parallel to the x-
axis. Furthermore, if we had only γ(a) in the z-axis but not γ(b), then
the result still holds but this time for

S = {(x(v) cosu, x(v) sinu, z(v)) | u ∈ (0, 2π), v ∈ [a, b)}.

3Named after the italian physicist and mathematician Evangelista Torricelli (1608-1647).
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Example 2.12. Let

γ : [0, 2π]→ R3

t 7→ (2 + sin t, 0, cos t)

The surface of revolution that we get is a torus (figure 2.8).

FIGURE 2.8: Torus

Example 2.13. Let

γ :

[
π

2
,
3π

2

]
→ R3

t 7→ (cos t, 0, 2 sin t).

The surface of revolution that we get is an ellipsoid (figure 2.9).

FIGURE 2.9: Ellispoid

We give as a final example a surface that is not regular.

Example 2.14. Let

γ : [0, 1)→ R3

t 7→ (t, 0, t).
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The surface of revolution that we get is a cone (figure 2.10). This surface is not
regular as there is no local parametrization at the apex that is differentiable.

FIGURE 2.10: Cone

2.2 Curvature

In the previous chapter, we involved the tangent and normal vectors to
a parametrized curve in order to define curvature. The same applies to sur-
faces as we shall see in this section, but in a much less easy way. In fact, there
will be multiple curvatures to define.

If tangents to curves in R2 are lines, tangents to surfaces in R3 are planes
spanned by vectors that we call tangent vectors. This gives the following
intuitive definition:

Definition 2.15. A vector v ∈ R3 is a tangent vector to S at p if there exists a
smooth parametrized curve α : (−ε, ε)→ S such that α(0) = p and α′(0) = v.
The set of all tangent vectors of S at p is called the tangent plane to S at p and
is denoted Tp(S).

An equivalent way to define the tangent plane is given by the following
theorem:

Theorem 2.16. Let ϕ : U ⊂ R2 → V ∩ S be a local parametrization at p. Then
Tp(S) = dϕp (R2).

FIGURE 2.11: Tangent plane [40, p. 142]



36 Chapter 2. The Local Gauss-Bonnet Theorem

In particular, the tangent planes are vector spaces of dimension 2. Notice
that when we work on R2 and R3, we don’t think of them as mere vector
spaces, but rather as endowed with a norm induced from an inner product.
We want to think of tangent planes the same way:

Definition 2.17. Let p ∈ S and 〈 , 〉p denote the restriction of the usual inner
product of R3 on Tp(S). The first fundamental form of S at p is the quadratic
form

Ip : Tp(S)→ R
v 7→ 〈v, v〉p = ‖v‖2.

Let ϕ be a local parametrization of S at p, q = ϕ−1(p) and let ϕu(q) =
∂ϕ

∂u
(q)

and
ϕv(q) =

∂ϕ

∂v
(q). Then the matrix of Ip in the basis {ϕu(q), ϕv(q)} is given by(

E(q) F (q)
F (q) G(q)

)
where E = 〈ϕu, ϕu〉p, F = 〈ϕu, ϕv〉p and G = 〈ϕv, ϕv〉p are called the metric
coefficients of S. Note that E, F and G are smooth functions. Also note that
the matrix of Ip is invertible as it is symmetric and Ip is positive.

Remark 2.18. Note that if φ is the angle between ϕu and ϕv then

cosφ =
〈ϕu, ϕv〉
‖ϕu‖‖ϕv‖

=
F√
EG

.

Therefore, ∀q ∈ U, 〈ϕu(q), ϕv(q)〉 = 0 ⇔ F (q) = 0. In this case, we say that ϕ
is an orthogonal parametrization.

Notation 2.19. As shown in the previous definition, if

ϕ : U → V ∩ S
(u, v) 7→ ϕ(u, v)

is a local parametrization and f is any function defined on U , it is convenient

to denote fu =
∂f

∂u
and fv =

∂f

∂v
. If γ : I → U is a regular curve on U , we

might as well denote fu =
∂f

∂u
◦ γ and fv =

∂f

∂v
◦ γ. We might even use f

instead of f ◦ γ. Although these notations are ambiguous, it will be clear
from the context what they mean.

In the previous chapter, we had to rely on the canonical orientation of R2

to define a continuous function that associates each point on the curve to the
normal vector to the curve at that point. The situation is similar for surfaces:
at each point p ∈ S and for each local parametrization ϕ : U → V ∩ S at
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p = ϕ(q), we have TpS = span {ϕu(q), ϕv(q)}, thus

TpS
⊥ = span

{
ϕu(q) ∧ ϕv(q)
‖ϕu(q) ∧ ϕv(q)‖

}
.

Hence, we can choose N =
ϕu ∧ ϕv
‖ϕu ∧ ϕv‖

or N = − ϕu ∧ ϕv
‖ϕu ∧ ϕv‖

on V ∩ S. But

this choice relies on ϕ, which is a local parametrization. As each point has a
coordinate neighborhood, can we always ”stick” together these choices in a
way that gives us a global continous function N : p 7→ N(p) ∈ TpS⊥?

For the moment, let’s make the following definition:

Definition 2.20. A regular surfaces S is called orientable if there exists a con-
tinuous function N : S → R3 such that ∀p ∈ S,N(p) ∈ TpS⊥. The choice of
such a function is called an orientation of S and we say in this case that S is
oriented. If such a function doesn’t exist, we say that S is nonorientable. In
the case where ϕ : U → S ∩ V is a local parametrization and N |S∩V //ϕu ∧ ϕv,
we say that ϕ is compatible with the orientation of S.

The answer to the previous question with this new terminology is: not
always; nonorientable surfaces do exist.

Example 2.21. Let

ψ : D = (−0.5, 0.5)× R→ ϕ(D)

(t, θ) 7→ (1.5 cos θ, 1.5 sin θ, 0) + t

(
cos

θ

2
, 0, sin

θ

2

)
.

S = ϕ(D) is called a Mobius strip. It has an atlas consisting of two lo-
cal parametrizations: ψ |U1 and ψ |U2 where U1 = (−0.5, 0.5) × (0, 2π) and
U2 = (−0.5, 0.5)× (π, 3π). Let’s show that it is nonorientable.

FIGURE 2.12: Mobius strip
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Suppose that it has an orientation N . We can assume without loss of gen-

erality that N |U1 =
ψt ∧ ψθ
‖ψt ∧ ψθ‖

. Let p = ψ(0, 0) ∈ U1, and consider

(xn)n∈N∗ =
((

0,
π

n

))
n∈N∗

(yn)n∈N∗ =
((

0, 2π − π

n

))
n∈N∗

.

We have:
∂ψ

∂t
(t, θ) =

(
cos

θ

2
, 0, sin

θ

2

)
∂ψ

∂θ
(t, θ) =

(
−1.5 sin θ − t

2
sin

θ

2
, 1.5 cos θ,

t

2
cos

θ

2

)
.

After calculations, we get

(ψt ∧ ψθ)(0, θ) = −1.5

(
cos θ sin

θ

2
, sin θ sin

θ

2
,− cos θ cos

θ

2

)
and we see that limn→+∞N(ψ(xn)) = e3 while limn→+∞N(ψ(yn)) = −e3,
where e3 = (0, 0, 1). This contradicts the continuity of N as both ψ(xn) and
ψ(yn) converge to p. See [18] for a nice animation of this proof.

For orientable surfaces, one has the following:

Proposition 2.22. Every connected orientable regular surface has exactly two
orientations.

Definition 2.23. Let S be a regular surface with orientation N . If

∀p ∈ S, ‖N(p)‖ = 1,

we have N(S) ⊂ S2. By restrecting the codomain of N to S2, the map
N : S → S2 is called the Gauss map of S.

A corollary of the previous proposition is:

Corollary 2.24. Every connected orientable regular surface has exactly two
Gauss maps.

Example 2.25. The Gauss maps of S2 are idS2 and −idS2 .
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FIGURE 2.13: The Gauss maps of S2

We recall now the notion of differentiability of maps defined on open sets
of regular surfaces.

Definition 2.26. Let f : V ∩ S → R3 be a function, where S is a regular
surface and S is an open set of R3. f is said to be differentiable at p ∈ V ∩ S
if there exists a local parametrization ϕ : U → V ∩ S at p such that f ◦ ϕ is
differentiable at ϕ−1(p). When f is differentiable at every point of V ∩ S, we
say that f is differentiable on V ∩ S.

In this case, the differential of f at p is

dfp : TpS → R3

v 7→ df ◦ α
dt

(0)

where α : (−ε, ε) → S is a curve such that α(0) = p and α′(0) = v. This map
is proven to be well defined and linear.

Remark 2.27. If f : S1 → S2 is a differentiable function at p ∈ S1 between two
regular surfaces then Im dfp ⊂ Tf(p)S2. In such cases, we set as a convention
to restrict the codomain of dfp to become a map from TpS1 to Tf(p)S2.

A remarkable property of a Gauss map is:

Proposition 2.28. The differential of a Gauss map N at a point p ∈ S is a
self-adjoint operator.

Proof. We have dNp : TpS → TN(p)S
2. Since dNp is a linear map and

TN(p)S
2 = {N(p)}⊥ = TpS

because N(p) ∈ TpS⊥, dNp is an operator.
To show that dNp is self-adjoint, let ϕ : U → V ∩ S be a local parametrization
of S at p, q = ϕ−1(p), v1 = ϕu(q) and v2 = ϕv(q). Note that (v1, v2) is a basis of
TpS. Hence, it is enough to show that 〈dNp(v1), v2〉 = 〈v1, dNp(v2)〉. We have:〈N ◦ ϕ, ϕu〉 = 0

〈N ◦ ϕ, ϕv〉 = 0
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Taking the partial derivative with respect to v in the first equation and the
partial derivative with respect to u in the second one, we get:〈N ◦ ϕ, ϕvu〉 = −〈(N ◦ ϕ)v, ϕu〉

〈N ◦ ϕ, ϕuv〉 = −〈(N ◦ ϕ)u, ϕv〉
(2.1)

We conclude by using the fact that ϕvu = ϕuv.

Remark 2.29. The proof above also yields to (2.1).

We’re now ready to tackle the curvature of regular surfaces. Firstly, we
recall the following:

Definition 2.30. Let γ : I → R3 be a regular curve of class C2 parametrized
by arc length. The function

kγ : I → R
t 7→ ‖γ′′(t)‖

is the curvature of γ. The map

n : I → R3

t 7→ 1

kγ(t)
γ′′(t)

assigns to each t ∈ I the normal vector to γ at γ(t).

We now define the first curvature that relates to surfaces:

Definition 2.31. Let γ : I → S be a regular curve parametrized by arc length
in an oriented surface S, kγ the curvature of γ, θ the angle between n and
N ◦ γ so that cos θ = 〈n,N ◦ γ〉, where n and N are, respectivly, the normal
vector to γ and the Gauss map of S. The function kn = k cos θ is called the
normal curvature of γ.

Suppose now that γ : I = (−ε, ε) → S with p = γ(0) ∈ S and
v = γ′(0) ∈ TpS. We have 〈N ◦ γ, γ′〉 = 0, thus 〈N ◦ γ, γ′′〉 = −〈(N ◦ γ)′, γ′〉.
Hence:

kn(p) = 〈k(0)n(0), N(p)〉
= 〈γ′′(0), N(γ(0))〉
= −〈γ′(0), dNp(γ

′(0))〉
= −〈v, dNp(v)〉 .

Therefore we can define the normal curvature independently of any curve
on S, and simply say that kn(p) is the normal curvature of S at p along the
direction v (where v = γ′(0)). This is known as Meusnier’s theorem. The
notation is quite inconvinient as kn(p) depends as well on the direction. This
motivates the following definition:
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Definition 2.32. Let S be an oriented regular surface and p ∈ S. The bilinear
symmetric form

IIp : TpS× TpS→ R
(u, v) 7→ − 〈dNp(u), v〉

is called the second fundamental form of S at p. The associated quadratic
form maps each v ∈ TpS to the normal curvature at p along the direction v.

Since dNp is a self-adjoint operator, it is diagonalizable in an orthonormal
basis (v1, v2) of TpS. Let k1, k2 ∈ R such that dNp(v1) = −k1v1, dNp(v2) = −k2v2

and k1 ≥ k2 (we introduced the minus sign so that it disapears when manip-
ulating the second fundamental form). Hence

IIp(v1, v1) = k1 ∧ IIp(v2, v2) = k2.

Now consider any direction v = cos θv1 + sin θv2. A simple calculation shows
that the curvature of S at p along the direction v is

IIp(v, v) = k1 cos2 θ + k2 sin2 θ.

Hence, we see that the curvature of S at p along any direction is between k1

and k2, which justifies the following definition:

Definition 2.33. Using the notations in the paragraph above, k1 and k2 are
called respectively the maximum normal curvature and the minimum nor-
mal curvature of S at p. They are called the principal curvatures at p. The
corresponding directions v1 and v2 are called principal directions at p.

Definition 2.34. The function

K : S → R
p 7→ det dNp

is called the Gaussian curvature of S. The function

H : S → R

p 7→ −tr dNp

2

is called the mean curvature of S.

The following proposition gives a relation between the fundamental forms
and the differential of the Gauss map.

Proposition 2.35. Recall that (
E F
F G

)
is the matrix of the first fundamental form with respect to the basis (ϕu, ϕv).
Let (

e f
f g

)



42 Chapter 2. The Local Gauss-Bonnet Theorem

be the matrix of the second fundamental form with respect to the new basis,
and (

a11 a21

a12 a22

)
be the matrix of dNp, with p ∈ S. Then:(

e f
f g

)
= −

(
E F
F G

)(
a11 a21

a12 a22

)
.

Corollary 2.36. The Gaussian curvature is given by: K =
eg − f 2

EG− F 2
.

We admit the following result [37, p. 112]:

Corollary 2.37 (Brioschi formula). The Gaussian curvature is given by:

K =

∣∣∣∣∣∣
−1

2
Evv + Fuv − 1

2
Guu

1
2
Eu Fu − 1

2
Ev

Fv − 1
2
Gu E F

1
2
Gv F G

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 1
2
Ev

1
2
Gu

1
2
Ev E F

1
2
Gu F G

∣∣∣∣∣∣
(EG− F 2)2

. (2.2)

In particular, if F = 0:

K = − 1

2
√
EG

((
Gu√
EG

)
u

+

(
Ev√
EG

)
v

)
. (2.3)

Brioschi’s formula shows that the Gaussian curvature depends only on
the metric coefficients of the surface. Recall the following:

Definition 2.38. Let γ : [a, b]→ R3 be a smooth curve. The length of γ is

l(γ) =

∫ b

a

‖γ′(t)‖ dt

Definition 2.39. Let S1 and S2 be two regular surfaces and f : S1 → S2 a
diffeomorphism. f is said to be an isometry between S1 and S2 if f preserves
the lengths of the curves, that is for every smooth curve γ : [a, b] → S1,
l(f ◦ γ) = l(γ). We say that S1 and S2 are isometric.

Proposition 2.40. Let S1 and S2 be two regular surfaces and f : S1 → S2 a dif-
feomorphism. f is an isometry if and only if for every local parametrization
ϕ of S1, ϕ and f ◦ ϕ have the same metric coefficients.

Since the Gaussian curvature depends only on the metric coefficients of
the surface which are invariant by isometry, this proves Gauss’s Theorema
Egregium4.

Theorem 2.41 (Gauss’s Theorema Egregium). Let S1 and S2 be two regular sur-
faces and f : S1 → S2 an isometry. Let K1 and K2 be the Gaussian curvature of,
respectively, S1 and S2. Then K1 = K2 ◦ f .

4Latin for ”Remarkable Theorem”
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It is often said that the curvature is the amount by which a geometric
object such as a surface deviates from being flat, or a plane curve from being
straight as in the case of a line. But what about curves on surfaces? How to
define a straight curve on a curved surface? At a point p = γ(t) of a regular
curve γ on a regular surface S, we defined the curvature k(t) of γ and the
normal curvature kn(t0) of S towards γ′(t). We have

γ′′(t) = kn(t)N(p) + xv (2.4)

where v ∈ TpS is a unit vector. x is simply 〈γ′′(t), v〉. But if we take−v instead,
the sign changes (unless x = 0). For the moment, let’s call its absolute value
the unsigned geodesic curvature.

We have the following relations:{
kγ = ‖γ′′‖
kn = 〈γ′′, N ◦ γ〉 .

(2.5)

Seeking for a nice relation between the unsigned geodesic curvature and
γ′′ and aspiring for defining the (algebraic) geodesic curvature, we must in-
troduce some new notions.

Definition 2.42. Let S be a regular surface. A vector field on S is a smooth
function W : S → R3 that assigns to each p ∈ U a tangent vector W (p) ∈ TpS
at p.
If γ : I → S is a regular curve, we shall call w = W ◦ γ its restriction to γ.
Let p ∈ S, v ∈ TpS and α : (−ε, ε)→ S such that α(0) = p and α′(0) = v. The

orthogonal projection of
dw

dt
(0) onto TpS is called the covariant derivative W

at p relative to the vector v, and will be denoted by DvW (p).

Note that if w : domα → R3 such that ∀t ∈ domα,w(t) ∈ Tα(t)S isn’t the
result of the restriction of a vector field to α, we can still define the covariant
derivative.

Definition 2.43. Let γ : I → S be a regular curve and w : I → R3 be a smooth
map such that ∀t ∈ I, w(t) ∈ Tγ(t)S. w is called a vector field along γ. The

orthogonal projection of
dw

dt
(t) onto Tγ(t)S is called the covariant derivative

of w at t and is denoted by
Dw

dt
(t).

According to this definition, every restriction w of a vector field W on S
to a regular curve γ : I → S is a vector field along γ.

Let us now express the geodesic curvature using covariant derivatives.
Consider again the relation γ′′(t) = kn(t)N(p) + xv where v ∈ TpS is a unit
vector. Assume furthermore that γ is parametrized by arc length. This means
that 〈γ′′, γ′〉 = 0. But since 〈N ◦ γ, γ′〉 = 0, we have 〈γ′(t), v〉 = 0, and as
v ⊥ N(γ(t)), we conclude that v//(γ′(t) ∧N(γ(t))). As ‖γ′(t)‖ = ‖N(γ(t))‖ = 1
and γ′(t) ⊥ N(γ(t)), we have therefore v = ± (γ′(t) ∧N(γ(t))). This observa-
tion can be easly generalized to lead to the following:
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Definition 2.44. Let w be a unit vector field over γ, i.e, ∀t ∈ I, ‖w(t)‖ = 1. For
any t ∈ I , there is a unique λ(t) ∈ R such that

Dw

dt
(t) = λ(t) (N(γ(t)) ∧ w(t)) .

This defines a function λ : I → R that is called the algebraic value of the

covariant derivative of w at t and is denoted
[

Dw

dt

]
. Keep in mind that its

sign depends on the orientation of the surface.

We can now define the geodesic curvature:

Definition 2.45. The geodesic curvature of an arc length regular curve γ on a
regular oriented surface S with a Gauss map N at a point γ(t) is the algebraic
value of the covariant derivative of γ′ at t.

(2.4) becomes
γ′′ = knN ◦ γ + kg((N ◦ γ) ∧ γ′). (2.6)

This allows us to extend (2.5) to:

kγ = ‖γ′′‖
kn = 〈γ′′, N ◦ γ〉

kg =

[
Dγ′

dt

]
k2
γ = k2

n + k2
g .

Definition 2.46. A regular curve which geodesic curvature is 0 is called a
geodesic curve.

More generally, we have the following definition:

Definition 2.47. A vector field along a regular curve is said to be a parallel if
its covariant derivative is 0.

In the remaining of this section, we present some necessary facts that will
allow us to find a formula for the algebraic value of the covariant derivative
when we have an orthogonal parametrization.

Lemma 2.48. Let v and w be two unit vector fields along a regular curve γ : I → S
and θ : I → R be a lifting of

f : I → S1

t 7→ (〈w(t), v(t)〉 , 〈w(t), v̄(t)〉)

accross p, where v̄ is such that (v(t), v̄(t)) is a directed orthonormal basis of Tγ(t)S
and p is the map defined in Proposition 1.14 (we say that θ is an angle function
from v to w). Then [

Dw

dt

]
−
[

Dv

dt

]
=

dθ

dt
.
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Proof. Clearly, we have:
w = cos θ v + sin θ v̄. (2.7)

Let

w̄ = N ∧ w = cos θN ∧ v + sin θN ∧ v̄ (2.8)
= cos θ v̄ − sin θ v (2.9)

as v̄ = N ∧ v. By differentiating (2.7), we get

w′ = −θ′ sin θ v + cos θ v′ + θ′ cos θ v̄ + sin θ v̄′.

By taking the inner product of w′ with w̄ and using the relation above and
(2.8), we get:

〈w′, w̄〉 = θ′ + 〈v′, v̄〉 cos2 θ − 〈v̄′, v〉 sin2 θ.

As 〈v, v̄〉 = 0, we get by differentiating: 〈v, v̄′〉 = −〈v′, v̄〉. Hence the relation
above becomes

〈w′, w̄〉 = θ′ + 〈v′, v̄〉 .

As
[

Dw

dt

]
= 〈w′, w̄〉 and

[
Dv

dt

]
= 〈v′, v̄〉, we conclude that

[
Dw

dt

]
−
[

Dv

dt

]
=

dθ

dt

Remarks 2.49. If we apply this lemma to w = γ′ and v a parallel vector field
along γ, we get

kg =

[
Dγ′

dt

]
=

dθ

dt

Hence the geodesic curvature is the rate of change of the angle between the
tangent to the curve and any parallel vector field. Of course, for this to make
sense, we must ensure that there does exist at least one parallel vector field.
There are in fact infinitely many as shown in Proposition 2 of [15, p. 242].

We will now give the promised formula of the algebraic value of the co-
variant derivative.

Proposition 2.50. Let ϕ : U → S ∩ V be a local parametrization of S,

γ : I → U

t 7→ (x(t), y(t))

be a regular curve and w be a vector field along γ. Assume furthermore
that S is oriented and that ϕ is an orthogonal parametrization compatible
compatible with the orientation of S. Let θ be an angle function from ϕu
restricted to γ to w. Then:[

Dw

dt

]
=

1

2
√
EG

(
Gu

dy

dt
− Ev

dx

dt

)
+

dθ

dt
.
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Proof. Let e1 =
ϕu√
E

and e2 =
ϕv√
G

. Since the parametrization is orthogonal

and compatible with the orientation of S, we have e1(t)∧e2(t) = N(u(t), v(t)).
According to Lemma 2.2, we have[

Dw

dt

]
=

[
De1

dt

]
+

dθ

dt
. (2.10)

All we need is to find a suitable expression of
[

De1

dt

]
to conclude the proof.

We have: [
De1

dt

]
=

〈
de1

dt
, N(u(t), v(t)) ∧ e1

〉
=

〈
de1

dt
, e2

〉
=

dx

dt
〈(e1)u, e2〉+

dy

dt
〈(e1)v, e2〉 . (2.11)

Let’s calculate these inner products. The parametrization being orthogo-
nal, we have 〈ϕu, ϕv〉 = F = 0. Differentiating with respect to u, we get
〈ϕuu, ϕv〉 = −〈ϕu, ϕvu〉 = −〈ϕu, ϕuv〉. Differentiating 〈ϕu, ϕu〉 = E by v, we

get 〈ϕu, ϕuv〉 =
1

2
Ev. Therefore 〈ϕuu, ϕv〉 = −1

2
Ev. Hence

〈(e1)u, e2〉 = − 1

2
√
EG

Ev.

A similar argument shows that

〈(e1)v, e2〉 =
1

2
√
EG

Gu.

Replacing in (2.10) and (2.11), we get the desired result.

In the proposition above, we used an orthogonal parametrization on an
arbitrary regular surface. We shall prove in the remaining of this section that
such a parametrization exists.

Definition 2.51. Let U ⊂ R2. A vector field w on U is a smooth map that
assigns to each point p ∈ U a vector w(p) ∈ R2.

A trajectory of w is a differentiable parametrized curve α : I → U such
that α′ = w ◦ α.

An important theorem is the local existence of trajectories:

Theorem 2.52. Let w be a vector field on an open set U ⊂ R2 and p ∈ U . There
exists locally a unique trajectory α : I → U of w such that α(0) = p, where I is an
open interval containing 0.

There is even more:
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Theorem 2.53. Let w be a vector field on an open set U ⊂ R2 and p ∈ U . There ex-
ists an open interval I containing 0, a neighborhood V ⊂ U of p and a differentiable
map α : V × I → U such that for every q ∈ V , the curve

αq : I → U

t 7→ α(q, t)

is a trajectory of w such that α(q, 0) = q. Such a map is called the local flow of w
at p.

The proofs of these theorems rely entirely on the theory of ordinary dif-
ferential equations [15, p. 176-177]. They allow us to prove the following:

Proposition 2.54. Let w be a vector field on an open set U ⊂ R2 and let
p ∈ U . Suppose that w(p) 6= 0. Then there exist a neighborhood V ⊂ U
of p and a differentiable function f : W → R such that f is constant along
each trajectory of w and ∀q ∈ V, dfq 6= 0. Such a function f is called a first
integral of w at p.

Proof. We can assume without loss of generality that p = (0, 0) and w(p)
is in the direction of the x-axis. Let α : V × I → U be a local flow at p,
W = {y ∈ R | (0, y) ∈ V } and

α̃ : W × I → U

(y, t) 7→ α(0, y, t).

We have
∂α̃

∂t
(0, 0) = w(α(p, 0)) = w(p), which belongs to the x-axis. On the

other hand, as ∀y ∈ W, α̃(y, 0) = (0, y), we have
∂α̃

∂t
(0, 0) = (0, 1), which

belongs to the y-axis. Hence dα̃(0,0) is nonsingular. According to the implicit
function theorem, there exists a neighborhood W̃ ⊂ U of p where α̃−1 is a
diffeomorphism such that ∀q ∈ W̃ , (dα̃−1)q is invertible. Let

P : W × I → W

(y, t) 7→ y

and let f = P ◦ α̃−1. f is constant along each trajectory of w and

∀q ∈ W̃ , dfq = P ◦ (dα̃−1)q 6= 0.

Remark 2.55. The results we just proved for vector fields hold as well for
vector fields over a coordinate neighborhood of a regular surface because
such a set is diffeomorphic to an open set of R2.

We now prove a theorem that will lead us to the desired result.

Theorem 2.56. Let w1 and w2 be two smooth vector fields in an open set V ∩ S of s
and p ∈ V ∩ S. Suppose that (w1(p), w2(p)) is linearly independent. Then there is a
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local parametrization ϕ : U → W ∩ S ⊂ V ∩ S of S at p such that for every q ∈ U ,
ϕu(q)//w1(ϕ(q)) and ϕv(q)//w2(ϕ(q)).

Proof. Let W̃ ∩S be a neighborhood of p where the first integrals f1 and f2 of,
respectively, w1 and w2 are defined. Let

ψ : W̃ ∩ S → R2

q 7→ (f1(q), f2(q)),

e1 = (1, 0) and e2 = (0, 1). Since f1 and f2 are constant on the trajectories of,
respectively, w1 and w2, we have (df1)p(w1(p)) = (df2)p(w2(p)) = 0. On the
other hand, as (w1(p), w2(p)) is a basis for TpS, we have (df2)p(w1(p)) = a 6= 0.
Hence dψp(w1(p)) = ae2 6= 0. Similarly, (df1)p(w2(p)) = b 6= 0 and thus
dψp(w2(p)) = be1 6= 0. Hence dψp is nonsingular. According to the in-
verse function theorem, there exists a neighborhood U ⊂ R2 of ψ(p) and a
neighborhood V ∩ S of p such that ϕ = (ψ |V ∩S)−1 : U → V ∩ S is a diffeo-
morphism and for every q ∈ U , dϕq is nonsingular and thus injective, and
w1(q) and w2(q) are linearly independent, with (df1)q(w2(q′) = b(q) 6= 0 and
(df2)q(w1(q′) = a(q), where q′ = ϕ(q). Let q ∈ U and q′ = ϕ(q). We have
dϕq = (dψq′)

−1. Thus ϕu(q) = (dψq′)
−1(e1) and ϕv(q) = (dψq′)

−1(e2). Since

∀v ∈ TpS, dψq′(v) = ((df1)q′(v), (df2)q′(v)), we see that dψq′

(
1

b
w2(q′)

)
= e1

and that dψq′

(
1

a
w1(q′)

)
= e2. Hence

ϕu(q) =
1

b(q)
w2(q′) ∧ ϕv(q′) =

1

a(q)
w1(q′).

This shows that the partial derivatives of ϕ are of class C∞ and that

∀q ∈ U,ϕu(q)//w1(q) ∧ ϕv(q)//w2(q).

Corollary 2.57. Let S be a regular surface and p ∈ S. Then there exists an
orthogonal local parametrization ϕ : U → V ∩ S of S at p.

Proof. Let ϕ̃ : Ũ → Ṽ ∩ S be a local parametrization of S at p. If it is orthogo-

nal, we’re done. Otherwise, let w1 = ϕ̃ũ ◦ ϕ̃−1 and w2 = − F̃
Ẽ
ϕ̃ũ + ϕ̃ṽ, where Ẽ

and F̃ are the coefficients of the matrix of the first fundamental form relative
to ϕ̃. According to the previous theorem, there exists a local parametrization
ϕ : U → V ∩ S ⊂ Ṽ ∩ S at p such that for any q ∈ U , ϕu(q)//w1(q) and
ϕv(q)//w2(q). As ∀q ∈ U,w1(q) ⊥ w2(q), we conclude that ϕ is an orthogonal
parametrization.
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2.3 The Local Gauss-Bonnet Theorem

In this section, we present a proof of the local Gauss-Bonnet Theorem.

Definition 2.58. Let S be an oriented regular surface. A region R ⊂ S is a
set that can be written as the union of a connected open set and its boundary.
The region is called a simple region if R is homeomorphic to a disk and the
boundary δR of R is the trace of a polygonal curve γ : I → δR.

We can extend Definitions 1.22 and 1.23 to curves in the space if we define
the exterior angle.

Definition 2.59. Let S be a regular surface, γ : I → S be a polygonal curve.
Let t ∈ I such that p = γ(t) is a vertex of γ. Let ϕ be a local orthogonal

parametrization of S at p, v1 =
ϕu(p)

‖ϕu(p)‖
and v2 =

ϕv(p)

‖ϕv(p)‖
. We identify

Bp = (v1, v2) with the canonical basis Bc = (e1, e2) of R2 by the isomorphism
ψp : TpS → R defined by ψp(v1) = e1 and ψp(v2) = e2. The interior angle of γ
at γ(t) is the directed angle ∠(γ′(t−), γ′(t+)) = ∠(ψ(γ′(t−)), ψ(γ′(t+))).

Definition 2.60. Let S be a regular surface and γ : I → V ∩S be a closed curve
where V ∩S is a coordinate neighborhood of a local orthogonal parametriza-
tion of S. γ is said to be positively oriented if I(γ) > 0.

Definition 2.61. Let S be a regular surface, ϕ : U → S∩V be a local parametriza-
tion of ϕ, f : S ∩ V → R be a continuous function. The integral of f over
D ⊂ S ∩ V is∫∫

D

f dσ =

∫∫
ϕ−1(D)

f(ϕ(u, v)) ‖ϕu ∧ ϕv‖ (u, v) du dv. (2.12)

Remark 2.62. Let θ be the oriented angle between ϕu and ϕv. We have:

‖ϕu ∧ ϕv‖2 = ‖ϕu‖2 ‖ϕv‖2 sin2 θ

= ‖ϕu‖2 ‖ϕv‖2 − (‖ϕu‖ ‖ϕv‖ cos θ)2

= EG− F 2.

Hence (2.12) becomes:∫∫
D

f dσ =

∫∫
ϕ−1(D)

f(ϕ(u, v))
√
EG− F 2 du dv.

We recall the following theorem:

Theorem 2.63 (Green’s Theorem). Let P,Q : R → R be differentiable functions
defined on a simple region R,

γ : I → δR

t 7→ (x(t), y(t))
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be a simple closed piecewise regular curve which trace is δR, that is positively ori-
ented. Then∫

I

(
P (γ(t))

dx

dt
+Q(γ(t))

dy

dt

)
dt =

∫∫
R̊

(Qu − Pv) (u, v) du dv

where R̊ is the interior of R.

Theorem 2.64 (The Local Gauss-Bonnet Theorem). Let ϕ : U → V ∩ S be
an orthogonal parametrization of a surface S oriented on V ∩ S by the orienta-
tion compatible with ϕ, with U ⊂ R2 being homeomorphic to an open disk. Let
R ⊂ S ∩V be a simple region of S and let γ : I → S ∩V be a positively oriented arc
length parametrized regular curve which trace is ∂R, and let γ(t1), · · · , γ(tn) and
θ1, · · · , θn be, respectively, the vertices and external angles of γ. Then∫

I

kg(t) dt+

∫∫
R

K dσ +
n∑
i=1

θi = 2π.

For the proof, we need the following lemma:

Lemma 2.65. Let S be a regular surface, ϕ : U → V ∩ S be a local parametrization
of S and γ : I → V ∩ S be a polygonal curve. Let α = ϕ−1 ◦ γ. Then I(γ) = I(α).

Proof. Let t1, . . . , tn be the points of I which images by γ are vertices. As-
sume without loss of generality that t1 = min I and let tn+1 = max I and
∀i ∈ {1, . . . , n}, Ii = [ti, ti+1). Also, let, for every i ∈ {1, . . . , n}, θi be the exte-
rior angle of α at α(ti). For any point t ∈ I and λ ∈ J = [0, 1], let 〈·, ·〉λt be the
inner product on R2 defined by:

∀x, y ∈ R2, 〈x, y〉λt = (1− λ) 〈x, y〉+ λ
〈
dϕα(t)(x), dϕα(t)(y)

〉
γ(t)

,

‖·‖λt be its associated norm and let (vλ1 (t), vλ2 (t)) be the result of applying the
Gram-Schmidt process to (e1, e2), the canonical basis of R2. Clearly, vλ1 (t) and
vλ2 (t) depend continuously on t and λ. Also, let, for i ∈ {1, 2},

aλi (t) =

〈
α′(t), vλi (t)

〉λ
t

‖α′(t)‖λs

when t 6∈ {t1, . . . , tn} and

β : I\{t1, . . . , tn} × J → S1

(t, λ) 7→ (aλ1(t), aλ2(t)).

We construct a ”lifting” φ : I×J → R of β recursivly as follows: firstly, we let
φ |I1×J be a lifting of β |I1×J (see Theorem 1.26). Then for every
i ∈ {1, . . . , n− 1}, let φ |Ii+1×J be the lifting of β |Ii×J satisfying

φ(ti+1, 0) = lim
t→t−i+1

φ(t, 0) + θi+1,
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and finally let φ(tn+1, 0) = limt→t−n+1
φ(t, 0) + θ1. Note that t 7→ φ(t, 0) is an

angle function of α and t 7→ φ(t, 1) is an angle function of γ. In fact, the
function

f : J → R

λ 7→ φ(tn+1, λ)− φ(t1, λ)

2π

is continuous on the interval J and integer valued, with f(0) = I(α) and
f(1) = I(γ). Hence, f is constant and I(α) = I(γ).

Proof of the local Gauss-Bonnet theorem. Suppose without loss of generality that
t1 = min I . Let tn+1 = sup I . Since γ is closed, γ(tn+1) = γ(t1). Let for every
i ∈ {1, · · · , n}, Ii = [ti, ti+1]. We have I =

⋃n
i=1 Ii. Let α = ϕ−1 ◦ γ and

x, y : I → R such that ∀t ∈ I, α(t) = (x(t), y(t)). According to Proposition
2.50, we have for every i ∈ {1, · · · , n} and t ∈ Ii,

kg =
1

2
√
EG

(
Gu

dy

dt
− Ev

dx

dt

)
+

dϕi
dt

where ϕi is the angle function from ϕu to γ′ on Ii. Note that these angle
functions can be chosen in such a way that

∀i ∈ {1, . . . , n− 1}, ϕi+1(ti+1) = ϕi(ti+1) + θi+1.

By integrating:∫
I

kg dt =

∫
I

(
Gu

2
√
EG

dy

dt
− Ev

2
√
EG

dx

dt

)
dt+

n∑
i=1

∫
Ii

dϕi
dt

dt. (2.13)

According to Green’s formula and (2.3):∫
I

(
Gu

2
√
EG

dy

dt
− Ev

2
√
EG

dx

dt

)
dt =

∫∫
ϕ−1(R̊)

((
Gu

2
√
EG

)
u

+

(
Ev

2
√
EG

)
v

)
du dv

= −
∫∫

ϕ−1(R̊)
K
√
EG du dv

= −
∫∫

R

K dσ. (because F = 0)

(2.14)
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On the other hand, we have:

n∑
i=1

∫
Ii

dϕi
dt

dt =
n∑
i=1

ϕi(ti+1)− ϕi(ti)

=
n∑
i=1

ϕi(ti+1)−
n∑
i=1

ϕi+1(ti+1)

=
n−1∑
i=1

ϕi(ti+1)−
n∑
i=2

ϕi+1(ti+1) + ϕn(tn+1)− ϕ1(t1)

= ϕn(tn+1)− ϕ1(t1)−
n−1∑
i=1

ϕi+1(ti+1)− ϕi(ti+1)

= ((θ1 + ϕn(tn+1))− ϕ1(t1))− θ1 −
n−1∑
i=1

θi+1

= 2πI(γ)−
n∑
i=1

θi

= 2πI(α)−
n∑
i=1

θi (according to Lemma 2.65)

= 2π −
n∑
i=1

θi.

(2.15)

Replacing (2.14) and (2.15) in (2.13), we get∫
I

kg(t) dt+

∫∫
R

K dσ +
n∑
i=1

θi = 2π

as desired.

Remark 2.66. Hopf’s Umlaufsatz is a special case of this theorem. Indeed, the
surface S in this case is a plane, which Gaussian curvature is 0. According
to the Jordan-Schoenflies theorem [13, Theorem 4.1 on p. 864], the trace of a
simple closed curve is the boundary of a simple region. Finally, the geodesic
curvature is the same as the curvature we defined in the previous chapter.
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Example 2.67. Consider the torus S described in Example 2.12. Let

R =
{

((2 + sin t) cos θ, (2 + sin t) sin θ, cos t) | (t, θ) ∈
[
0,
π

3

]
×
[
0,
π

4

]}
.

FIGURE 2.14: Simple region on a torus

We illustrate the formula in this example. We work with the following
local parametrization:

ϕ :
(
−π

2
,
π

2

)2

→ S

(t, θ) 7→ ((2 + sin t) cos θ, (2 + sin t) sin θ, cos t).

This parametrization is orthogonal. Thus we can use formula (2.3) to calcu-
late the Gaussian curvature. We have:

E = 1;

Et = Eθ = 0;

G = (2 + sin t)2;

Gt = 2 cos t(2 + sin t);

Gθ = 0;
√
EG = 2 + sin t;

K =
sin t

2 + sin t
;∫∫

R

K dσ =
π

4

∫ π
3

0

sin t dt

=
π

8

Now let’s calculate the total geodesic curvature. Note that by rotational
symmetry, the two ”vertical” curves of δR in Figure 2.14 have, in absolute
value, the same geodesic curvature. As, when integrating, they will be par-
coured in opposing directions, the total geodesic curvature over them will
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vanish (actually, these curves are geodesics). Hence, it’s enaugh to calculate
the geodesic curvature of the two ”horizontal” curves parametrized by arc
length as follows:

γ1 :
[
0,
π

2

]
→ S

θ 7→
(

2 cos

(
θ

2

)
, 2 sin

(
θ

2

)
, 1

)
;

γ2 :

[
0,

(
2 +

√
3

2

)
π

4

]
→ S

θ 7→

((
2 +

√
3

2

)
cos

(
θ

2 +
√

3
2

)
,

(
2 +

√
3

2

)
sin

(
θ

2 +
√

3
2

)
,
1

2

)
.

From (2.6), we have the following formula:

kg = 〈γ′′, (N ◦ γ) ∧ γ′〉 .

We get:

kg1 =
1

2
cos 0 =

1

2
;

kg2 =
1

2 +
√

3
2

cos
π

3
=

1

2
(

2 +
√

3
2

) ;

∫
δR

kg(θ) dθ = −
∫ π

2

0

dθ

2
+

∫ (2+
√
3

2
)π
4

0

dθ

2
(

2 +
√

3
2

)
= −π

8
.

Hence ∫
I

kg(t) dt+

∫∫
R

K dσ = 0.

Finally, it is easy to see that the sum of the exterior angles θ1, . . . , θ4 is 2π.
Therefore: ∫

I

kg(t) dt+

∫∫
R

K dσ +
4∑
i=1

θi = 2π.

Definition 2.68. Let S be a regular surface. A geodesic triangle on S is a
triangle which edges are geodesics.

Corollary 2.69. Let S be a regular surface and T be an geodesic triangle con-
tained in a coordinate neighborhood of an orthogonal parametrization of S
with interior angles α, β and γ. Then∫∫

T

K dσ = α + β + γ − π.
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This number is called the angle defect of T as it expresses the difference be-
tween the sum of the interior angles of T and π, the sum of the interior angles
of any triangle in the plane.

Example 2.70. Consider a geodesic triangle5 T on a sphere S with radius R
with interior angles α, β and γ. Girard’s theorem states that

A(T ) = (α + β + γ − π)R2

where A(T ) is the area of T .

FIGURE 2.15: A geodesic triangle on a sphere

This result can be proven independently from the local Gauss-Bonnet the-
orem (see [42]), but can be easly found using the previous corollary. Indeed,

the Gaussian curvature of the sphere is constant and equals
1

R2
.

The previous corollary can be easly generalized to polygones.

Definition 2.71. Let S be a regular surface. A geodesic polygon on S is a
polygon which edges are geodesics.

Corollary 2.72. Let S be a regular surface and P be an n-sided simple geodesic
polygon contained in a coordinate neighborhood of an orthogonal parametriza-
tion of S with interior angles α1, . . . , αn. Then∫∫

P

K dσ =
n∑
i=1

αi − (n− 2)π.

This number is called the angle defect of P .

As noted in Corollary 2.37, the Gaussian curvature is entirely determined
by the metric coefficients of a regular surface, which in turn are determined

5A triangle which edges are geodesics of the surface on which it is drawn.
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using the usual inner product of R3 for the tangent space at each point of the
surface. One can consider abstract regular surfaces by considering different
inner products.

Definition 2.73. Let S be a regular surface. A Riemannian metric on S is a
set g of inner products gp : TpS × TpS → R, p ∈ S which varies smoothly
with p in the following sense: for every vector fields X and Y on S, the map
p → gp(X(p), Y (p)) is smooth. A regular surface endowed with a Rieman-
nian metric is an example of a smooth Riemannian manifold. We call such a
structure a metric surface6.

Definition 2.74. Let (S, g) be a metric surface. The first fundamental form of
S at p ∈ S is the quadratic form

Ip : Tp(S)→ R
v 7→ gp(v, v)

Let ϕ be a local parametrization of S at p, q = ϕ−1(p) and let ϕu(q) =
∂ϕ

∂u
(q)

and
ϕv(q) =

∂ϕ

∂v
(q). Then the matrix of Ip in the basis {ϕu(q), ϕv(q)} is given by(

g11(q) g12(q)
g21(q) g22(q)

)
where g11 = E = gp(ϕu, ϕu), g12 = g21 = F = gp(ϕu, ϕv) and g22 = G = gp(ϕv, ϕv)
are called the metric coefficients of S. Note that the gij are smooth functions.
Also note that the matrix of Ip is invertible as it is symmetric and Ip is positive.

Definition 2.75. Let (S, g) be a metric surface. The Gaussian curvature of S
is the function K : S → R defined by (2.2).

The geodesic curvature can also be defined for metric surfaces, but it
requires materials beyond the scope of this document. The local Gauss-
Bonnet theorem does apply for smooth Riemannian manifolds [27, Theo-
rem 9.3 on p. 164]. Hence the two previous corollaries hold for metric sur-
faces. Geodesics on a regular surface are the curves that minimize lengths
locally as shown in [30, Theorem 4.3.1 on p. 59]. The length of a curve on
a regular surface involves only its first fundamental form. Hence, we can
extend this notion to smooth Riemannian manifolds. It turns out that, for
smooth Riemannian manifolds as well, geodesics are the curve that minimize
lengths locally [27, Theorems 6.6 and 6.12 on p. 100 and p. 107].

Example 2.76. Let H = {(u, v) ∈ R2 | v > 0}. H can be homeomorphically
identified with S = {(u, v, 0) ∈ R2 × {0} | v > 0}, which is a regular surface

6We wanted to use the name ”Riemannian surfaces” instead, but it turns out that this
name is standardly used to denote a different structure.
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for which the homeomorphism

ϕ : H→ S

(u, v) 7→ (u, v, 0)

between H and S is a global parametrization. Hence, we work on H as a reg-
ular surface instead of S. Notice that all the tangent planes of S are parallel
and equal R2 × {0}. Hence, we consider R2 the tangent plane of H at every
point, and we endow H with the Riemannian metric at every point p = (u, v)
defined by

gp : R2 × R2 → R

(v1, v2) 7→ 〈v1, v2〉
v2

where 〈, 〉 is the usual inner product on R2. The metric surface (H, g) is called
the hyperbolic plane because it is a model of hyperbolic geometry. It is also
called the Poincaré half-plane model. The metric coefficients are

g11(p) = g22(p) =
1

v2

g12(p) = g21(p) = 0

Since the parametrization is orthogonal, we can use (2.3) to calculate the
Gaussian curvature. Since v > 0, we have

1

2
√
EG

=
v2

2
.

We also have Gu = 0 and

Ev = − 2

v3

Ev√
EG

=
2

v(
Ev√
EG

)
v

= − 2

v2
.

Therefore K(p) = −1. Hence, the hyperbolic plane has constant curvature
−1. According to Corrolary 2.69, for a triangle T in H with interior angles
α, β and γ, we have

A(T ) = −(α + β + γ − π).

More generally, according to Corrolary 2.72, for a simple n-sided polygon P
in H with interior angles α1, . . . , αn, we have

A(P ) = −(
n∑
i=1

αi − π).
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Geodesics in H are parts of vertical lines or arcs of semicircls centered at the
u-axis [35, p. 92]. Here are examples of geodesic polygones in H.

FIGURE 2.16: A geodesic triangle in H

FIGURE 2.17: Another geodesic triangle in H
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FIGURE 2.18: A geodesic pentagon in H

FIGURE 2.19: A geodesic hexagon in H
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Chapter 3

The Global Gauss-Bonnet Theorem

In this chapter, we prove the global Gauss-Bonnet theorem. It is due to
the German mathematician Walther Franz Anton von Dyck [19, p. 1888].

FIGURE 3.1: Walther von Dyck (1856 - 1934) [3]

3.1 Triangulations

In the beginning of Chapter 1, we said that the sum of the interior an-
gles of any simple polygon can be calculated by triangulizing it, hence work-
ing on ”smaller parts of it” that are triangles which sum of interior angles is
known. We can use this technic to globalize the Gauss-Bonnet theorem.

Let S be a regular surface.

Definition 3.1. A region R of S is said to be regular if R is compact and
δR is a finite union of traces of polygonal curves that do not intersect. A
compact connected regular surface is considered as a regular region without
boundary.
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Definition 3.2. A triangle is a simple region which boundary has exactly
three vertices.

A triangulation of a regular regionR of S is a finite set T of triangles such
that:

1.
⋃
T∈T T = R;

2. for every T1, T2 ∈ T, if T1 ∩ T2 6= ∅ then T1 ∩ T2 is either a common edge
or a common vertex of the two triangles;

3. for every T ∈ T, if T ∩δR 6= ∅ then T ∩δR consists of vertices and edges
of T .

4. every vertex of δR is the vertex of at least one triangle of T.

FIGURE 3.2: Triangulation of a regular region

Some vocabulary concerning triangulations:

Definition 3.3. Let T be a triangulation of a regular region R of S. Each
triangle is also called a face, and F = cardT represents the number of faces
in T.
E and V are respectively the number of edges and vertices in T. A vertex that
belongs to δR is called an exterior vertex, while a vertex that doesn’t belong
to δR (and hence belongs to the interior of R) is called an interior vertex. We
define similarly an exterior edge and an interior edge.
We denote by:

1. Ve : the number of exterior vertices;

2. Vi : the number of interior vertices;

3. Ee : the number of exterior edges;

4. Ei : the number of interior edges.

The following proposition gives relations between the numbers given in
the previous definition:
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Proposition 3.4. Let T be a triangulation of a regular region R of S. Then:

1. V = Ve + Vi;

2. E = Ee + Ei;

3. Ve = Ee;

4. 3F = 2Ei + Ee.

Proof. 1. Trivial.

2. Trivial.

3. The boundary of R can be written as

δR =
n⋃
j=1

Cj

where each (Cj)1≤j≤n is a collection of disjoint traces of polygonal curves.
Hence, it is clearly enaugh to establish that formula for an arbitrary Cj .

Let j ∈ {1, . . . , n} and let m be the number of vertices v1, . . . , vm of T in
Cj .

The edges of T on Cj are the ones which endpoints are

{v1, v2}, . . . , {vm−1, vm}, {vm, v1}.

Hence the number of edges of T on Cjis m, which is the number of
vertices of T on Cj . Therefore Ve = Ee.

4. Let T1, . . . , Tn be the elements of T and let j ∈ {1, . . . , n}. Let Eij and
Eej be, respectively, the interior and exterior edges of Tj . We have
3 = Eij + Eej . Thus 3F =

∑n
j=1 Eij +

∑n
j=1 Eej . Since each exterior

edge belongs to one and only one triangle, we have
∑n

j=1Eej = Ee.
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On the other hand, every interior edge belongs to two triangles, hence∑n
j=1Eij = 2Ei. Therefore 3F = 2Ei + Ee.

We will state a number of results about regular regions and triangulations
without proofs. These can be found in [9, Section 6.2] and [5, Section 6.2].

Proposition 3.5. Every regular region of a regular surface has a triangulation.

For our purposes however, we need to make sure that we can use the local
Gauss-Bonnet theorem on every triangle and that the geodesic curvature of
the interior edges is not taken into consideration. Fortunately, the following
proposition will assure this.

Proposition 3.6. Suppose that S is an oriented surface with a family (ϕj)j∈J
of local parametrizations compatible with the orientation of S that cover a
regular regionR ⊂ S. Then there exists a triangulation T ofR such that every
triangle of T is contained in a coordinate neighborhood of (ϕj)j∈J and its
boundary is positively oriented. Furthermore, triangles that share a common
edge determine opposite orientations on it.

Definition 3.7. Let R be a regular region of S and T be a triangulation of R.
The number χ(T) = F −E + V is called the Euler-Poincaré characteristic of
T.

An important fact about the Euler-Poincaré characteristic is the following:

Theorem 3.8. Let R be a regular region of S, T1 and T2 be two triangulations of
R. Then χ(T1) = χ(T2).

This means that the Euler-Poincaré characteristic doesn’t depend of the
triangulation but rather on the region itself. Hence we make the following
definition:

Definition 3.9. Let R be a regular region of S. The Euler-Poincaré character-
istic of R is χ(R) = χ(T) where T is any triangulation of R (which existence
is established by Proposition 3.5).

There is even more:

Theorem 3.10. Let R and R′ be two regular regions of, respectively, two regular
surfaces S and S ′. If R and R′ are homeomorphic then χ(R) = χ(R′).

Hence, the Euler-Poincaré characteristic is a topological invariant.

Example 3.11. The Euler-Poincaré characteristic of a simple regular region
is 1. This is because such a region is homeomorphic to a disk which can be
triangulated as follows:



3.1. Triangulations 65

FIGURE 3.3: A triangulation of a disk

We have F = 3, E = 6 and V = 4. Thus F − E + V = 1.

Example 3.12. The unit sphere S2 is a compact region of itself with empty
boundary. Thus it is a regular region of itself. It can be triangulized as fol-
lows:

FIGURE 3.4: A triangulation of a sphere

We have F = 8, E = 12 and V = 6. Thus χ (S2) = 2.

To conclude this section, we note that triangulations allow us to define
integrals of functions over larger domains.

Definition 3.13. Let (ϕj)j∈J be a family of local parametrizations of S that
cover a regular region R ⊂ S. Let D ⊂ R and f : R → R be a continuous
function. The integral of f over D is∫∫

D

f dσ =
n∑
i=1

∫∫
D∩Ti

f dσ
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where {T1, . . . , Tn} is any triangulation of R such that every triangle is con-
tained in a coordinate neighborhood of (ϕj)j∈J .

3.2 The Global Gauss-Bonnet Theorem

We can now state and prove the global Gauss-Bonnet theorem:

Notation 3.14. Let R ⊂ S be a regular region of an oriented surface S whose
boundary consists of the positively oriented polygonal curves γ1, . . . , γn de-
fined on, respectively, the compact intervals I1, . . . , In, and which geodesic
curvatures are, respectively, kg1 , . . . , kgn . Let∫

δR

kg(t) dt =
n∑
i=1

∫
Ii

kgi(t) dt.

Theorem 3.15 (The Global Gauss-Bonnet Theorem). Let S be a regular oriented
surface, R ⊂ S be a regular region. Let θ1, . . . , θm be the external angles of these
curves. Then: ∫

δR

kg(t) dt+

∫∫
R

K dσ +
m∑
i=1

θi = 2πχ(R). (3.1)

Proof. Let (ϕj)j∈J be a family of orthogonal parametrizations of S that cover
S and that are compatible with the orientation of S. Let T = {T1, . . . , Tp} be
a triangulation of R as given by Proposition for the family (ϕj)j∈J . Let αij
and βij denote, respectively, the i-th internal and external angle of the j-th
triangle. According to the local Gauss-Bonnet theorem:

∀j ∈ {1, . . . , p},
∫
δTj

kg(t) dt+

∫∫
Tj

K dσ +
3∑
i=1

βij = 2π.

Thus:
p∑
j=1

∫
δTj

kg(t) dt+

p∑
j=1

∫∫
Tj

K dσ +

p∑
j=1

3∑
i=1

βij = 2πp. (3.2)

Since every interior edge is shared by two triangles that determine opposite
directions on it, we have

p∑
j=1

∫
δTj

kg(t) dt =

∫
δR

kg(t) dt. (3.3)

Since triangles intersect on edges or vertices and
⋃p
j=1 Tj = R, we have

p∑
j=1

∫∫
Tj

K dσ =

∫∫
R

K dσ.
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We also note that p = F . Hence (3.2) becomes∫
δR

kg(t) dt+

∫∫
R

K dσ +

p∑
j=1

3∑
i=1

βij = 2πF. (3.4)

For the remaining double sum, we will work with internal angles instead.
We have

p∑
j=1

3∑
i=1

βij =

p∑
j=1

3∑
i=1

π − αij

= 3πF −
p∑
j=1

3∑
i=1

αij

Note that for each vertex of T, the sum of internal angles around is

- 2π if the vertex is internal;

- π if the vertex is external but is not a vertex of a curve in {γi | i ∈ {1, . . . , n}}
(the number of such vertices will be denoted by Vet);

- π − θi if the vertex is the vertex of a curve in {γi | i ∈ {1, . . . , n}} (the
number of such vertices will be denoted by Vec).

Therefore

p∑
j=1

3∑
i=1

αij = 2πVi + πVet +
m∑
i=1

π − θi

= 2πVi + πVet + πVec −
m∑
i=1

θi

= 2πVi + πVe −
m∑
i=1

θi. (Ve = Vet + Vec)

Hence:
p∑
j=1

3∑
i=1

βij =
m∑
i=1

θi + π(3F − 2Vi − Ve). (3.5)

We have

3F − 2Vi − Ve = 2Ei + Ee − 2Vi − Ve
= 2Ei + 2Ee − 2Vi − Ve − Ee
= 2E − 2Vi − 2Ve (Ve = Ee)

= 2E − 2V.

Thus (3.5) becomes

p∑
j=1

3∑
i=1

βij =
m∑
i=1

θi + 2π(E − V ).
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Replacing in (3.4), we get∫
δR

kg(t) dt+

∫∫
R

K dσ +

p∑
i=1

θi = 2π(F − E + V )

= 2πχ(R)

as desired.

Example 3.16. Consider the torus S described in Example 2.12. Let

R =
{

((2 + sin t) cos θ, (2 + sin t) sin θ, cos t) | (t, θ) ∈ [0, 2π]×
[
0,
π

4

]}
.

FIGURE 3.5: Regular region on a torus

Let’s calculate χ(R). The boundary of this region has no exterior angles
and is the reunion of the trace of two geodesic curves on the torus. Hence

χ(R) =
1

2π

∫∫
R

K dσ.

In Example 2.67, we saw that K =
sin t

2 + sin t
. Hence

∫∫
R

K dσ =
π

4

∫ 2π

0

sin t dt

= 0.

Therefore χ(R) = 0.

Remark 3.17. Using Example 3.11, we see that the local Gauss-Bonnet theo-
rem is a particular case of the global.

Remark 3.18. The global Gauss-Bonnet theorem involves the Euler-Poincaré
characteristic of a regular region, which is ensured to be well defined by The-
orem 3.8. This theorem can be proven independently from the global Gauss-
Bonnet theorem [5, Theorem 6.2.10], but it can also be retrieved using the
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global Gauss-Bonnet theorem for regions of oriented surfaces. Indeed, let R
be a regular region of a regular oriented surface S, and let T1 and T2 be two
triangulations of R. The proof of the global theorem holds for an arbitrary
triangulation of R, and χ(R) in (3.1) is actually the Euler-Poincaré character-
istic of that triangulation. So we get (3.1) with χ(T1) when using T1, and
with χ(T2) when using T2. Since the LHS of (3.1) doesn’t depend on the
triangulation of R, we conclude that χ(T1) = χ(T2).

Example 3.19. Soccer is undoubtly one of the most popular sports in the
world. Here’s a classic soccer ball:

FIGURE 3.6: A soccer ball [4]

What if we wanted to make a soccer ball with only one kind of pen-
tagon, with the furthur assumption that each vertex is common to exactly
three faces? Suppose that such a ball exists. Let F , E and V be the number
of, respectively, pentagons, edges (of pentagons) and vertices (of pentagons).
We triangulate every pentagon in the following way:

FIGURE 3.7: A triangulation of a pentagon
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We get a triangulation T of the ball. With a triangulation similar to the one
in Figure 3.4, the Euler-Poincaré characteristic of the ball B is 2. Now let FT ,
ET and VT be the number of, respectively, triangles, edegs and vertices in T.
According to Remark 3.18, we have 2 = χ(B) = FT−ET+VT . Every pentagon
corresponds to by three triangles, thus FT = 3F . Every edge in T is either
the edge of a pentagon or an edge introduced when triangulating a pentagon.
For each pentagon, two additional edges were used to triangulate it. Hence
ET = E + 2F . Finally, as no vertex was introduced when triangulating, we
have VT = V . Therefore χ(B) = F − E + V . Every edge (of a pentagon)
is common to two pentagons and every pentagon contains 5 edges. Thus
5F = 2E. Every vertex is common to three pentagons, and every pentagon

contains 5 vertices. Thus 5F = 3V . Hence χ(B) =
1

6
F = 2. Therefore

F = 12, which means that if such a ball exists, the only way possible number
of pentagons on it is 12. Actually, such a ball does exist:

FIGURE 3.8: A ball with pentagons [10]

Now what if we wanted to make a soccer ball with only hexagons? Sup-
pose that such a ball B exists. With similar notations as in the case of pen-
tagons above, and with similar reasoning, we get the following formulaes:

χ(B) = F − E + V

6F = 2E

6F = 3V

Hence χ(B) = 0 6= 2, which is a contradiction. Hence, it is impossible to
construct such a ball.

More generally, for a ball constructed with n-gons where n ≥ 3, we have:

χ(B) = F − E + V

nF = 2E

nF = 3V
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Hence χ(B) =
6− n

6
F = 2, thus

F =
12

6− n
. (3.6)

We see that we must have 3 ≤ n ≤ 5 and 6 − n | 6. Hence n must be either
3, 4 or 5. Figure 3.8 shows that it is possible for n = 5. For n ∈ {3, 4}, the
following figure shows that it is again possible:

(A) A ball with triangles [41] (B) A ball with squares

The corollary below is what some authors call the global Gauss-Bonnet
theorem.

Corollary 3.20. Let S be an orientable compact connected regular surface.
Then ∫∫

S

K dσ = 2πχ(S).

Proof. Let T be a triangulation of S. All the edges of T are interior edges.
Hence, in the proof of the Gauss-Bonnet theorem for this surface and this
triangulation, the sum in (3.3) will vanish. As there are no exterior angles,
we get the desired result.

For the next corollary, we need to introduce the genus of a compact con-
nected orientable regular surface. Intuitively, it represents the number of
handles or ”holes” in the surface (see [5, Definition 6.2.13 on p. 314]).

Example 3.21. Using the formula in [6, Exercice 1.4.3], we represent the 2-
torus and the 3-torus, which have a genus of, respectively, 2 and 3.
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(A) A 2-torus (B) A 3-torus

FIGURE 3.10: Surfaces with genus 2 and 3

Theorem 3.22 (Classification of compact connected regular surfaces). For ev-
ery compact connected orientable regular surface S there exists g ∈ N (the genus of
S) such that

χ(S) = 2− 2g.

Such surfaces with the same genus are homeomorphic.

This theorem gives the following equivalent definition for compact con-
nected orientable regular surfaces:

Definition 3.23. Let S be a compact connected orientable regular surface.

The genus of S is g =
2− χ(S)

2
.

Corollary 3.24. Every compact connected oriented regular surface of which
Gaussian curvature is nonnegative and positive at at least one point is home-
omorphic to the sphere.

Proof. According to Corollary 3.20, the Euler-Poincaré characteristic of such a
surface is positive. According to Theorem 3.22, all such surfaces with positive
Euler-Poincaré characteristic are homeomorphic to the sphere.

Other interesting applications can be found in [15, p. 277–282] and
[5, p. 322–333].

For the last application, we mention that the global Gauss-Bonnet does
hold for smooth Riemannian manifolds [27, Theorem 9.7 on p. 167]. Hence
Corollary 3.20 holds for metric surfaces.

Example 3.25. Let g be any Riemannian metric on S2. We have∫∫
S2

K dσ = 4π.

This is because S2 is an orientable compact connected regular surface with
Euler-Poincaré characteristic 2 as shown in Example 3.12.

Definition 3.26. A field F is said to be algebrically closed if every non-
constant polynomial in F [x] has at least one root in F .
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Theorem 3.27 (The fundamental theorem of algebra). The field (C,+,×) is
algebrically closed.

Proof. We present the outline of the proof in [8]:

1. Suppose p(X) =
∑n

i=0 aiX
i has no root, n ≥ 1.

2. Construct from p(X) a Riemannian metric on Ĉ = C ∪ {∞}, that is
identified to S2, such that K = 0.

3.
∫∫

S2 K dσ = 0 6= 4π, contradiction.
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2010. ISBN: 979-2-10-053373-2.

[22] Carl Friedrich Gauss. Disquisitiones generales circa superficies curvas. Typis
Dieterichianis, 1828.

[23] Youssef Hakiki. Transformations conformes. Bachelor thesis under the su-
pervision of Pr. Abdelhak Abouqateb, Cadi Ayyad University, Faculty
of Sciences and Technologies Gueliz Marrakesh, Morocco. 2016.
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of the covariant derivative, 44
algebrically closed, 72
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angle function, 16, 17
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arc length
parametrization, 3
reparametrization, 9
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atlas, 30
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boundary, 49
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canonical projection, 21
closed

curve, 3
path, 16

codomain, 9
compatible with the orientation, 37
cone, 35
coordinate neighborhood, 30
covariant derivative, 43
covering

map, 11
space, 11

curvature, 40
of a plane curve, 3

cusp, 4

degree, 16
diameter, 13
differentiable, 39
differential, 39
directed angle, 4, 49

edge

of a curve, 3
ellipsoid, 34
elliptic paraboloid, 31
Euler-Poincaré characteristic

of a regular region, 64
of a triangulation, 64

evenly covered, 10
exterior

angle, 1
edge, 62
vertex, 62

face, 62
field, 72
first fundamental form

of a metric surface, 56
of a regular surface, 36

first integral, 47

Gauss map, 38
Gauss’s Theorema Egregium, 42
Gauss-Bonnet Theorem, 1
Gaussian curvature, 41

of a metric surface, 56
generating curve, 33
genus, 71, 72
geodesic

curvature, 43
curve, 44
curvature, 44
hexagon, 60
pentagon, 59
polygon, 55
triangle, 54, 55

Girard’s theorem, 55
Gram-Schmidt, 50
graph, 31
Green’s Theorem, 49

handle, 71
Hausdorff space, 13
Heinz Hopf, 5
homeomorphism, 10
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homotopic, 17
homotopy, 17
Hopf’s Umlaufsatz, 1, 6, 21
hyperbolic

geometry, 57
plane, 57

implicit function theorem, 47
integral over a subset of a surface, 49,

65
interior

angle, 4
of a set, 50
angle, 1, 49
edge, 62
vertex, 62

isometric surfaces, 42
isometry, 42

Johann Carl Friedrich Gauss, 29
Jordan-Schoenflies theorem, 52

Lebesgue number, 13
length of a curve, 42
lifting, 14, 44
local

flow of a vector field, 47
parametrization, 30

locally constant, 19

maximum normal curvature, 41
mean curvature, 41
mean value theorem, 22
metric coefficients

of a metric surface, 56
of a regular surface, 36

metric surface, 56
Meusnier’s theorem, 40
minimum normal curvature, 41
Mobius strip, 37

neighborhood, 13
nonorientable, 37
normal curvature, 40
normal vector, 40

to a curve, 3

open covering, 13
orientable, 37

orientation
of a surface, 37
preserving reparametrization, 4

oriented, 37
orthogonal parametrization, 36

parallel vector field, 44
partition, 10
path

homotopic, 17
homotopy, 17

periodic extension, 23
Pierre Ossian Bonnet, 29
plane curve, 3
Poincaré half-plane model, 57
polygonal curve, 3
polynomial, 72
positively oriented, 17, 49
preimage, 19
principal curvatures, 41
principal directions, 41

region, 49
regular

curve, 3, 29
region, 61
surface, 30

reparametrization, 4
Riemannian metric, 56
root, 72
rotation index, 17

second fundamental form, 41
self-adjoint operator, 39
simple, 3

n-sided polygon, 2
closed curve, 3
region, 49

slices, 10
smooth Riemannian manifold, 56
soccer ball, 69
surface of revolution, 33

tangent angle function, 17
tangent plane, 35
tangent vector

to a curve, 3
to a surface, 35

Torricelli’s trumpet, 33
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torus, 34
trajectory of a vector field, 46
triangle, 1, 61
triangulation

of a polygon, 2
of a regular region, 62

unit circle, 9
unit vector field, 44
unsigned geodesic curvature, 43

vector field, 46
along a curve, 43
on a surface, 43
restricted to a curve, 43

vertex
of a curve, 3

Walther Franz Anton von Dyck, 61
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