Three Manifolds as Branched Covers of S^3

H. Abchir

Hassan II University. Casablanca

GTA seminary 2019-20.

FST-UCA, Marrakech. December 28, 2019

→ Ξ → < Ξ →</p>

æ

Introduction

Heegaard splitting B-manifolds as the surgered *S*³

Plan

Introduction

- Heegaard splitting
- 3-manifolds as the surgered S³

2 Branched coverings

- Cyclic coverings of the link complement
- Branched coverings
- Cyclic branched covers of S³

[3] 3-manifolds as branched covers of S^3

(日) (日)

Introduction

Branched coverings 3-manifolds as branched covers of S³ Heegaard splitting 3-manifolds as the surgered *S*³

H. Abchir Three Manifolds as Branched Covers of S^3

Heegaard splitting B-manifolds as the surgered S³

Problem: Classification of three manifolds.

< □ > < □ > < □ > < □ > .

э.

• Heegaard splitting of three manifolds.

프 + + 프 +

ъ

- Heegaard splitting of three manifolds.
- Three manifolds as the surgered three sphere: theorem of Lickorish Wallace (1964).

프 + + 프 +

- Heegaard splitting of three manifolds.
- Three manifolds as the surgered three sphere: theorem of Lickorish Wallace (1964).
- Three manifolds as branched covers of the three sphere.

ヨトメヨト

- Heegaard splitting of three manifolds.
- Three manifolds as the surgered three sphere: theorem of Lickorish Wallace (1964).
- Three manifolds as branched covers of the three sphere.

Remark : in dimensions less than or equal to 3, the P.L. and differentiable classification of manifolds are both equivalent the topological one.

★ Ξ ► < Ξ ►</p>

Introduction Branched coverings 3-manifolds as branched covers of S³

Heegaard splitting 3-manifolds as the surgered S^3

Theorem

Any orientable closed 3-manifold has a Heegaard splitting.

|▲ 国 → | ▲ 国 → |

3

Theorem

Any orientable closed 3-manifold has a Heegaard splitting.

That is if M is a such 3-manifold, there exists an integer $g \ge 0$ such that

$$M=H_1^g\cup_{\partial H^g}H_2^g,$$

where H_i^g , i = 1, 2 are two copies of the hadlebody H^g .

코 에 제 코 어

Theorem

Any orientable closed 3-manifold has a Heegaard splitting.

That is if M is a such 3-manifold, there exists an integer $g \ge 0$ such that

$$M=H_1^g\cup_{\partial H^g}H_2^g,$$

where H_i^g , i = 1, 2 are two copies of the hadlebody H^g .

Proof : this theorem can be easily achieved in the context of P.L. topology. Else, one can use Morse theory.

★ E → < E →</p>

Theorem

Any orientable closed 3-manifold has a Heegaard splitting.

That is if M is a such 3-manifold, there exists an integer $g \ge 0$ such that

$$M=H_1^g\cup_{\partial H^g}H_2^g,$$

where H_i^g , i = 1, 2 are two copies of the hadlebody H^g .

Proof : this theorem can be easily achieved in the context of P.L. topology. Else, one can use Morse theory.

Examples :

★ Ξ → ★ Ξ → .

Heegaard splitting 3-manifolds as the surgered S^3

Dehn Twist

Let *F* be a connected compact oriented surface. Let α a simple closed embedded in *F*, and let *A* be an annulus neighbourhood of α .

코 에 제 코 어

э

Heegaard splitting 3-manifolds as the surgered S^3

Dehn Twist

Let *F* be a connected compact oriented surface. Let α a simple closed embedded in *F*, and let *A* be an annulus neighbourhood of α .

The standard annulus is $\mathcal{S}^1 \times [0, 1]$ with some fixed orientation.

(日本)(日本)

Dehn Twist

Let *F* be a connected compact oriented surface. Let α a simple closed embedded in *F*, and let *A* be an annulus neighbourhood of α .

The standard annulus is $\mathcal{S}^1 \times [0, 1]$ with some fixed orientation.

Definition

A **Dehn twist** of *F* along the curve α is any homeomorphism isotopic to the homeomorphism $\tau : F \longrightarrow F$ defined such that $\tau_{|F \setminus A}^{\circ}$ is the identity and, parametrising *A* as $S^1 \times [0, 1]$ in an orientation-preserving manner, $\tau_{|A}$ is given by $\tau(e^{i\theta}, t) = (e^{i(\theta - 2\pi t)}, t).$

・ 戸 ト ・ 三 ト ・ 三 ト

Dehn Twist

Let *F* be a connected compact oriented surface. Let α a simple closed embedded in *F*, and let *A* be an annulus neighbourhood of α .

The standard annulus is $\mathcal{S}^1 \times [0,1]$ with some fixed orientation.

Definition

A **Dehn twist** of *F* along the curve α is any homeomorphism isotopic to the homeomorphism $\tau : F \longrightarrow F$ defined such that $\tau_{|F \setminus A}$ is the identity and, parametrising *A* as $S^1 \times [0, 1]$ in an orientation-preserving manner, $\tau_{|A}$ is given by $\tau(e^{i\theta}, t) = (e^{i(\theta - 2\pi t)}, t).$

Remark : A Dehn twists provides nontrivial examples of orientation preserving homeomorphims of a surface of genus $g \ge 1$ not isotopic to the identity.

Heegaard splitting 3-manifolds as the surgered S^3

Theorem (Dehn-Lickorish theorem)

Any orientation-preserving homeomorphism of an oriented 2-manifold (without boundary) is isotopic to the composition of Dehn twists.

코 에 제 코 어

Heegaard splitting 3-manifolds as the surgered S^3

Theorem (Dehn-Lickorish theorem)

Any orientation-preserving homeomorphism of an oriented 2-manifold (without boundary) is isotopic to the composition of Dehn twists.

Corollary (Rokhlin's theorem)

Any closed orientable 3-manifold bounds a 4-manifold.

프 + + 프 +

Introduction Branched coverings 3-manifolds as branched covers of *S*³

Heegaard splitting 3-manifolds as the surgered S^3

Let $L = \bigcup_{i=1}^{n} K_i$ be a link with *n* components in S^3 .

H. Abchir Three Manifolds as Branched Covers of S^3

◆□▶ ◆□▶ ◆注▶ ◆注▶ ○

э.

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{Branched coverings}\\ \mbox{3-manifolds as branched covers of S^3} \end{array}$

Heegaard splitting 3-manifolds as the surgered *S*³

Let $L = \bigcup_{i=1}^{n} K_i$ be a link with *n* components in S^3 . Let N_i be a regular neighborhood of the component K_i in S^3 .

코 에 제 코 어

ъ

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{Branched coverings}\\ \mbox{3-manifolds as branched covers of S^3} \end{array}$

Heegaard splitting 3-manifolds as the surgered S^3

Let $L = \bigcup_{i=1}^{n} K_i$ be a link with *n* components in S^3 . Let N_i be a regular neighborhood of the component K_i in S^3 . Let J_i be a simple closed curve on ∂N_i .

프 🖌 🛪 프 🕨

Let $L = \bigcup_{i=1}^{n} K_i$ be a link with *n* components in S^3 . Let N_i be a regular neighborhood of the component K_i in S^3 . Let J_i be a simple closed curve on ∂N_i . The pair $(L, \bigcup_i^n J_i)$ is called a **framed link**.

· 프 + · · · · · · ·

Let $L = \bigcup_{i=1}^{n} K_i$ be a link with *n* components in S^3 . Let N_i be a regular neighborhood of the component K_i in S^3 . Let J_i be a simple closed curve on ∂N_i . The pair $(L, \bigcup_i^n J_i)$ is called a **framed link**.

For each *i* we consider a homeomorphism

$$egin{array}{rcl} h_i : & \partial N_i & \longrightarrow & \partial N_i \ & m_i & \longmapsto & h_i(m_i) = J_i \end{array}$$

where m_i is the meridian curve of ∂N_i .

· 프 + · · · · · · ·

Let $L = \bigcup_{i=1}^{n} K_i$ be a link with *n* components in S^3 . Let N_i be a regular neighborhood of the component K_i in S^3 . Let J_i be a simple closed curve on ∂N_i . The pair $(L, \bigcup_i^n J_i)$ is called a **framed link**.

For each *i* we consider a homeomorphism

$$egin{array}{rcl} h_i : & \partial N_i & \longrightarrow & \partial N_i \ & m_i & \longmapsto & h_i(m_i) = J_i \end{array}$$

where m_i is the meridian curve of ∂N_i . We consider the manifold

$$M_L = S^3 \setminus \bigcup_{i=1}^n \overset{\circ}{N_i} \cup_h \bigcup_{i=1}^n N_i, \ h = \bigcup_i h_i.$$

· 프 + · · · · · · ·

Let $L = \bigcup_{i=1}^{n} K_i$ be a link with *n* components in S^3 . Let N_i be a regular neighborhood of the component K_i in S^3 . Let J_i be a simple closed curve on ∂N_i . The pair $(L, \bigcup_i^n J_i)$ is called a **framed link**.

For each *i* we consider a homeomorphism

$$\begin{array}{cccc} h_i:&\partial N_i&\longrightarrow&\partial N_i\ m_i&\longmapsto&h_i(m_i)=J_i \end{array}$$

where m_i is the meridian curve of ∂N_i . We consider the manifold

$$M_L = S^3 \setminus \bigcup_{i=1}^n \overset{\circ}{N_i} \cup_h \bigcup_{i=1}^n N_i, \ h = \bigcup_i h_i.$$

Definition

The 3-manifold M_L is said to be obtained by surgery on S^3 along the framed link $(L, \cup_i^n J_i)$

Heegaard splitting 3-manifolds as the surgered S^3

Remark : We consider the meridian m_i of ∂N_i and chose a prefered parallel I_i on ∂N_i . Each isotpy class of a simple closed curve on ∂N_i is completely determined by a pair (p, q) of coprime integers. Then, for each i, $1 \le i \le n$, $J_i = (p, q)$.

∃ ► < ∃ ►</p>

Introduction Branched coverings 3-manifolds as branched covers of S³

Remark : We consider the meridian m_i of ∂N_i and chose a prefered parallel I_i on ∂N_i . Each isotpy class of a simple closed curve on ∂N_i is completely determined by a pair (p, q) of coprime integers. Then, for each i, $1 \le i \le n$, $J_i = (p, q)$. Then the rational $\frac{p_i}{q_i}$ is called the surgery instruction on the component K_i or the **surgery coefficient** or the **framing index**.

∃ ► < ∃ ►</p>

Introduction Branched coverings 3-manifolds as branched covers of S³

Remark : We consider the meridian m_i of ∂N_i and chose a prefered parallel I_i on ∂N_i . Each isotpy class of a simple closed curve on ∂N_i is completely determined by a pair (p, q) of coprime integers. Then, for each i, $1 \le i \le n$, $J_i = (p, q)$. Then the rational $\frac{p_i}{q_i}$ is called the surgery instruction on the component K_i or the **surgery coefficient** or the **framing index**. An **integer surgery** is a surgery where $q_i = 1$.

(日) (日)

Remark : We consider the meridian m_i of ∂N_i and chose a prefered parallel I_i on ∂N_i . Each isotpy class of a simple closed curve on ∂N_i is completely determined by a pair (p, q) of coprime integers. Then, for each $i, 1 \le i \le n, J_i = (p, q)$. Then the rational $\frac{p_i}{q_i}$ is called the surgery instruction on the component K_i or the **surgery coefficient** or the **framing index**. An **integer surgery** is a surgery where $q_i = 1$. **Examples** : if *L* is the trivial knot then:

★ E → < E →</p>

Remark : We consider the meridian m_i of ∂N_i and chose a prefered parallel I_i on ∂N_i . Each isotpy class of a simple closed curve on ∂N_i is completely determined by a pair (p, q) of coprime integers. Then, for each $i, 1 \le i \le n, J_i = (p, q)$. Then the rational $\frac{p_i}{q_i}$ is called the surgery instruction on the component K_i or the **surgery coefficient** or the **framing index**. An **integer surgery** is a surgery where $q_i = 1$. **Examples** : if *L* is the trivial knot then:

• The surgery ∞ is the identity

★ E ► ★ E ►

Remark : We consider the meridian m_i of ∂N_i and chose a prefered parallel l_i on ∂N_i . Each isotpy class of a simple closed curve on ∂N_i is completely determined by a pair (p, q) of coprime integers. Then, for each i, $1 \le i \le n$, $J_i = (p, q)$. Then the rational $\frac{p_i}{q_i}$ is called the surgery instruction on the component K_i or the **surgery coefficient** or the **framing index**. An **integer surgery** is a surgery where $q_i = 1$. **Examples** : if *L* is the trivial knot then:

• The surgery ∞ is the identity

2 the 0 surgery gives $S^1 \times S^2$.

★ E > < E >

Remark : We consider the meridian m_i of ∂N_i and chose a prefered parallel I_i on ∂N_i . Each isotpy class of a simple closed curve on ∂N_i is completely determined by a pair (p, q) of coprime integers. Then, for each i, $1 \le i \le n$, $J_i = (p, q)$. Then the rational $\frac{p_i}{q_i}$ is called the surgery instruction on the component K_i or the **surgery coefficient** or the **framing index**. An **integer surgery** is a surgery where $q_i = 1$. **Examples** : if *L* is the trivial knot then:

- The surgery ∞ is the identity
- **2** the 0 surgery gives $S^1 \times S^2$.
- the (p, q) surgery gives L(p, q).

★ E → < E →</p>

Remark : We consider the meridian m_i of ∂N_i and chose a prefered parallel I_i on ∂N_i . Each isotpy class of a simple closed curve on ∂N_i is completely determined by a pair (p, q) of coprime integers. Then, for each $i, 1 \le i \le n, J_i = (p, q)$. Then the rational $\frac{p_i}{q_i}$ is called the surgery instruction on the component K_i or the **surgery coefficient** or the **framing index**. An **integer surgery** is a surgery where $q_i = 1$. **Examples** : if *L* is the trivial knot then:

- The surgery ∞ is the identity
- **2** the 0 surgery gives $S^1 \times S^2$.
- the (p, q) surgery gives L(p, q).

Theorem (Lickorish)

Any closed connected orientable 3-manifold can be obtained from S^3 by integer surgery along a framed link L.

The first Kirby move It consists in adding to (or deleting from) the given framed link *L* ∈ *S*³ an unknotted circle with framing ±1 provided that is unlinked with the other components of *L*.

★ Ξ → ★ Ξ → .

- The first Kirby move It consists in adding to (or deleting from) the given framed link *L* ∈ *S*³ an unknotted circle with framing ±1 provided that is unlinked with the other components of *L*.
- The second Kirby move

★ Ξ → ★ Ξ → .

- The first Kirby move It consists in adding to (or deleting from) the given framed link *L* ∈ *S*³ an unknotted circle with framing ±1 provided that is unlinked with the other components of *L*.
- The second Kirby move

Theorem (Kirby)

Two links in S³ with integer framings produce the same 3-manifold if and only if they can be obtained from each other by a finite sequence of first and second Kirby moves and isotopies.

→ E → + E →
Introduction $\label{eq:Branched coverings} \\ \mbox{3-manifolds as branched covers of S^3}$

Cyclic coverings of the link complement Branched coverings Cyclic branched covers of *S*³

Plan

Introduction

- Heegaard splitting
- 3-manifolds as the surgered S³

2 Branched coverings

- Cyclic coverings of the link complement
- Branched coverings
- Cyclic branched covers of S³

[3] 3-manifolds as branched covers of S^3

(日) (日)

Introduction Branched coverings 3-manifolds as branched covers of S³

Cyclic coverings of the link complement Branched coverings Cyclic branched covers of S^3

Let $L = \bigcup_{i=1}^{n} K_i$ be a link in S^3 . For each *i*, let N_i be a regular neighborhood of the component K_i in S^3 . We denote by *X* the exterior of the link, that is

$$X = S^3 \setminus \cup_{i=1}^n \overset{\circ}{N_i}.$$

프 🖌 🛪 프 🕨

Introduction Cy Branched coverings Br 3-manifolds as branched covers of S³ Cy

Cyclic coverings of the link complement Branched coverings Cyclic branched covers of S^3

Let $L = \bigcup_{i=1}^{n} K_i$ be a link in S^3 . For each *i*, let N_i be a regular neighborhood of the component K_i in S^3 . We denote by *X* the exterior of the link, that is

$$X=S^3\setminus\cup_{i=1}^n\overset{\circ}{N_i}.$$

We have $H_1(X) \simeq \mathbb{Z}^n$, where the generators are the meridians of the N_i .

프 🖌 🛪 프 🕨

Introduction Branched coverings 3-manifolds as branched covers of S³

Cyclic coverings of the link complement Branched coverings Cyclic branched covers of S^3

Let $L = \bigcup_{i=1}^{n} K_i$ be a link in S^3 . For each *i*, let N_i be a regular neighborhood of the component K_i in S^3 . We denote by *X* the exterior of the link, that is

$$X=S^3\setminus\cup_{i=1}^n\overset{\circ}{N_i}.$$

We have $H_1(X) \simeq \mathbb{Z}^n$, where the generators are the meridians of the N_i .

Definition

Let K_1 and K_2 be two simple closed oriented curves in S^3 . We denote by $lk(K_1, K_2)$ the number of ones that K_2 describes the meridian of a tubular neighborhood of K_1 (i.e. the number of ones that K_2 turns around K_1). It is an invariant of the link $L = K_1 \cup K_2$.

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ E → < E →</p>

Introduction Branched coverings 3-manifolds as branched covers of S³

Cyclic coverings of the link complement Branched coverings Cyclic branched covers of S^3

Let $L = \bigcup_{i=1}^{n} K_i$ be a link in S^3 . For each *i*, let N_i be a regular neighborhood of the component K_i in S^3 . We denote by *X* the exterior of the link, that is

$$X=S^3\setminus\cup_{i=1}^n\overset{\circ}{N_i}.$$

We have $H_1(X) \simeq \mathbb{Z}^n$, where the generators are the meridians of the N_i .

Definition

Let K_1 and K_2 be two simple closed oriented curves in S^3 . We denote by $lk(K_1, K_2)$ the number of ones that K_2 describes the meridian of a tubular neighborhood of K_1 (i.e. the number of ones that K_2 turns around K_1). It is an invariant of the link $L = K_1 \cup K_2$.

If
$$L = \bigcup_{i=1}^{n} K_i$$
, we denote by $lk(L) = \sum_{i < j} lk(K_i, K_j)$.

▶ < Ξ >

Introduction Cyclic coverings of the link complement Branched coverings Branched covers of S³ Cyclic branched covers of S³

The Hurewicz homomorphism gives the epimorphism

$$\begin{array}{cccc} \varphi: & \pi_1(X) & \twoheadrightarrow & H_1(X) \simeq \mathbb{Z}^n & \to & \mathbb{Z} \\ & \alpha & \longmapsto & lk(\alpha, L) = \sum_i lk(\alpha, K_i) \end{array}$$

<ロ> <同> <同> <同> < 同> < 同>

3

The Hurewicz homomorphism gives the epimorphism

$$\begin{array}{cccc} \varphi: & \pi_1(X) & \twoheadrightarrow & H_1(X) \simeq \mathbb{Z}^n & \to & \mathbb{Z} \\ & \alpha & \longmapsto & lk(\alpha, L) = \sum_i lk(\alpha, K_i) \end{array}$$

where the second map sends each meridian to $1\in\mathbb{Z}.$

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ E → + E →

ъ

The Hurewicz homomorphism gives the epimorphism

$$\begin{array}{cccc} \varphi: & \pi_1(X) & \twoheadrightarrow & H_1(X) \simeq \mathbb{Z}^n & \to & \mathbb{Z} \\ & \alpha & \longmapsto & lk(\alpha, L) = \sum_i lk(\alpha, K_i) \end{array}$$

where the second map sends each meridian to $1 \in \mathbb{Z}$. Then, for each integer $k \ge 2$, we get an epimorphism

$$\varphi_k : \pi_1(X) \twoheadrightarrow \mathbb{Z}_k.$$

★ E ► ★ E ►

The Hurewicz homomorphism gives the epimorphism

$$\begin{array}{cccc} \varphi: & \pi_1(X) & \twoheadrightarrow & H_1(X) \simeq \mathbb{Z}^n & \to & \mathbb{Z} \\ & \alpha & \longmapsto & lk(\alpha, L) = \sum_i lk(\alpha, K_i) \end{array}$$

where the second map sends each meridian to $1 \in \mathbb{Z}$. Then, for each integer $k \ge 2$, we get an epimorphism

$$\varphi_k : \pi_1(X) \twoheadrightarrow \mathbb{Z}_k.$$

So, for each integer $k \ge 2$ we have a covering space \tilde{X}_k of X with k sheets, called the k-fold cyclic covering space of X.

Remark : $Ker\varphi$ induces a covering \tilde{X}_{∞} of X with fiber \mathbb{Z} called the abelian covering or the infinite cyclic covering. $H_1(X_{\infty})$ is called the **Alexander module** of K which is a $A = \mathbb{Z}[t, t^{-1}]$ -module. We call a presentation of X, an exact sequence

$$A^{p}
ightarrow A^{n}
ightarrow H_{1}(ilde{X}_{\infty})
ightarrow 0.$$

If we consider a Seifert surface of the link. If V is the associated matrix called the Seifert matrix, then $tV - V^T$ is a presentation of the Alewander module. The polynomial

$$\Delta_L(t) = \det(tV - V^T)$$

is the very known interesting invariant called the Alexander polynomial of the link *L*.

Now for each $k \ge 2$, the epimorphism φ_k induces a covering space \tilde{X}_k of X such that

$$\pi_1(\tilde{X}_k) = \ker \varphi_k \text{ and } \operatorname{Aut}(\tilde{X}_k) \simeq \pi_1(X) / \ker \varphi_k \simeq \mathbb{Z}_k.$$

Remark :

$$\pi_1(\tilde{X}_{\infty}) = \ker \varphi = [\ker \varphi, \ker \varphi].$$
$$\pi_1(\tilde{X}_k) = \ker \varphi_k = [\ker \varphi_k, \ker \varphi_k].$$

코 에 제 코 어

ъ

Geometric achievement of the cyclic coverings

Let *L* be a link in S^3 .

Let F be a Seifert surface of L.

Let X the exterior of L in S^3 .

Let Y be the exterior X cut along F. We get two copies of F denoted by F^- and F^+ .

We make a coutable copies of *Y*, so we get a family $(Y_i)_{i \in \mathbb{Z}}$.

The copy Y_i contains F_i^- and F_i^+ respectively copies of F^- and F^+ .

- For each *i*, we glue Y_i to Y_{i+1} by the identification of F_i^+ with F_{i+1}^- . Then we get a space X_{∞} .
- Sore each *i*, 0 ≤ *i* ≤ *k* − 1, we glue *Y_i* to *Y_{i+1}* by the identifying F_i^+ with F_{i+1}^- . Furthermore, we glue *Y_k* to *Y₀* by identifying F_k^+ to F_0^- .

ヘロト ヘ戸ト ヘヨト ヘヨト

Proposition

We have the following commutative diagram of coverings

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Introduction Branched coverings 3-manifolds as branched covers of S³

Cyclic coverings of the link complement Branched coverings Cyclic branched covers of S³

Branched coverings of surfaces

Definition

A continuous map $p: M^2 \longrightarrow N^2$ is said to be a **branched covering** if there exists a finite set of points $\{x_1, \ldots, x_n\} \subset N^2$ such that the set $p^{-1}(\{x_1, \ldots, x_n\})$ is discrete and the restriction of *p* to the set $M^2 \setminus p^{-1}(\{x_1, \ldots, x_n\})$ is a covering. The points $\{x_1, \ldots, x_n\}$ are called the **branched points** of *p*.

通りメモトメモト

Introduction Branched coverings 3-manifolds as branched covers of S³

Cyclic coverings of the link complement Branched coverings Cyclic branched covers of S³

Branched coverings of surfaces

Definition

A continuous map $p: M^2 \longrightarrow N^2$ is said to be a **branched covering** if there exists a finite set of points $\{x_1, \ldots, x_n\} \subset N^2$ such that the set $p^{-1}(\{x_1, \ldots, x_n\})$ is discrete and the restriction of *p* to the set $M^2 \setminus p^{-1}(\{x_1, \ldots, x_n\})$ is a covering. The points $\{x_1, \ldots, x_n\}$ are called the **branched points** of *p*.

Proposition

Let $D^2 = \{z \in \mathbb{C} \ : \ |z| \le 1\}$ and let $p: \begin{array}{ccc} D^2 & \longrightarrow & D^2 \\ z & \longmapsto & z^k. \end{array}$

Then p is a k-fold branched covering with the branch point z = 0.

Remark : If *p* is a *k*-fold branched covering and *U* is a sufficiently small disk neighborhood of a branch point *y*, then $p^{-1}(U)$ consists of one or several disks D_i such that the restriction of *p* to each of them is equivalent to the covering $z \mapsto z^{m_i}$ in the proposition. Each point *x* of D_i is said to have the **branching index** m_i . Then $k = \sum m_i$.

ヨトメヨト

Remark : If *p* is a *k*-fold branched covering and *U* is a sufficiently small disk neighborhood of a branch point *y*, then $p^{-1}(U)$ consists of one or several disks D_i such that the restriction of *p* to each of them is equivalent to the covering $z \mapsto z^{m_i}$ in the proposition. Each point *x* of D_i is said to have the **branching index** m_i . Then $k = \sum m_i$. **Example** : Consider the map

$$\begin{array}{rccc} f: & \mathbb{C} \setminus \{0\} & \longrightarrow & \mathbb{C} \\ & z & \longmapsto & f(z) = 2(z + \frac{1}{z}). \end{array}$$

프 에 세 프 어

Remark : If *p* is a *k*-fold branched covering and *U* is a sufficiently small disk neighborhood of a branch point *y*, then $p^{-1}(U)$ consists of one or several disks D_i such that the restriction of *p* to each of them is equivalent to the covering $z \mapsto z^{m_i}$ in the proposition. Each point *x* of D_i is said to have the **branching index** m_i . Then $k = \sum m_i$. **Example** : Consider the map

$$\begin{array}{rccc} f: & \mathbb{C} \setminus \{0\} & \longrightarrow & \mathbb{C} \\ & z & \longmapsto & f(z) = 2(z + \frac{1}{z}). \end{array}$$

This map is a 2-fold branched covering with branch points ± 4 . The preimages of these points are the points ± 1 , and the branching index of each is 2.

イロト イポト イヨト イヨト

Introduction Cyclic c Branched coverings Branche 3-manifolds as branched covers of S³ Cyclic b

Cyclic coverings of the link complement Branched coverings Cyclic branched covers of S^3

Theorem

For every closed connected orientable surface M^2 there exists a branched covering $p: M^2 \longrightarrow S^2$.

→ E → + E →

э

Introduction Branched coverings 3-manifolds as branched covers of S³

Cyclic coverings of the link complement Branched coverings Cyclic branched covers of S³

Theorem

For every closed connected orientable surface M^2 there exists a branched covering $p: M^2 \longrightarrow S^2$.

Theorem

For every closed connected orientable surface M^2 with genus $g \ge 1$, there exists a branched covering $p : M^2 \longrightarrow S^2$ with exactly three branch points.

★ E → < E →</p>

Introduction Branched coverings 3-manifolds as branched covers of S³ Cyclic coverings of the link complement Branched coverings Cyclic branched covers of S³

Branched coverings of 3-manifolds

Definition

Let *M* and *N* two compact 3-manifolds with proper one dimensional submanifolds $J \subset M$ and $L \subset N$. Then a continous map $p: M \longrightarrow N$ is said to be a **branched covering** with **branch sets** *J* and *L* if

- components of preimages of open sets of N are a basis for the topology of M, and

ヘロト ヘ戸ト ヘヨト ヘヨト

Remarks :

H. Abchir Three Manifolds as Branched Covers of S^3

<ロ> <四> <四> <四> <三</td>

э.

Remarks :

• The restriction $p: M \setminus J \rightarrow N \setminus K$ is a covering called the **associated unbranched covering**.

A D > A D >

→ E → + E →

3

Remarks :

- The restriction p : M \ J → N \ K is a covering called the associated unbranched covering.
- Each branch point x in J has a branching index k, meaning that p is k to one near x, and this number is constant on components of J.

프 🖌 🛪 프 🕨

Remarks :

- The restriction *p* : *M* \ *J* → *N* \ *K* is a covering called the associated unbranched covering.
- Each branch point x in J has a branching index k, meaning that p is k to one near x, and this number is constant on components of J.

Examples :

프 에 제 프 어

Remarks :

- The restriction *p* : *M* \ *J* → *N* \ *K* is a covering called the associated unbranched covering.
- Each branch point x in J has a branching index k, meaning that p is k to one near x, and this number is constant on components of J.

Examples :

• A branched cover $S^3 \longrightarrow S^3$ branched over S^1 may be obtained by suspending the unbranched *k*-fold cover $S^1 \longrightarrow S^1$ 2 times. figure for S^2

Remarks :

- The restriction $p: M \setminus J \rightarrow N \setminus K$ is a covering called the **associated unbranched covering**.
- Each branch point x in J has a branching index k, meaning that p is k to one near x, and this number is constant on components of J.

Examples :

- A branched cover $S^3 \longrightarrow S^3$ branched over S^1 may be obtained by suspending the unbranched *k*-fold cover $S^1 \longrightarrow S^1$ 2 times. figure for S^2
- ② $q_k : S^1 \times D^2 \longrightarrow S^1 \times D^2$ wich assigns to each (z_1, z_2) the element (z_1, z_2^k) .

ヘロア 人間 アメヨア 人口 ア

Remarks :

- The restriction $p: M \setminus J \rightarrow N \setminus K$ is a covering called the **associated unbranched covering**.
- Each branch point x in J has a branching index k, meaning that p is k to one near x, and this number is constant on components of J.

Examples :

- A branched cover $S^3 \longrightarrow S^3$ branched over S^1 may be obtained by suspending the unbranched *k*-fold cover $S^1 \longrightarrow S^1$ 2 times. figure for S^2
- ② $q_k : S^1 \times D^2 \longrightarrow S^1 \times D^2$ wich assigns to each (z_1, z_2) the element (z_1, z_2^k) .

Theorem (Alexander branched cover theorem)

Let M be a closed oriented 3-manifold. Then there exists a branched covering $p: M \to S^3$.

Let *L* be an n component link in S^3 . Consider the *k*-fold cyclic covering $p_k : \tilde{X}_k \longrightarrow X$ of the exterior *X*. Recall that $\partial \tilde{X}_k$ is a disjoint union of torus such that the restriction of p_k to each of them is exactly the covering map

$$egin{array}{rcl} S^1 imes S^1:&\longrightarrow&S^1 imes S^1\ (z_1,z_2)&\longmapsto&(z_1,z_2^k) \end{array}$$

프 문 문 프 문

Let *L* be an n component link in S^3 . Consider the *k*-fold cyclic covering $p_k : \tilde{X}_k \longrightarrow X$ of the exterior *X*. Recall that $\partial \tilde{X}_k$ is a disjoint union of torus such that the restriction of p_k to each of them is exactly the covering map

$S^1 imes S^1$:	\longrightarrow	$S^1 imes S^1$
(z_1, z_2)	\mapsto	(z_1, z_2^k)

Now if we glue to \tilde{X}_k the cover space of q_k we get a closed connected orientable manifold denoted by M_k which is a branched cover of S^3 associated to the *k*-fold cyclic covering of S^3 .

Let *L* be an n component link in S^3 . Consider the *k*-fold cyclic covering $p_k : \tilde{X}_k \longrightarrow X$ of the exterior *X*. Recall that $\partial \tilde{X}_k$ is a disjoint union of torus such that the restriction of p_k to each of them is exactly the covering map

$S^1 imes S^1$:	\longrightarrow	$S^1 imes S^1$
(z_1, z_2)	\mapsto	(z_1, z_2^k)

Now if we glue to \tilde{X}_k the cover space of q_k we get a closed connected orientable manifold denoted by M_k which is a branched cover of S^3 associated to the *k*-fold cyclic covering of S^3 .

Definition

The 3-manifold M_k is called the *k*-fold cyclic branched cover of S^3 branched over *L*.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Introduction Branched coverings 3-manifolds as branched covers of S³

Plan

Introduction

- Heegaard splitting
- 3-manifolds as the surgered S³

2 Branched coverings

- Cyclic coverings of the link complement
- Branched coverings
- Cyclic branched covers of S³

\bigcirc 3-manifolds as branched covers of S^3

(日) (日)

Introduction Branched coverings 3-manifolds as branched covers of S^3

Theorem (Hilden-Montesinos theorem)

For any closed oriented 3-manifold M, there exists a 3-fold covering $p: M \to S^3$ of the 3-sphere by this manifold branching along a knot.

⇒ < ⇒ →</p>

Theorem (Hilden-Montesinos theorem)

For any closed oriented 3-manifold M, there exists a 3-fold covering $p: M \to S^3$ of the 3-sphere by this manifold branching along a knot.

Proof Let $p: M \to N$ be

Lemma

Definition

A 1-submanifold *L* of the sphere S^3 will be said **universal** if any closed orientable 3-manifold *M* there exists a covering $p: M \to S^3$ branching along *L*.

→ E → + E →

Theorem (Hilden-Montesinos theorem)

For any closed oriented 3-manifold M, there exists a 3-fold covering $p: M \to S^3$ of the 3-sphere by this manifold branching along a knot.

Proof Let $p: M \to N$ be

Lemma

Definition

A 1-submanifold *L* of the sphere S^3 will be said **universal** if any closed orientable 3-manifold *M* there exists a covering $p: M \to S^3$ branching along *L*.

Theorem

The Berromoe ringe constitute a universal link

Theorem (Hilden-Montesinos theorem)

For any closed oriented 3-manifold M, there exists a 3-fold covering $p: M \to S^3$ of the 3-sphere by this manifold branching along a knot.

Proof Let $p: M \to N$ be

Lemma

Definition

A 1-submanifold *L* of the sphere S^3 will be said **universal** if any closed orientable 3-manifold *M* there exists a covering $p: M \to S^3$ branching along *L*.

Theorem

The Berromoe ringe constitute a universal link

