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Some aspects of theoretical mechanics

Symplectic structures arise naturally in theoretical mechanics,
especially during the process of quantization, i.e., in the transition
from classical mechanics to quantum mechanics.

1 V. I. Arnold,
2 R. Abraham - J.E. Mardsen,
3 I. Vaisman,
4 N.M.J Woodhouse.
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Lagrange equations

The purpose of theoretical mechanics is the discovery of principles
which make it possible to describe the temporal evolution of the
state of a physical system. In classical mechanics, such a state is
given as a point P on a manifold Q of dimension n, Q called
configuration space. and P is described by the local coordinates
q1, . . . , qn, called position variables. The temporal evolution of
the system is then described by a curve

γ : t 7−→ γ(t) = (q1(t), · · · , qn(t)) | P(t0) = P0.

Here, it is necessary to find physical principles which make it
possible to determine this trajectory as solution of a differential
equation.
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Lagrange equations

The starting point for this determination is the classical
mechanical principle of least action. Each physical system is
governed by a function (called Lagrange)

L = L (q,
·q, t).

Hamilton’s least action principle decrees that, between two times
t0 and t1, Motions of the mechanical system coincide with
extremals of the functional

S =
ˆ t1

t0

L (q,
·q,t)dt. (1)
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Euler-Lagrange equations

The curve
γ(t) = (q1(t), · · · , qn(t))

is an extremal of (1) if and only if, it is a solution of the following
differential system :

d
dt

(
∂L

∂
·q

)
= ∂L

∂q . (2)

It is a system of ordinary differential equations in the bundle TQ,
with local coordinates

q1, · · · , qn,
·q1, · · · ,

·qn,

The desired curve γ on Q is the projection of the solution curve γ̃
of (2) on TQ.
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Hamilton Equations

Classical mechanics takes the following formulation: for a Lagrange
given by a function L , he coordinates position and velocity, (q,

·q),
are replaced by the coordinates position and momentum (q, p)
made possible by the transformation

pi = ∂L

∂
·qi

(i = 1, · · · , n) . (3)

The basis of this concept is the transformation of Legendre.
Between the tangent bundle and the cotangent bundle

TQ −→ T ∗Q(
q,
·q
)
7−→ (q, p) .
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Hamilton Equations

The temporal evolution described on TQ by the function of
Lagrange L = L (q,

·q, t)„ is replaced by the function of Hamilton
H on the phase space T ∗Q defined by

H(p, q, t) := p
·q −L (q,

·q, t), . . . p = ∂L

∂
·q
. (4)

The Lagrange equations (2) are here translated into Hamilton’s
equations

·p= −∂H
∂q ;

·q= ∂H
∂p . (5)
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Symplectic interpretation

The Hamiltonian function H defines Hamiltonian vector field XH
on the phase space T ∗Q.
Compared to the usual coordinates (q, p), the vector field XH is
written:

XH :=
∑ ∂H

∂pi

∂

∂qi
−
∑ ∂H

∂qi

∂

∂pi
.

Integral curves γ (t) = (q(t), p(t)) of XH :

γ′ (t) = XH (γ(t))

lead to Hamilton’s equations

·p= −∂H
∂q ;

·q= ∂H
∂p . (6)
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Symplectic interpretation

By introducing the differential 2-form

θ =
∑

dpi ∧ dqi

on the cotangent bundle T ∗Q, we see that Hamilton’s equations
(6) are equivalent to:

i(XH)θ = θ (XH , .) = −dH. (7)
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Polarized linear spaces

A symplectic manifold (M, θ) is said to be polarized if it is
equipped with a Lagrangian foliation F. The notion of polarized
symplectic manifold plays an important role in the geometric
quantization of Kostant-Souriau ([?, ?]). Interesting properties of
the geometry of Lagrangian foliations are given by A. Weinstein
([?]) and P. Dazord ([?]). The natural model of polarized
symplectic manifold is the cotangent bundle T ∗M (phase space),
equipped with the Liouville form and the real polarization defined
by the vertical foliation of the fibration πM : T ∗M −→ M.
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Polarized linear spaces

Let E be an R−linear space of dimension 2n, θ be an exterior
2−form on E and let F be a linear subspace of E of codimension n.

Definition
We say that (θ,F ) is a polarized symplectic structure on the space
E if:

1 θ is nondegenerate ;
2 ∀x , y ∈ F ; θ(x , y) = 0R.

The following theorem gives the classification of linear polarized
symplectic structures.
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Polarized linear spaces

Theorem
If (θ,F ) is a polarized symplectic structure on E, then there is a
basis (ei , e′i )1≤i≤n of E ∗ such that

θ =
n∑

j=1
ωj ∧ ω′j , F = kerω′1 ∩ · · · ∩ kerω′k ,

where (ωi , ω′i )1≤i≤n is the dual basis of (ei , e′i )1≤i≤n.
(ei , e′i )1≤i≤n is called polarized symplectic basis.
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Polarized symplectic group

Let E be a linear space of dimension 2n equipped with a polarized
symplectic structure (θ,F ).
The automorphisms of E which preserve (θ,F ) is a Lie group,
denoted by Sp(1, n;E ), and called polarized symplectic group of E .
Let Sp(1, n;R) be the group of matrices of polarized symplectic
automorphisms of E expressed in the polarized symplectic base
(ei , e′i )1≤i≤n of E . The group Sp(1, n;R) consists of the matrices
of the type (

A S
0

(
A−1)T

)
where A,S are matrices n × n with entries in R, A is invertible and
AST = SAT .
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Polarized symplectic group

We denote by sp(1, n;E ) the Lie algebra of the polarized
symplectic group Sp(1, n;E ). sp(1, n;E ) is identified with the
tangent space of the Lie group Sp(1, n;E ) in the identity mapping
IdE of $E$; it consists of all endomorphisms u of E satisfying the
relation

(∀x , y ∈ E ) (u(F )⊆F , θ(u(x), y) + θ(x , u(y)) = 0) .

In terms of set of matrices, we denote by sp(1, n;R) the Lie
algebra of the polarized symplectic group Sp(1, n;R).
The Lie algebra sp(1, n;R) consists of all matrices of the type(

A S
0 −AT

)

where A,S are n × n real matrices with S symmetric.
We observe that Sp(1, n;R) is of dimension n(3n+1)

2 .
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Polarized symplectic manifolds

(M2n, θ,Fn)

E = TF

Definition
We say that (θ,E ) is a polarized symplectic structure on M, if:

1 θ is closed. (dθ = 0);
2 θ is nondegenerate.
3 θ(X ,Y ) = 0 for all X ,Y ∈ Γ (E ).
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The cotangent bundle T ∗M
Let

πM : T ∗M −→ M
the cotangent bundle. T ∗M; provided with the form

θ = dλ
is a symplectic manifold, λ being the Liouville form on the
cotangent bundle :

〈Xu, λu〉 = 〈(πM)∗ (Xu) , ωx 〉
for all u = (x , ωx ) ∈ T ∗M, X ∈ Γ (T (T ∗M)). With respect to a
local coordinate system

(
U = (q1, . . . , qn, p1, . . . , pn)

)
of T ∗M

over
(
U, ϕ = (q1, . . . , qn)

)
, we have

λU =
n∑

i=1
pidqi , θU =

n∑
i=1

dpi ∧ dqi .

(θ;F) where F = ker π∗ is a polarized symplectic structure on the
cotangent bundle T ∗M.
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The sphere S2n

The spheres S2n don’t admit polarized symplectic structures for all
n ≥ 1.
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The space hom
(
G,R2

)
= G∗ ⊗ R2

Symplectic polarized structure on hom
(
G,R2). Let G be a real Lie

algebra of dimension n. Let (ei )1≤i≤n be a basis of G and(
ωi)

1≤i≤n be its dual basis and let hom
(
G,R2 ) = G∗ ⊗ R2 be the

linear space of linear mappings from G with values in R2 .{
hom

(
G,R2

)
= ωi ⊗ e, ωi ⊗ f (1 ≤ i ≤ n)

}
where

(
e, f

)
is the canonical basis of R2. Any element u of

hom
(
G,R2) is written in a unique form

u =
∑n

i=1

(
xiω

i ⊗ e + yiω
i ⊗ f

)
and can be represented by the

matrix (
x1 . . . xn
y1 · · · yn

)
where xi , yi are real numbers.
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The space hom
(
G,R2

)
= G∗ ⊗ R2

We equip the space hom
(
G,R2) with the coordinate system

(xi , yi )1≤i≤n. It is clear that hom
(
G,R2) is a differentiable

manifold of dimension 2n. We endow naturally this space with the
polarized symplectic structure (θ,F), where

θ =
n∑

i=1
dxi ∧ dyi ,

and the foliation F is given by equations dy1 = 0, · · · , dyn = 0.
Note that this structure does not depend on the Lie algebra law of
G. The law of G will be appear in the study of polarized Poisson
manifolds on hom

(
G,R2 ).
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The Darboux Theorem

The symplectic geometry is based on the Darboux which states
that every symplectic manifold (M, θ) admits an atlas whose the
coordinates changes belong to the pseudogroup of local
diffeomorphisms of R2n leaving the canonical form

θ0 = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn

invariant. Where (x i , y i )1≤i≤n is the Cartesian coordinates.
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The Darboux Theorem

Of course, the first proof of the Darboux theorem is due to
G.Darboux himself by using induction reasoning. An other proof is
given by A. Weinstein (in 1977). This last proof is based on the
Moser Lemma.
The Darboux theorem for symplectic manifolds equipped with
Lagrangian foliations, is given by I. Vaisman in (1989?2005) in the
context of Poisson structures on foliated manifolds.
In this talk, I will reproduce the demonstration of Darboux’s
theorem for k−symplectic structures for k = 1, i.e., for symplectic
manifolds equipped with Lagrangian, using only quadratures (in
1984 by myself).
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The Darboux Theorem

Theorem
Let (M, θ,F) be a polarized manifold of dimension 2n. Then, for
every point p of M there is an open U of M containing p equipped
with local coordinates (x i , y i )1≤i≤n such that the differential forms
θ is represented on U by

θ =
n∑

i=1
dx i ∧ dy i

and the foliation F is defined by the equations

dy1 = 0, ..., dy” = 0.
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The Darboux theorem: Proof

It follows from the Frobenius theorem that there exists a system of
local coordinates (x , y) =

(
x1, · · · , xn, y1, · · · , yn) defined on an

open neighbourhood U of M containing p such that the derivatives

∂

∂x1
, · · · , ∂

∂xn

generate the tangent space of the leaves at every point of U.
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The Darboux theorem: Proof

The problem is of a local nature, therefore we can assume that U
is an open neighbourhood of R2n and p = 0. The two form θ is
locally exact (Poincare’s lemma), then we can assume that the
differential forms θ can be written on the open set U in the form

θ = d
( n∑

u=1
f udxu +

n∑
s=1

gsdy s
)

where f u and gs are smooth functions on U; thus

θ =
∑

u,v
∂f u

∂xv
dxv ∧ dxu +

∑n
u,t

∂f u

∂y t dy t ∧ dxu

+
∑n

v ,s
∂gs
∂xv

dxv ∧ dy s +
∑n

t,s
∂gs
∂y t dy t ∧ dy s
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The Darboux theorem: Proof

so,

θ =
∑

u<v

(
∂f v

∂xu
− ∂f u

∂xv

)
dxu ∧ dxv +

+
∑n

v ,s

(
∂gs
∂xu
− ∂f u

∂y s

)
dxu ∧ dy s +

∑n
t<s

(
∂gs
∂y t − ∂gt

∂y s

)
dy t ∧ dy s

F is Lagrangian, then
∂f u

∂xv
= ∂f v

∂xu
,

for all u, v ∈ J1, nK.
For each i = 1, · · · , n, we take:

x i = gi −
n∑

u=1

xuˆ

0

∂f u

∂y i (0, · · · , 0, ξ, xu+1, · · · , xn, y) dξ.

A.Awane Polarization Geometry



Detail for calculation

x i = gi−
´ x1

0
∂f 1

∂y i (ξ, x2, · · · , xn, y) dξ
−

´ x2
0

∂f 2

∂y i (0, ξ, x3, · · · , xn, y) dξ
−

´ x3
0

∂f 3

∂y i (0, 0, ξ, x4, · · · , xn, y) dξ
− · · ·
−

´ xn
0

∂f n

∂y i (0, 0, · · · , 0, ξ, y) dξ
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The Darboux theorem: Proof

Then we have
∂x i

∂xv
= ∂gi

∂xv
−
∑v−1

u=1
∂
∂xv

´ xu
0

∂f u

∂y i (0, · · · , 0, ξ, xu+1, · · · , xn, y) dξ
− ∂
∂xv

´ xv
0

∂f v

∂y i (0, · · · , 0, ξ, xv+1, · · · , xn, y) dξ

But
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The Darboux theorem: Proof

∂
∂xv

´ xu
0

∂f u

∂y i (0, · · · , 0, ξ, xu+1, · · · , xn, y) dξ
=

´ xu
0

∂2f u

∂xv∂y i (0, · · · , 0, ξ, xu+1, · · · , xn, y) dξ
=

´ xu
0

∂2f u

∂y i∂xv
(0, · · · , 0, ξ, xu+1, · · · , xn, y) dξ

=
´ xu

0
∂
∂xu

∂f v

∂y i (0, · · · , 0, ξ, xu+1, · · · , xn, y) dξ
=

[
∂f v

∂y i (0, · · · , 0, ξ, xu+1, · · · , xn, y)
]xu

0
=

[
∂f v

∂y i (0, · · · , 0, xu, · · · , xn, y)− ∂f v

∂y i (0, · · · , 0, xu+1, · · · , xn, y)
]
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The Darboux theorem: Proof

Then

∂x i

∂xv
= ∂gi

∂xv
−
∑v−1

u=1

[
∂f v

∂y i (0, · · · , 0, xu, · · · , xn, y)− ∂f v

∂y i (0, · · · , 0, xu+1, · · · , xn, y)
]

−∂f v

∂y i (0, · · · , 0, xv , xv+1, · · · , xn, y)
= ∂gi

∂xv
− ∂f v

∂y i (x1, · · · , xn, y)
= ∂gi

∂xv
(x , y)− ∂f v

∂y i (x , y)
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The Darboux theorem: Proof

On the other hand, we have

∂x s

∂y t − ∂x t

∂y s = ∂gs
∂y t −

(∑n
u=1
´ xu

0
∂2f u

∂y t∂y s (0, · · · , 0, ξ, xu+1, · · · , xny) dξ
)

− ∂gt
∂y s +

(∑n
u=1
´ xu

0
∂2f u

∂y s∂y t (0, · · · , 0, ξ, xu+1, · · · , xn, y) dξ
)

= ∂gs
∂y t − ∂gt

∂y s .

By the relationship

θ =
∑n

u,s

(
∂gs
∂xu
− ∂f u

∂y s

)
dxu ∧ dy s +

∑n
t<s

(
∂gs
∂y t − ∂gt

∂y s

)
dy t ∧ dy s

and

∂x i

∂xv
= ∂gi
∂xv

(x , y)− ∂f v

∂y i (x , y) ; ∂x
s

∂y t −
∂x t

∂y s = ∂gs
∂y t −

∂gt
∂y s .
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The Darboux theorem: Proof

We deduce that

θ =
∑n

v ,i

(
∂gi
∂xv
− ∂f v

∂y i

)
dxv ∧ dy i +

∑n
t<s

(
∂x s

∂y t − ∂x t

∂y s

)
dy t ∧ dy s

=
∑n

i=1
∑n

v=1
∂x i

∂xv
dxv ∧ dy i +

∑n
s,t

∂x s

∂y t dy t ∧ dy s

=
∑n

s=1

(
∂x s

∂xv
dxv + ∂x s

∂y t dy t
)
∧ dy s

=
∑n

s=1 dx s ∧ dy s

this proves that

θ =
n∑

i=1
dx i ∧ dy i .
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The Darboux theorem: Proof

it remains to show that the local Pfaffian forms dx i and dy i are
linearly independent at each point of U. For this, it suffices to
show that the Pfaffian forms

ωs =
n∑

u=1

(
∂gs
∂xu
− ∂f u

∂y s

)
dxu

(s = 1, · · · , n) are linearly independent at each point of U. Let us
show for this purpose that the matrix B = (bu

s ) is invertible where
bu

s = ∂gs
∂xu
− ∂f u

∂y s .
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The Darboux theorem

Let X = (X1, · · · ,Xn) ∈ Rn such that BX t = 0. Then the local
vector field

X = X1
∂

∂x1
+ · · ·+ Xn

∂

∂xn

belongs the characteristics subspace Cx (θ) at each point of U, i.e.
i(X )θx = 0; the non degeneracy of θ proves that X = 0,
consequently, X = (0, · · · , 0); and we deduce that the matrix B is
invertible.
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The Darboux theorem

Definition
The local coordinates systems (x i , y i )1≤i≤n constitute an atlas of
M, called the Darboux’s atlas, and the local coordinates systems
(x i , y i )1≤i≤n are called adapted coordinates systems.

Let (x i , y i )1≤i≤n and (x i , y i )1≤i≤n are be two local adapted
coordinate systems defined on an open neighbourhood W of M
such that

θW =
n∑

j=1
dx j ∧ dy j =

n∑
i=1

dx i ∧ dy i .

We have:
x i (x , y) , y i (y)

for all i , because theses charts are foliated with respect to the
foliation F. Therefore,
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The Darboux theorem: Proof

θW =
∑n

i=1 dx i ∧ dy i

=
∑n

i=1

(∑n
i=1

∂x i

∂x j dx j + ∂x i

∂y j dy j
)
∧
∑n

r=1
∂y i

∂y r dy r

=
∑n

i=1
∑n

j,r=1
∂x i

∂x j
∂y i

∂y r dx jdy r

+
∑n

i=1
∑n

j,r=1

(
∂x i

∂y j
∂y i

∂y r

)
dy jdy r

=
∑n

r=1

(∑n
j=1

∑n
i=1

∂x i

∂x j
∂y i

∂y r dx j
)
dy r

+
∑n

i=1
∑

j<r

(
∂x i

∂y j
∂y i

∂y r − ∂x i

∂y r
∂y i

∂y j

)
dy jdy r

=
∑n

r=1 dx r ∧ dy r

Then
∂x i

∂y j
∂y i

∂y r =
∂x i

∂y r
∂y i

∂y j ;
n∑

j=1

n∑
i=1

∂x i

∂x j
∂y i

∂y r dx
j = dx r
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The Darboux theorem: Proof

so ∑n
i=1

∂x i

∂x r
∂y i

∂y r = 1∑n
i=1

∂x i

∂x j
∂y i

∂y r = 0 for j 6= r

Then,
∂
∂x r

(∑n
i=1 x i ∂y i

∂y r

)
= 1

∂
∂x j

(∑n
i=1 x i ∂y i

∂y r

)
= 0 for j 6= r ,

so, (∑n
i=1 x i ∂y i

∂y r

)
= x r + ϕr (y)∑n

i=1 x i ∂y i

∂y r = ψ(x r , y)
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The Darboux theorem: Proof

But
x i ∂y i

∂y r
∂y r

∂y s = ∂y r

∂y s x r + ∂y r

∂y s ϕr (y)

then
x i ∂y i

∂y s = ∂y r

∂y s x r + ∂y r

∂y s ϕr (y)

then
x iδ i

s = ∂y r

∂y s x r + ∂y r

∂y s ϕr (y)

so, {
x s = ∂y r

∂y s x r + ∂y r

∂y s ϕr (y) = ∂y r

∂y s x r + φr (y)
y s = y s (y)
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The Lagrangian foliation F is affine

The expressions of these change of coordinates in this atlas allow
to deduce the following theorem:

Theorem
The Lagrangian foliation F is affine.

This means that any leaf of the foliation F is equipped with a
structure of locally affine manifold.
This theorem has been proved by several authors through the
connection of R. Bott ([11] [5]).
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The Darboux theorem: Proof
The non degeneracy of θ allows us to see that the mapping

ζ : TM −→ T ∗M, v 7−→ i(v)θ

is an isomorphism of vector bundles over M, and consequently, ζ
defines an isomorphism from X (M) onto A 1(M). We denote by
µ : A 1(M) −→ X (M) the inverse isomorphism of ζ, and for each
α ∈ A 1(M), we denote by Xα, the vector field on M associated
with α by this isomorphism : µ (α) = Xα.
Let TM/E be the quotient bundle

TM/E =
⋃

x∈M
TxM/Ex , ν : TM −→ TM/E = νE

and let ν∗E be the dual bundle of νE :

ν*E =
⋃

x∈M
ν*Ex =

⋃
x∈M

(TxM/Ex )*.

The mapping ζ induces an isomorphism of vector bundles from E
onto ν*E .
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The Darboux theorem: Proof

In terms of local coordinates, (x1, . . . , xn, y1, . . . , yn), ν*E is
spanned by the Pfaffian forms dy1, · · · , dyn and ζ expresses the
duality ∂

∂xi
7−→ dyi between the geometry along the leaves and the

transverse geometry of F.
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Polarized Hamiltonian Vector Fields

Recall that, a real function f ∈ C∞ (M) is said to be basic, if for
any vector field Y tangent to F, the function Y (f ) is identically
zero. We denote by A 0

b (M,F) the subring of C∞ (M) which
consists of all basic functions.
We recall also, that a vector field X ∈ X(M) is said to be foliate,
or that it is an infinitesimal automorphism of F, if in the
neighborhood of any point of M, the local one parameter group
associated to X leaves the foliation F invariant. We denote by
I (M,F) the space of all foliate vector fields.
For each a vector field X tangent to F, the Pfaffian form
α = ζ (X ) belongs to the annihilator Ann (E ) of E .
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Polarized Hamiltonian Vector Fields

Definitions
A vector field X ∈ X(M) is said to be locally polarized Hamiltonian
if:

1 X is foliate;
2 the Pfaffian form ζ(X ) is closed.

We denote by H0 (M,F) the real linear space of locally
polarized Hamiltonian vector fields

H0 (M,F) = {X ∈ I (M,F) | d(ζ(X )) = 0} .

An element X ∈ I (M,F) is called a polarized Hamiltonian
vector field if the Pfaffian form ζ(X ) is exact. We denote by
H (M,F) the real linear space which consists of all polarized
Hamiltonian vector fields.

The image ζ(H(M,F)) is a linear subspace of A1(M). We take
H(M,F) = d−1 (ζ(H(M,F))) ,
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Polarized Hamiltonian Vector Fields
where d is the exterior differentiation operator.
Theorem
For all H ∈ C∞ (M), the following are equivalent:

1 H ∈ H(M,F).
2 there is a unique polarized vector field XH ∈ H(M,F) such

that: i (XH) θ = ζ(XH) = −dH.
Let X be a locally polarized Hamiltonian vector field. In a
neighborhood U of an arbitrary point of M, equipped with a local
coordinate system (x i , y i )1≤i≤n, there is a mapping H ∈ C∞ (U)
such that ζ(X ) = −dH. And consequently, the equations of the
motion of X are given by the following differential system, called
the Hamilton’s equations of X:

dxi
dt = −∂H

∂yi
dyi
dt = ∂H

∂xi
∂H
∂xi
∈ A 0

b (M).
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Polarized Hamiltonian Vector Fields
Locally, the expressions of H and X are

H =
n∑

j=1
aj(y1, ..., yn)xj + b(y1, ..., yn)

and

X = −
n∑

s=1

 n∑
j=1

xj
∂aj

∂ys
+ ∂b
∂ys

 ∂

∂xs
+

n∑
j=1

aj ∂

∂yj

respectively, where aj , b ∈ A 0
b (U,FU).

A real function on M is said to be locally affine on the foliation F
if its restriction on each leaf of F is locally affine function.
From the Hamilton equations we deduce the following proposition:
Theorem
For each H ∈ C∞ (M), the following properties are equivalent:

1 H ∈ H(M;F);
2 H is locally affine function on the foliation F.
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Polarized Hamiltonian Vector Fields

Corollary
H(M;F) is the set a(M;F) of all smooth real functions on M
which are locally affine functions on the foliation F:

H(M;F) = a(M;F).

Each element of H(M,F) is called a polarized Hamiltonian
mapping and XH is called the polarized Hamiltonian vector field
associated with the polarized Hamiltonian H.
So, we have a mapping,

ρ : H(M,F) −→ H(M,F); H 7−→ XH .

The following commutative diagram:

H(M,F) ζ−→ A 1(M)
↖ ↗
ρ H(M,F) −d
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Polarized Poisson structure subordinate to a polarized
symplectic structure

Let H,K∈ H(M,F) and $X_{H}$ , $X_{K}$ the associated
polarized Hamiltonian vector fields. Then the Lie bracket [XH ,XK ]
is a polarized Hamiltonian vector field and it is associated with
{K ,H} = θ (XH ,XK ) i.e. [XH ,XK ] = X{K ,H}.
The mapping (H,K ) 7−→ {H,K} from H(M,F)× H(M,F) into
H(M,F), defines a real Lie algebra structure on H(M,F). and
satisfies in addition the Leibniz identity with respect to polarized
Hamiltonian mappings. {H,K} is called the polarized Poisson
bracket of the polarized Hamiltonians H and K and the Lie algebra
(H(M,F), {, }) is called polarized Poisson structure subordinate to
the polarized symplectic structure (θ,E ).
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Polarized Poisson structure subordinate to a polarized
symplectic structure

Theorem
We have the following properties:

1 A 0
b (M) is an abelian Lie subalgebra of H(M,F).

2 H (M,F) is a real Lie algebra.
3
[
H0 (M,F) ,H0 (M,F)

]
⊂ H (M,F).

4 H (M,F) is an ideal of H0 (M,F).
5 The sequence of Lie algebras:

0 −→ R −→ H(M,F) −ρ−→ H (M,F) ↪→ H0(M,F) −→ H0 (M,F) /H(M,F) −→ 0

is exact.

Let (H(M,F), {, }) be the polarized Poisson structure subordinate
to the polarized symplectic structure (θ,E ). Let P be the natural
Poisson tensor associated with symplectic form θ:

P (α, β) = −θ (Xα,Xβ)
for all α, β ∈ A 1(M).
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Polarized Poisson structure subordinate to a polarized
symplectic structure

Theorem
We have the following properties:

1 P(dH, dK ) = {H,K} , ∀H,K ∈ H(M,F).
2 P (dH, dK ) = −XH(K ), ∀H,K ∈ H(M,F).
3 P vanishes on the annihilator of E in the space A 1(M).
4 P is nondegenerate.

So, we see that at every point of U we have

P = −
n∑

i=1

∂

∂xi
∧ ∂

∂yi
.
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Polarized Poisson structure
With respect to a local coordinate system (x1, . . . , xn, y1, . . . , yn),
we have

P = −
n∑

i=1

∂

∂xi
∧ ∂

∂yi
.

Let H ∈ C∞ (M) such that XH ∈ I (M,F) then with respect to
the coordinates (xi , yi ) we have :

XH = X i (x , y) ∂
∂xi

+ Y i (y) ∂
∂yi

= P(dH, .)
= P

(
∂H
∂xi

dxi + ∂H
∂yi

dyi ; .
)

= ∂H
∂yi

∂
∂xi
− ∂H

∂xi
∂
∂yi

then
∂H
∂yi

= X i (x , y) and ∂H
∂xi

= −Y i (y)

so,
H = −

∑
Y j (y) x j + b (y) .
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Polarized Poisson structure

and
XH = −

∑
x j ∂Y j(y)

∂yi j
+ Y i (y) ∂

∂yi

We deduce that
Theorem
H (M,F) is the set of differentiable mappings H ∈ C∞ (M) such
that the associated vector field XH is foliate:

H (M,F) = {H ∈ C∞ (M) | XH ∈ I (M,F)}
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Associated Poisson structures with the polarized
symplectic structure on hom (G,R2)

Let (G, [, ]) be a real Lie algebra of dimension n endowed with a
basis (ei )1≤i≤n . Let

(
ωi)

1≤i≤n its dual basis.
We denote by Ck

ij the structural constants of G: [ei , ej ] = Ck
ij ek .

We endow hom
(
G,R2) with the natural polarized symplectic

structure (θ,F) defined by the differential 2−form
θ =

∑n
i=1 dx i ∧ dy i and the foliation F defined by the equations

dy1 = 0, · · · , dyn = 0.
Every element X of hom

(
G,R2) can be written in the following

form:

X =
n∑

i=1

(
x iωi ⊗ e + y iωi ⊗ f

)
=
(

x1 . . . xn

y1 . . . yn

)
.
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Associated Poisson structures with the polarized
symplectic structure on hom (G,R2)

The linear mapping X : G−→R2 transforms u =
∑n

i=1
(
ujej

)
into

X (u) =
n∑

i=1

(
x iui

)
e +

n∑
i=1

(
y iui

)
f .

In terms of matrices we have

X (u) =
(

x1 . . . xn

y1 . . . yn

) u1
...
un

 .
The polarized Hamiltonians of the polarized symplectic structure
are the differentiable functions H ∈ C∞

(
hom

(
G,R2 )) defined at

X by expressions of the type

H (X ) =
n∑

j=1
aj(y1, ..., yn)x j + b(y1, ..., yn),

where a1, . . . , an, b are basic functions.
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Associated Poisson structures with the polarized
symplectic structure on hom (G,R2)

The Polarized Poisson bracket of Polarized Hamiltonians

H =
n∑

j=1
aj(y1, ..., yn)x j+b(y1, ..., yn) ; K =

n∑
j=1

a′j(y1, ..., yn)x j+b′(y1, ..., yn),

is given by

{H,K} =
∑n

i=1

(
∂H
∂y i

∂H
∂x i − ∂H

∂x i
∂K
∂y i

)
=

(
x j ∂aj
∂y i + ∂b

∂y i

)
a′i − ai

(
x j ∂a′

j
∂y i + ∂b′

∂y i

)
=

(
a′i
∂aj
∂yi
− ai

∂a′
j

∂y i

)
x j + a′i ∂b

∂y i − ai
∂b′

∂y i .

We use here the Einstein summation convention. The bracket, so
defined, allows to provide H

(
hom

(
G,R2 ) ,F) with a polarized

Poisson structure subordinate to the real polarization (θ,F) .
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Associated Poisson structures with the polarized
symplectic structure on hom (G,R2)

In addition to the Poisson structure subordinate to the real natural
polarization on hom

(
G,R2 ), we can define another polarized

Poisson structure
(
a
(
hom

(
G,R2 ) ,F) ; {, }L

)
, so-called the linear

polarized Poisson structure of (G, [, ]).
Let H ∈ a

(
hom

(
G,R2 ) ,F), X ∈ hom

(
G,R2 ) and

j1 : G∗ −→ hom
(
G,R2 ) be the mapping defined by

j1(ωi ) = ωi ⊗ e.

The compososed mappings

G∗ j1−→ Hom
(
G,R2

) dHX−→ R

is completely defined by

(dHX ◦ j1)
(
ωi
)

= dHX
(
ωi ⊗ e

)
= ∂H
∂x i (X ) = ai ,

consequently, dHX ◦ j1 =
∑n

i=1 aiei .
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Associated Poisson structures with the polarized
symplectic structure on hom (G,R2)

We define

{H,K}L (X ) = pr1 〈[dHX ◦ j1, dKX ◦ j1] ,X 〉

pr1 being the first projection (x , y) 7−→ x , R2 −→ R.
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Associated Poisson structures with the polarized
symplectic structure on hom (G,R2)

Then,

{H,K}L (X ) = pr1 〈[dHX ◦ j1, dKX ◦ j1] ,X 〉
=

∑n
i ,j=1 pr1

〈[
aiei , a′jej

]
,X
〉

=
∑n

i ,j=1 pr1
〈
aia′jCk

ij ek ,X
〉

=
∑n

i ,j=1 aia′j
∑n

m=1 Cm
ij xm

=
∑

1≤i<j≤n
∑n

m=1 Cm
ij
(
aia′j − aja′i

)
xm.

Theorem(
H
(
hom

(
G,R2 ) ,F) ; {, }L

)
is a polarized Poisson structure on the

foliated manifold
(
hom

(
G,R2 ) ,F) , called the linear polarized

Poisson structure of the Lie algebra G.

We give here the linear polarized Poisson structures corresponding
to simple examples.
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Associated Poisson structures with the polarized
symplectic structure on hom (G,R2)

1 G is abelian Lie algebra. In this case {, }L = 0; Consequently,(
a
(
hom

(
G,R2 ) ,F) ; {, }L

)
is the abelian polarized Poisson

structure.
2 G is the Heisenberg’s Lie algebra H1 of dimension 3. The Lie

algebra law of H1 is given by [e1, e2] = e3. And so for all
H,K ∈ a

(
hom

(
H1,R2) ,F) X ∈ hom

(
H1,R2) where,

H (X ) = ai
(
y1, y2, y3) x i + b

(
y1, y2, y3) and

K (X ) = a′i
(
y1, y2, y3) x i + b′

(
y1, y2, y3), we have

{H,K}L (X ) =
(
a1a′2 − a2a′1

)
x3.

A.Awane Polarization Geometry


