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Let (A, .) be a non-associative algebras. On the underlying vector space A, we define
the two following new products:

x ◦ y :=
1

2
(x.y + y.x) and [x, y] :=

1

2
(x.y − y.x), ∀x, y ∈ A.

Recall that x ◦ y (resp. [x, y]is called the anticommutator (resp. the commutator) of the
elements x and y of A. We denote by A+ (resp. A−) the algebra (A,+, ◦)
(resp.(A, [ , ]).

Definition
a. Let (A, .) be a non-associative algebras. (A, .) is called a Lie algebra if

1 x.y = −(y.x), ∀x, y ∈ A (Anti-commutativity); In this case,
x.y = [x, y], ∀x, y ∈ A.

2 J (x, y, z) := x.(y.z) + y.(z.x) + z.(x.y) = 0, ∀x, y, z ∈ A (Jacobi identity).

a. The non-associative algebra (A, .) is called a Lie-admissible algebra) A− is Lie
algebra.
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Definition Let (A, .) be a non-associative algebra. The associator is the trilinear map
Asso : A×A×A → A defined by

Asso(x, y, z) = (x.y).z − x.(y.z), ∀x, y, z ∈ A.

1 The algebra (A, .) is called an associative algebra if the associator is identically
zero.

2 The algebra (A, .) is called a left-symmetric algebra (resp. right-symmetric
algebra) if

Asso(x, y, z) = Asso(y, x, z), ∀x, y, z ∈ A.

(resp. Asso(x, y, z) = Asso(x, z, y), ∀x, y, z ∈ A).
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Let S3 be the symmetric group of degree 3 and G a sub-group of S3.
Let (A, .) be a non-associative algebra. (A,+, .) is called G−associative if∑

σ∈G

ε(σ)Asso(xσ−1(1), xσ−1(2), xσ−1(3)) = 0, ∀x1, x2, x3 ∈ A, (1)

where ε is The sign map. Therefore,

1 (A,+, .) is {id}−associative ⇐⇒ (A, .) is an associative algebra.
2 (A, .) is {id, (1 2)}−associative ⇐⇒ (A, .) is left-symmetric algebra.
3 (A, .) is {id, (2 3)}−associative ⇐⇒ (A, .) is a right-symmetric algebra.
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Let us denote by E the set A×A×A and by S(E) the group of all bijections from E to
E. Let us consider the anti-morphism of groups Φ : S3 → S(E) defined by

Φ(σ)(x1, x2, x3) := (xσ−1(1), xσ−1(2), xσ−1(3)),

∀σ ∈ S3, ∀ (x1, x2, x3) ∈ E.
Therefore if G is a sub-group of S3, then (A,+, .) is called G−associative if and only if∑

σ∈G

ε(σ)Asso ◦ Φ(σ) = 0.

Proposition
Let (A, .) be a non-associative algebara.
(A,+, .) is Lie-admissible if and only if (A,+, .) is a S3−associative algebra.
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Corollary
Let G be a sub-group of S3.
Any G-associative algebra is a Lie-admissible algebra.

Preuve. Let us consider the left cosets S3/G := {σG / σ ∈ S3} of G in S3. Let C be a
set of representatives of all the cosets that means S3/G := {σG / σ ∈ C} and for all σ,
σ′ in C such that σ 6= σ′ we have σG ∩ σ′G = ∅.

Therefore
∑
σ∈S3 ε(σ)Asso ◦ Φ(σ) =

∑
σ∈C

∑
σ′∈σG ε(σ

′)Asso ◦ Φ(σ′).

If σ ∈ S3, let us remark that
∑
σ′∈G ε(σ

′)Asso ◦ Φ(σ′) = 0 is equivalent to∑
σ′∈σG ε(σ

′)Asso ◦ Φ(σ′) = 0 .

Indeed
∑
σ′∈G ε(σ

′)Asso ◦ Φ(σ′) = ε(σ−1)
∑
σ′∈σG ε(σ

′)Asso ◦ Φ(σ−1σ′) =

ε(σ−1)
(∑

σ′∈σG ε(σ
′)Asso ◦ Φ(σ′)

)
◦ Φ(σ−1).

Consequently if (A, .) is a G−associative algebra, then∑
σ∈S3 ε(σ)Asso ◦ Φ(σ) =

∑
σ∈C

∑
σ′∈σG ε(σ)′Asso ◦ Φ(σ′) = 0. We conclude that

(A,+, .) is a Lie-admissible algebra. �
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Proposition.
Let (A, .) be an associative and commutative algebra. If a is an element of A and D is
a derivation of this algebra (i.e. D is an endomorphism of vector space A such that
D(x.y) = D(x).y + x.D(y), ∀x, y ∈ A), then
the vector space A endowed with the following new product ?a is a left symmetric
algebra:

x ?a y := x.D(y) + a.(x.y), ∀x, y ∈ A.

Example. Les us consider the associative commutative algebra
(A : C∞(R,R),+, .) and ϕ ∈ A then (A : C∞(R,R),+, ?ϕ) is a left symmetric algebra
where the product ?ϕ is defined by:

f ?ϕ g := f.
dg

dx
+ ϕ.(f.g), ∀f, g ∈ A;
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Proposition.
Let (g, [ , ]) be a Lie algebra. If R is an endomorphism of the vector space g satisfying:

[R(x), R(y)] = R
(

[R(x), y] + [x,R(y)]
)
, ∀x, y ∈ g,

Then the vector space g with the following multiplication ”?” is a left symmetric algebra:

x ? y := [R(x), y], ∀ x, y ∈ g.

Corollary.
Let (g, [ , ]) be a Lie algebra with an invertible deivation D.
Then the vector space g with the following multiplication ”?” is a left symmetric algebra:

x ? y := [D−1(x), y], ∀ x, y ∈ g.
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Example.
Let us consider a vector space A of dimension n with a basis {e1, dots, en}. On this
vector space, we considère the bilinear form ◦ : A×A → A defined by

ei ◦ ej = ei+j if i+ j ≤ n or 0 if i+ j > n.

(A, ◦) is a nilpotent associative commutative algebra isomorphic to
XK[X]/Xn+1K[X]. It is clear that the endomorphism δ of A defined by:
δ(ei) := iei, ∀ i ∈ {1, . . . , n} is an invertible derivation of (A, ◦). Now if (g, [ , ]g) is a Lie
algebra, then the vector space g⊗A with the product (bilinear map) defind by :

[x⊗ a, y ⊗ b] = [x, y]g ⊗ (a ◦ b), ∀x, y ∈ g, a, b ∈ A,

is a nilpotent Lie algebra and the endomorphism D of the vector space g⊗A defined
by

D(x⊗ a) := x⊗ δ(a) ∀x ∈ g, a ∈ A,

Is an invertible derivation of the Lie algebra (g ⊗A, [ , ]). Consequently, the vector
space g ⊗A with the following product (bilinear map) ? is a Left symmetric algebra:

(x⊗ a) ? (y ⊗ b) = [D−1(x⊗ a), y ⊗ b], ∀x, y ∈ g, a, b ∈ A,

Benayadi Left-symmetric Algebras(I) 10 / 43



Lie-admissible algebras
Examples et characterizations of Left symmetric algebras.

Radicals of Left-symmetric algebras

Proposition.
Let (g, [ , ], ω) be a symplectic Lie algebra that means (g, [ , ]) is a Lie algebra and
ω : g× g→ R a non-degenerate skew-symmetric bilinear form such that:

ω([x, y], z) + ω([y, z], x) + ω([z, x], y) = 0, ∀ x, y, z ∈ g.

Then the vector space g with the multiplication ”?”, defined by

ω(x ? y, z) = −ω(y, [x, z]), ∀ x, y, z ∈ g,

is a left symmetric algebras. Moreover, [x, y] = x ? y − y ? x, ∀ x, y ∈ g.

If (g, [ , ], ω) is endowed, in addition, with a non degenerate symmetric bilinear form
B : g× g→ R such that B([x, y], z) = B(x, [y, z]), ∀ x, y, z ∈ g, then there exists D an
invertible derivation of g such that ω(x, y) = B(D(x), y), ∀x, y, z ∈ g. Consequently,

x ? y := D−1([x,D(y)]), ∀x, y ∈ g.

Remark.
The Levi-Civita product of a flat pseudo-Euclidean Lie algebra (g, [ , ], 〈 , 〉) define a left
symmetric algebra strucure on the underlying vector space of g.
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Let ((g, [ , ]g) be a Lie algebra, V a vector space and ρ : g→ gl(V ) a linear map. ρ is
called a representation of g or V =: Vρ is called a g−module if
ρ([x, y]g = [ρ(x), ρ(y)] = ρ(x)ρ(y)− ρ(y)ρ(x), ∀x, y ∈ g. We denote
ρ(x)(v) =: x.v, ∀x ∈ g, v ∈ V.

If Vρ is g−module, the vector space of 1-cocycle is given by:

Z1(g, Vρ) := {f : g→ Vρ linear map/f([x, y]g) = x.f(y)− y.f(x), ∀x, y ∈ g};

and the vetor space of 1− coboundaries is defined by:

B1(g, Vρ) := {f : g→ Vρ linear map/∃v ∈ Vρ, f(x) = x.v, ∀x ∈ g}.
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Proposition.
Let (g, [ , ]) be a Lie algebra.
There exists a left symmetric algebra (A, .) such that A− = [g, [ , ]) if and only if there
is a g−module Vρ of dimension dimg such that Z1(g, Vρ) contains an invertible
1−cocycle.

Proof. Suppose that there exists a left symmetric algebra (A, .) such that
A− = [g, [ , ]), then for all x, y, z ∈ A we have (x.y).z − x.(y.z) = (y.x).z − y.(x.z). It
follows that L[x,y](z) = (LxLy − LyLx)(z), (where, for all a ∈ A, the left multiplication
by a is Ła : A → A defined by La(b) := a.b, ∀ b ∈ A.

Therefore, (A, .) is a left symmetric algebra ⇐⇒ L : A− → gl(A) defined by:
L(a) := La, ∀ a ∈ A, is a representation of A− . This representation define a structure
of A−module on the underlying vector space of AL := A.

It is clear that idA is invertible element of Z1(A−,AL).
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Conversely, let us assume that there is a g−module Vρ of dimension dimg such that
Z1(g, Vρ) contains an invertible 1−cocycle C. For all x ∈ g, we consider the
endomorphism L(x) of the vector space g defined by: L(x) := C−1 ◦ ρ(x) ◦ C.
Let x, y ∈ g, [L(x), L(y)] = L(x) ◦ L(y)− L(y) ◦ L(x) =
C−1 ◦ ρ(x) ◦ ρ(y)− ρ(y) ◦ ρ(x) ◦ C = C−1 ◦ ρ[x, y] ◦ C = L([x, y]), so L is a
representation of g and g is the vector space of this representation.
Let us consider the new product ?, on the underlying vector space of g defined by:
x ? y := L(x)(y), ∀x, y ∈ g.
The fact that C ∈ Z1(g, Vρ) implies that for all x, y ∈ g,
C([x, y] = ρ(x) ◦ C(y)− ρ(y) ◦ C(x). Since C is invertible, then
[x, y] = l(x)(y)− L(y)(x) = x ? y − y ? x. We conclude that the non-associative
algabra A := (g, ?) is a left symmetric algebra such that A− = (g, [ , ]).

Remark.
Let us remark that if (g, [ , ]) is a Lie algebra with an invertible derivation D, then the
vector space g with the following product ? is a left symmetric algebra :

x ? y := D−1([x,D(y)]), ∀ x, y ∈ g.

Moreover, [x, y] = x ? y − y ? x, ∀ x, y ∈ g.
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Proposition.
Let (g, [ , ]) be a Lie algebra.
There exists (A, .) a left-symmetric such that A− = (g, [ , ]) if and only if there exists C
an isomorphism of the underlying vector space of g and π : g→ gl(g) a linear map
such that the linear map Φ : g→ aff(g) := gl(g) n g, defined by:
Φ(x) := (π(x), C(x)), ∀x ∈ g, is a morphism of Lie algebras.

In this case, π is a representation of the Lie algebra g, C ∈ Z1(g, gπ) invertible and

∀x, y ∈ g, x.y :=
(
C−1 ◦ π(x) ◦ C

)
(y).

Proof. Suppose that there exists (A, .) a left-symmetric such that A− = (g, [ , ]), then
π : g→ gl(g) defined by π(x) := Lx, ∀x ∈ g is a representation of g, idg ∈ Z1(g, gπ)
invertible and Φ : g→ aff(g) := gl(g) n g, defined by: Φ(x) := (Lx, x), ∀x ∈ g, is a
morphism of Lie algebras.
Conversely, let us assume that there exists C an isomorphism of the underlying vector
space of g and π : g→ gl(g) a linear map such that the linear map
Φ : g→ aff(g) := gl(g) n g, defined by: Φ(x) := (π(x), C(x)), ∀x ∈ g, is a morphism of
Lie algebras.
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Therefore, for all x, y ∈ g, we have:

∀x, y ∈ g, (π([x, y], C([x, y]) = ([π(x), π(y)], π(x)(C(y))− π(y)(C(x))),

which proves that π is a representation of g and C is an invertible 1−cocycle.
Consequently, the following product ′′.′′, defined by:

∀x, y ∈ g, x.y :=
(
C−1 ◦ π(x) ◦ C

)
(y),

define a left-symmetric algebra (A, .) on the underlying vector space of g such that
A− = (g, [ , ]).

Corollary.
Let (g, [ , ]) be a Lie algebra of dimension n. Suppose that there exists a left symmetric
algebra (A, .) such that A− = (g, [ , ]).
Then, (g, [ , ]) possesses a faithful representation of dimension n+ 1
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Proof. If there exists a left symmetric algebra (A, .) such that A− = [g, [ , ]), then, by
the last proposition, there is a g−module Vρ of dimension n such that Z1(g, Vρ)
contains an invertible 1−cocycle C.
Let us consider the linear map π : g→ gl(V ×K) defined by :

π(x)((v, k)) := (ρ(x)(v) + kC(x), 0), ∀ (x, v, k) ∈ g× V ×K.

Let x, y ∈ g and let (v, k) ∈ V ×K.
π([x, y])((v, k)) := (ρ([x, y])(v) + kC([x, y]), 0) =
([ρ(x), ρ(y)])(v) + k(ρ(x)(C(y))− ρ(y)(C(x))), 0).

π(x)π(y)((v, k)) = π(x)((ρ(y)(v) + kC(y), 0) = (ρ(x)ρ(y)(v) + kρ(x)(C(y)), 0), and
π(y)π(x)((v, k)) = π(y)((ρ(x)(v) + kC(x), 0) = (ρ(y)ρ(x)(v) + kρ(y)(C(x)), 0).
Consequently,
[π(x), π(y)]((v, k)) = ([ρ(x), ρ(y)](v) + k(ρ(x)(C(y))− ρ(y)(C(x))), 0) =
π([x, y])((v, k)).
We conclude that π is a representation of g.
Let x ∈ Ker(π). Then π(x)((0, 1)) = (0, 0), so (C(x), 0) = (0, 0), which implies that
x = 0 because C is an invertible linear map. Therefore π is a faithful representation.
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Let (g, [ , ]) be a Lie algebra. Suppose that there exists a left symmetric algebra (A, .)
such that A− = [g, [ , ]), then
L : g→ gl(g), defined by L(x) := Lx, ∀x ∈ g, is a representation of the Lie algebra g.
Let us consider L? the dual representation of L. Recall that L? : g→ gl(g?) and
defined by: L?(x)(f) := −f ◦ L(x), ∀(x, f) ∈ g× g?.

Proposition.
There exists a non-degenerate symmetric bilinear form B : g× g→ K such that
B(x.y, z) = −B(y, x.z), ∀x, y, z ∈ g then the representations L and L? are equivalent
(ie. the modules gL and gL? are isomorphic via an isomorphism ϕ) such that

∀x ∈ g, ∀y ∈ g, ϕ(x)(y) = ϕ(y)(x).

Proof. Let us assume that There exists a non-degenerate symmetric bilinear form
B : g× g→ K such that B(x.y, z) = −B(y, x.z), ∀x, y, z ∈ g. The the linear map
ϕ : g→ g?, defined by ϕ(x) := B(x.), ∀x ∈ g, is invertible which satisfies
ϕ ◦ L(x) = L?(x) ◦ ϕ, ∀x ∈ g. So L and L? are equivalent.
Since B is symmetric, then ϕ(x)(y) = ϕ(y)(x), for all x, y ∈ g.

Conversely, Let us remark that if L and L? are equivalent, then there exists the
invertible linear map ϕ : g→ g? such that ϕ ◦ L(x) = L?(x) ◦ ϕ, ∀x ∈ g.

Benayadi Left-symmetric Algebras(I) 18 / 43



Lie-admissible algebras
Examples et characterizations of Left symmetric algebras.

Radicals of Left-symmetric algebras

Let us consider T : g× g→ K defined by: T (x, y) := ϕ(x)(y), ∀x, y ∈ g. So T is a
bilinear non-degenerate form and T (x.y, z) = −T (y, x.z), ∀ x, y, z ∈ g.
Now, we consider the following two bilinear foms TS and Ta defined from T by:

TS(x, y) =
1

2
(T (x, y) + T (y, x)) Ta(x, y) =

1

2
(T (x, y)− T (y, x)), ∀x, y ∈ g.

It is clear that T = Ta + Ts and
Ts(x.y, z) = −Ts(y, x.z) and Ta(x.y, z) = −Ta(y, x.z) ∀ x, y, z ∈ g.
Let us denote I (resp. J) the radical of Ts (resp. Ta.) The fact that T is non-degenrate
implies that I ∩ J = {0}.
Since ϕ(x)(y) = ϕ(y)(x). for all x ∈ g.g and for all y ∈ g, then J contains g.g. Now we
consider M a sub-vector space of g such that g = J ⊕M , and ψ a symmetric
non-degenerate bilinear form on M.
Now, it is clear that the bilinear form B on g, defined by:

B|J×J := (Ts)|J×J , B|M×M := ψ, B(J,M) = B(M,J) = {0},

is symmetric, non-degenerate such that B(x.y, z) = −B(y, x.z), for all x, y, z ∈ g.
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Some definitions (I).
Let (A, .) be a non-associative algebras.

1 A is simple if A.A 6= {0} and the only ideals of A are {0} and A.
2 A is semi-simple if A = {0} or A is a direct sum of simple algebras.
3 A1 := A =: A(0), and then by induction

An+1 :=
∑

i+j=n+1

Ai.Aj , A(n+1) := A(n).A(n), ∀n ∈ N∗.

Let us remak that An is the linear span of all products x1. . . . .xn of any
elementsx1, . . . , xn of A in all possible associations.

4 A is nilpotent (resp. solvable) algebra if there exists n ∈ N such that An = {0}
(resp. A(n) = {0}.
The smallest n with this property is the nilpotency (resp. solvability) of A.

5 x ∈ A is nilpotent if the sub-algebra it generate is nilpotent.
6 A is nil-algebra (resp. I is a nil-ideal) if every element of A (resp. I) is nilpotent.
7 A is power-associative if every elemnt of A generates an associative subalgebra.

More precisely, if x ∈ A, we put x1 := x and xn+1 := xn.x, for all n ∈ N∗. A is
called power-associative if

∀x ∈ A, ∀m,n ∈ N∗, xm.xn = xn+m.
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Some definitions (II).
Let (A, .) be a non-associative algebras.

1 The nucleus (or the associative center) of A, denoted by Nuc(A), is defined by

Nuc(A) := {x ∈ A / Asso(x,A,A) = Asso(A, x,A) = Asso(A,A, x) = 0}.

2 The center Z(A) of A is defined by

Z(A) := {x ∈ Nuc(A) / x.y = y.x, ∀x, y ∈ A}.
3 The centroı̈d of A denoted cent(A) is defined by

cent(A) := {T ∈ End(A) / TRx = RxT = RT (x), TLx = LxT = LT (x), ∀x ∈ A}.

4 A is called central if

cent(A) := {λidA / λ ∈ K}.
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Solvable Radical.
Let (A, .) be a non-associative algebra
1. Let I be an ideal of A. If A is solvable if and only if I and A/I are solvable.
2. If I and J two solvable ideal of A, then I + J is a solvable ideal of A because
(I + J)/(I ∩ J) is isomorphic to I/(I ∩ J)× J/I ∩ J .
3. There exists a unique maximal solvable ideal of A denoted Rad(A).
4. If A is semi-simple, then Rad(A) = {0}.
Indeed, if A 6= {0} is semi-simple, then A = A1 ⊕ · · · ⊕ An where A1, . . . , An are
simple ideals od A. Therefore Rad(A).A = A.Rad(A) = {0} because
Rad(A) ∩ Ai = {0} for all i ∈ {1, . . . , n}. Now let x ∈ Rad(A) then x = x1 + · · ·+ xn
such that xi.Ai = Ai.xi = {0} for all i ∈ {1, . . . , n}. So x1 = · · · = xn = 0, then x = 0.

It is well known that if A is Lie or Jordan or alternative of finite dimension (and
charcteristic of K is zero), we have A is a semi-simple if and only if Rad(A) = {0}.
The following example shows that this equivalence is false in the case of the
Left-symmetric algebras.
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A := span{x, y, z} with the multiplication:

x.x = x, x.y = y, x.z = x+
1

2
y,

y.x = 0, y.y = 0, y.z = x+ y,

z.x = x, z.y = x+ 2y, z.z = x+ y + z,

is a Left-symmetric algebra denoted E1.
I := span{x, y} is the only proper ideal of E1 and span{y} is an ideal of I,
consequently E1 is not semi-simple and Rad(E1) = {0}.

Remark. In this Left-symmetric algebra E1, let us remark that (z.z).z 6= z.(z.z). Then,
E1 is not power-associative.
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Albert Radical.
Let (A, .) be a non-associative algebra. The Albert radical is defined to be the
intersection of all maximal ideals M of A such that A.A 6⊆M.
If there do not exist such maximal ideals of A, then α(A) = A (for example if
A.α = {0} then α(A) = A.

Proposition.
Suppose that A is finite-dimensional non-associative algebra.
1. Rad(A) ⊆ α(A);
2. A/α(A) is semi-simple;
3. A is semi-simple if and only if α(A) = {0}.

Proof. 1. If M is a maximal A such that A.A 6⊆M, the A/M is a simple algebra.
Consider the canonical surjection S : A → A/M which is a morphism of algebras. It is
clear that S(Rad(A)) is a solvable ideal of A/M , so S(Rad(A)) = {0}. Then
S(Rad(A)) ⊆M. We conclude that Rad(A) ⊆ α(A).
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2. Suppose that there exist at least a maximal ideal of A such A.A 6⊆M and denote P
the set of such ideals. Let us consider Q the set of intersections of a finite number of
element of P and U the set of the dimensions of underlying vector spaces on the
elements of Q. Note m0 the smallest element of U . Then there exist M1, . . . ,Mr

elements of P such that dim(∩i∈{1,...,r}Mi) = m0, so α(A) = (∩i∈{1,...,r}Mi).
Therefore, the algebra A/α(A) is isomorphic to the semi-simple algebra
Πi∈{1,...,r}A/Mi.

3. It is clear that A is semi-simple if α(A) = {0}.
Now, let us assume that A 6= {0} is semi-simple, then A = I1 ⊕ · · · ⊕ In, where Ik is a
simple idea lof A for all k ∈ {1, . . . , n}. Since for all k ∈ {1, . . . , n},
Mk := ⊕j∈{1,...,n}\{k}Ij is a maximal ideal of A because A/Mk is isomorphic to Ik
which is simple, then α(A) = {0}. because α(A) ⊆ ∩k∈{1,...,n}Mk = {0}.
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Left nilpotent radical of Left-symmetric algebras.
Let (A, .) be a non-associative algebra and I is an ideal of A.
1. I is called nilpotent if there exit k ∈ N∗ such that Ik = {0}.
2. For k ∈ N∗, denote <k>I (resp. I<k>) the linear span of Lx1 . . . Lxk−1(xk) (resp.
Rxk . . . Rx2(x1)), for all x1 . . . , xk ∈ I.
If <k>I = {0} (resp. I<k> = {0}) for some k ∈ N∗, then I is said to be left
nilpotent (resp. right nilpotent).

It is clear that if I is nilpotent, then I is both left and right nilpotent. But the converse is
false.

Unlike solvability, the existence of a unique maximal nilpotent or left or right nilpotent
ideal in A is not guaranteed even in finite-dimensional case.

The existence of such radicals depends on the variety of algebras considered (i.e. the
identities that define these algebras). For example, in the case of alternative algebra or
the case of Jordan algebras these radicals coincide with the solvable radical.
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Proposition.
Let (A, .) be a non-associative algebra. Then any left or right nilpotent ideal of A is
solvable

Proof. Let I be a vector sub-space of A and k ∈ N∗. Put Ik :=<k> I ∩ I<k>. Let us
remark that Ik.Ik ⊆ Ik+1. By reasoning by induction on k ∈ N∗, it is shown that
I(k) ⊂ Ik+1. Indeed, I(1) = I.I =<2> I = I<2>. Suppose that I(k) ⊂ Ik+1.
I(k+1) = I(k).I(k) ⊆ Ik+1.Ik+1 ⊆ Ik+2.

Proposition.
Let (A, .) be a Left-symmetric algebra. If I and J are left nilpotent ideals of A then so
is I + J .

Proof. If V1, . . . , Vm are subspaces of A. Let us denote V1 . . . Vm := V1(V2(. . . Vm) . . . ).
I and J are left nilpotent, the there exist m ∈ N∗ such that <m>I =<m> I = {0}.
<2m>(I + J) is expanted to a sum of the form V1 . . . V2m where Vi = I or J for
i ∈ {1, . . . , 2m} and I or J occurs at least m times in the product V1 . . . V2m. It suffices
to verify that each product in the sum vanishes, so that <2m>(I + J) = {0}.
If V1 . . . V2m contains at least m copies of J , then the fact that A is a left-symmetric
algebra implies that V1 . . . V2m is a sum of subspaces of the form
W1 . . .Wq.(

<r>J) . . . ) where r ≥ m. Indeed, since A is a left-symmetric algebra, then
for all x, y, z ∈ A we have

x.(y.z) = (x.y).z − (y.x).z + y(x.z) = [x, y].z + y.(x.z) (?).
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By (?), V1 . . . Vi.J.I.Vi+3 . . . V2m ⊆ V1 . . . Vi.I.J.Vi+3 . . . V2m + V1 . . . Vi.J.Vi+3 . . . V2m.
Then V1 . . . V2m = {0}.
Similary if V1 . . . V2m contains at least m copies of I.
We conclude that I + J is a left-nilpotent of A.

Corollary.
Let (A, .) be a finite-dimensional left-symmetric algebra.
Then A contains a unique maximal left nilpotent ideal N(A) containing all left nilpotent
ideals of A such that N(A) ⊆ Rad(A).

Definition.
Let (A, .) be a left-symmetric algebra. N(A) is called tje left nilpotent radical A.

Definition.
Let (A, .) be a left-symmetric algebra.

1 An element x of A is said to be right-nil if for some k ∈ N∗, xk := (Rx)k−1(x) = 0.

2 If, for all x ∈ A, x is right-nil, then A is called right-nil algebra.
3 An element x of A is said to be left-nil if for some k ∈ N∗, (Lx)k−1(x) = 0.

4 If, for all x ∈ A, x is left-nil, then A is called left-nil algebra.
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Remark.
If A is a left (resp. right) nilpotent algebra, then A is a left-nil (resp. right-nil) algebra.
The converse is not true even when A− is nilpotent.

Definition.
A left-symmetric algebra (A, .) is called complete if, for all x ∈ A, Rx is nilpotent (which
equivalent to idA +Rx is invertible, for all x ∈ A).

Interesting proofs of the following two theorems are given in ”H. Kim, J. Diff Geometry
(1986)337− 394”.
Theorem. (Scheunmann)
If A is a complete left-symmetric algebra and A− is a nilpotent Lie algebra, then Lx is
nilpotent, for all x ∈ A.

Theorem.
Let A be a left-symmetric algebra such that Lx is nilpotent, for all x ∈ A.
Then A− is a nilpotent Lie algebra and Rx is nilpotent for all x ∈ A (i.e. A is complete
left-symmetric algebra).
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Theorem.
Let (A, .) be a left-symmetric algebra over R.
1. A is complete if and only if A is right-nil algebra.
2. The following assertions are equivalent

1 ∀x ∈ A, Lx is nilpotent;
2 A is left nilpotent;
3 A is complete and A− is nilpotent.

Proof. 1. It is clear that if A is complete, then A is right-nil algebra.
Conversely, suppose that A is a right-nil algebra.
Let x an element of A and k ∈ N∗. By reasoning by induction on k, we obtain the
following formula

(Rx)k = Rxk − [Lxk−1 , Rx]−Rx[Lxk−2 , Rx]− · · · − (Rx)k−2[Lx, Rx].

Consequently, tr((Rx)k) = tr(Rxk ).
Since A is a right-nil algebra, the there existe r ∈ N∗ such that xr = 0. So, forall
m ∈ N∗, xmr = 0, then tr(((Rx)r)m) = 0. Therefore (Rx)r is nilpotent, which proves
that Rx is nilpotent. We conclude that A is complete.
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2. Assume that Lx is nilpotent, for all x ∈ A. Recall that L : A− → gl(A), defined by:
L(x) := Lx, ∀x ∈ A, is a representation of the Lie algebra A−. Then, by Engel’s
Theorm, there exist a basis B of A such that the matrice of Lx by respect of B is a
strict upper triangular form, for all x ∈ A. Therefore A is left nilpotent.Hence 1) implies
2). 2) implies 3) follows from the last Theorem and 3) implies 1) follows from the
Sheunmann’s Theorem
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The Koszul’s radical of Left-symmetric algebras.
Definition.
Let A be a left-symmetric algebra and

T (A) := {x ∈ A / tr(Rx) = 0}.

The largest left ideal of A contained in T (A) is called the Koszul’s radical of the
left-symmetric algebra A and is denoted by K(A).

Let us reemark that if A is complete, then K(A) = A.
An example of J. Helmstetter: Let (A, .) be a left-symmetric algebra. On the vector
space Ã := End(A)⊕A we define the following product

(f + x) • (h+ y) := (f ◦ h+ [Lx, h]) + (x.y + f(y) + h(x),

∀x, y ∈ A, ∀f, h ∈ End(A).
Then Ã, •) is a left-symmetric algebra.
If (A, .) is non complete then K(Ã) = {0}.
If (A, .) is complete and A.A 6= {0}, then K(Ã) is not a two-sided ideal of Ã.
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An other example: We consider the left-symmetric algebra
(A := span{ε1, e2, e3, e4}, .) where the product ′′.′′ is defined by:

e1.e3 = e3; e2.e2 = 2e2; e3.e4 = e2; e1.e4 = −e4;

e2.e3 = e3; e4.e3 = e2; e2.e4 = e4;

and the other products equal to zero. The simple calculations prove that

T (A) := span{e1, e3, e4} and K(A) = span{e1}.

Let us remak that K(A) is not a right ideal of A.

The Lie algebra A− is solvable but non nilpotente because its product is defined by

[e1, e3] = e3; [e2, e3] = e3; [e1, e4] = −e4; [e2, e4] = e4;

and the other products equal to zero.
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Radical of the bilinear form σ of a Left-symmetric algebra.
Let (A, .) be left-symmetric algebra. We consider the symmetric bilinear forms
ϕ : A×A → K and σ : A×A → K defined by

ϕ(x, y) := tr(LxLy) and σ(x, y) := tr(RxRy), ∀x, y ∈ A.

Let x, y ∈ A, the fact that RxRy −Rx.y = [Rx, Ly] implies that

σ(x, y) = tr(RxRy) = tr(Ry.x) = tr(RyRx) = tr(Rx.y).

Theorem.
Let (A, .) be a left-symmetric algebra over K and let Der(A) be the set of the
derivations of A algebra which is a Lie algebra.
1. ϕ is bi-invariant (or associative) in A−, i.e.

ϕ([x, y], z) = ϕ(x, [y, z]), ∀x, y, z ∈ A.

2. ϕ and σ are Der(A)− invariant i.e.

ϕ(D(x), y) = −ϕ(x,D(y)) and σ(D(x), y) = −σ(x,D(y)), ∀x, y, z ∈ A.
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Proof.
1. Let x, y, z ∈ A.
ϕ([x, y], z) = tr(L[x,y]Lz) = tr(LxLyLz − LyLxLz) = tr(Lx(LyLz − LzLy)) =
tr(LxL[y,z]) = ϕ(x, [y, z]).
2. Let x, y ∈ A. IIt’s easy to see that

LD(x) = [D,Lx] and RD(x) = [D,Rx].

Consequently,
ϕ(D(x), y) + ϕ(x,D(y)) = tr([D,Lx]Ly + Lx[D,Ly])
= tr(DLxLy −DLyLx +DLyLx −DLxLy) = 0 and

σ(D(x), y) + σ(x,D(y)) = tr(RD(x).y+x.D(y)) = tr(RD(X.y)) = tr([D,Rx.y]) = 0.

Notation. tr(R) will designate the linear form tr ◦R of A defined by:
tr ◦ (R)(x) := tr(Rx), ∀x ∈ A.
Let us specify that the interest of σ comes from the fact that it is written in the form

σ(x, y) = f(x.y), ∀x, y ∈ A,

where f := tr(R) is a linear form.

Benayadi Left-symmetric Algebras(I) 35 / 43



Lie-admissible algebras
Examples et characterizations of Left symmetric algebras.

Radicals of Left-symmetric algebras

Proposition.
Let (A, .) be a left-symmetric algebra over K.
1. If I is a left ideal of A, then I⊥σ (the orthogonal of I with respect to σ) is a
subalgebra of A−.
2. If I is an ideal of A, then I⊥σ is a subalgebra of A.
3. If I is an ideal of A and I ⊆ Ker(tr(R)), then I⊥σ = A.
Proof.
Let x, y ∈ I⊥σ and a ∈ I.
1. σ([x, y], a) = σ(x.y, a)− σ(y.x, a) = tr(R(x.y).a−(y.x).a) = tr(Rx.(y.a)−y.(x.a)) =
σ(x, y.a)− σ(y, x.a) = 0. Which proves that [x, y] ∈ I⊥σ . Then I⊥σ is a subalgebra of
A−.
2. Let us assume that I is an ideal of A.
σ(x.y, a) = tr(R(x.y).a) = tr(Rx.(y.a)) + tr(R(y.x).a))− tr(Ry.(x.a)) = tr(R(y.x).a)) =
tr(Ra.(y.x))) = tr(R(a.y).x))− tr(R(y.a).x)) + tr(Ry.(a.x)) =
σ(a.y, x)− σ(y.a, x) + σ(y, a.x) = 0. Then I⊥σ is a subalgebra of A.
3. Now assume that that I is an ideal of A and and I ⊆ Ker(tr(R)).
Let x ∈ A and y ∈ I. Then x.y ∈ I. Therefore x.y ∈ Ker(tr(R)), so σ(x, y) = 0. We
conclude that I⊥σ = A. A⊥σ is called the radical of σ.

Remark. Unlike the alternative or the Jordan case A⊥σ is not an ideal of A in general.
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Interplay between radicals of Left-symmetric algebras.

Lemma(a). Let I be a left (resp. right) ideal of A with I ⊆ Ker(tr(R)). Then I ⊆ A⊥σ .
Proof. I is a left ideal of A such that I ⊆ Ker(tr(R)). Then for all a ∈ I and for all
x ∈ A, we have σ(x, a) = tr(Rx.a) = 0 because x.a ∈ I and I ⊆ Ker(tr(R)). Then
I ⊆ A⊥σ .

Lemma(b). Let I is a left ideal of A which is complete as a left-symmetric algebra,
Then I ⊆ A⊥σ

Proof.Let a ∈ I. We denote by R̃a is a right multiplication in I by a. Since I is a left
ideal, then R̃a = Ra|I and tr(R̃a) = tr(Ra) (because Ra(A) ⊆ I). Since I is a complete
left symmetric algebra, then tr(R̃a) = 0, for all a ∈ I, so we have tr(Ra) = 0, for all
a ∈ I. Then I ⊆ Ker(tr(R)) and , by Lemma(a), I ⊆ A⊥σ .
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Theorem.
Let (A, .) be a left-symmetric algebra over K. Then

N(A) ⊆ K(A) ⊆ A⊥σ ⊆ S ⊆ Ker(tr(R)),

where S := {a ∈ A / Rais nilpotent}.
Proof.
S ⊆ Ker(tr(R)) is obvious.
Let x ∈ A⊥σ and m ∈ N\{0, 1}.
tr(Rxm) = tr(Rxm−1.x) = σ(xm−1, x) = 0. Therefore (Rx)2 is nipotent, so Rx is
nilpotent. We conclude that A⊥σ ⊆ S.
Since K(A) is a left ideal contained in Ker(tr(R)), then, by Lemma(a), K(A) is
contained in A⊥σ .
Since N(A) is a left nilpotent ideal, then N(A) is a complete as a left-symmetric
algebra. By Lemma b, N(A) ⊆ A⊥σ . It follows that N(A) ⊆ Ker(tr(R)). Since K(A) is
the largest left ideal of A contained in Ker(tr(R)), then N(A) ⊆ K(A).
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Theorem.
Let (A, .) be a left-symmetric algebra over K.
(i) N(A),K(A) and A⊥σ are complete as left-symmetric algebras
(ii) K(A) is the maximal complete left ideal of A.

Proof. (i) A⊥σ is a left-symmetric subalgebra of A (because A is an ideal of A).
If x ∈ A⊥σ , R̃x : A⊥σ → A⊥σ denote the right multiplication in A⊥σ by x,
then R̃x = Rx|A⊥σ . By last theorem A⊥σ ⊆ S, il follows that Rx is nilpotent for all
x ∈ A⊥σ . Therefore R̃x is nilpotent for all x ∈ A⊥σ . Consequently, A⊥σ is acomplete
left-symmetric algebra.
N(A) and K(A) follows similary from the last theorem.

(ii) Let I be a complete left ideal of A. Then, by Lemma(b), I ⊆ A⊥σ ⊆ . Since
A⊥σ ⊆ S and K(A) is the largest left ideal contained in Ker(tr(R)), then I ⊆ K(A).
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Theorem.
Let (A, .) be a left-symmetric algebra over K. The following assertions are equivalent:

1 A is complete;
2 A = K(A) = A⊥σ = S = Ker(tr(R));

3 σ is identically zero;
4 A2 ⊆ Ker(tr(R)).

Proof.((1) =⇒ (2)). If A is complete, then A = K(A). It follows that
A = K(A) = A⊥σ = S = Ker(tr(R)).
((2) =⇒ (1)). A = Ker(tr(R)), then A is complete.
((3) ⇐⇒ (4)). By the definition of σ.
((2) ⇐⇒ (3)). By the last theorem and by the definition of K(A).

Benayadi Left-symmetric Algebras(I) 40 / 43



Lie-admissible algebras
Examples et characterizations of Left symmetric algebras.

Radicals of Left-symmetric algebras

In general, any of the inclusions can not be replaced by equality for a Nonassociative
left symmetric algebra. However, if A− is nilpotent, we have the following result:

Corollary (Kim). Let (A, .) be a left-symmetric algebra over K such that A− is
nilpotent, then N(A) = K(A).
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Merci pour votre attention!
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