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Introduction

The standard model of a symplectic manifold is the Euclidean
space R2n endowed with its canonical symplectic form

ω0 =
n∑

i=1

dxi ∧ dyi .

A symplectomorphism of (R2n, ω0) is a diffeomorphism
F : R2n −→ R2n such that

F ∗ω0 = ω0.
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It is obvious that a symplectomorphism F is also a
preserving-volume diffeomorphism since

F ∗Ω = Ω,

where Ω = ∧nω0 is the volume form associated to ω0.

Note that F is a preserving-volume diffeomorphism iff F
preserves the Lebesgue measure.
Question 1 : Is the group of symplectomorphisms significantly
smaller than the group of preserving-volume diffeomorphisms ?
Question 2 : If the answer to the first question is yes, can one
find a topological characterization of a symplectomorphism ?
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The symplectic cylinder of radius R > 0 is

Z 2n(R) =
{

(x , . . . , y) ∈ R2n, x2
1 + y 2

1 ≤ R2
}
' B2(R)×R2n−2.

We denote by B2n(r) the Euclidean closed ball of center 0 and
the radius r in R2n.

Note that

B2n(R) ⊂ Z 2n(R).

Theorem.

(Gromov 1985) If there is a symplectic embedding
F : B2n(r) ↪→ Z 2n(R) then r ≤ R .
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A symplectic capacity is a functor c which assigns to every
symplectic manifold (M , ω) a nonnegative (possibly infinite)
number c(M , ω) and satisfies the following conditions.

(Monotonicity) If there is a symplectic embedding
(M1, ω1) ↪→ (M2, ω2) and dimM1 = dimM2 then
c(M1, ω1) ≤ c(M2, ω2).

(Conformality) c(M , λω) = |λ|c(M , ω).

(Non triviality) c(B2n(1), ω0) > 0 and
c(Z 2n(1), ω0) <∞.
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Proposition.

The existence of a symplectic capacity c satisfying

c(B2n(1), ω0) = c(Z 2n(1), ω0) = π (1)

is equivalent to Gromov’s nonsqueezing theorem.

Proof : The direct sense is trivial. The converse is based on
the Gromov width. For any symplectic 2n-dimensional
manifold (M , ω), put

cG (M , ω) = supE(M , ω),

where

E(M , ω) =
{
πr 2| (B2n(r), ω0) embeds symplectically in M

}
.

�
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The key to understanding symplectic capacities is the
observation that the non triviality axiom makes it impossible
for the volume of M to be a capacity. The requirement that
c(Z 2n(1), ω0) be finite means that these capacities are
2-dimensional invariants.
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The existence of symplectic capacities is non trivial.

In this course we give another proof of Gromov’s theorem
using the notion of symplectic capacity, namely, the symplectic
capacity introduced by Hofer-Zehnder in [4] based on the
highly difficult theorem :

Theorem.

(Hofer-Zehnder 1990) Assume H ∈ H(Z 2n(1)) with
supH > π. Then the Hamiltonian flow of H has a nonconstant
periodic orbit of period 1.
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Affine nonsqueezing theorem
Symplectic vector spaces

Let (e1, . . . , e2n) denote the canonical basis of R2n. The
bilinear skew-symmetric 2-form

ω0 =
n∑

i=1

e∗i ∧ e∗i+n

is non-degenerate, i.e.,

ω0(u, v) = 0 ∀v ∈ R2n =⇒ u = 0.

The couple (R2n, ω0) is the standard example of symplectic
vector space.
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More generally, a symplectic vector space is a couple (V , ω)
where V is finite dimensional R-vector space and ω is a
bilinear skew-symmetric 2-form on V which is nondegenerate.

This means that ω satisfies :

1 ω is bilinear ;

2 for any u, v ∈ V , ω(u, v) = −ω(v , u) ;

3 for any u ∈ V ,

ω(u, v) = 0 ∀v ∈ V =⇒ u = 0.

A symplectic vector space must be even dimensional.
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Let (V , ω) be a symplectic vector.

A linear symplectomorphism of V is a vector space
isomorphism Φ : V −→ V which preserves the symplectic
form ω, i.e., for any u, v ∈ V ,

Φ∗ω(u, v) := ω(Φu,Φv) = ω(u, v).

The linear symplectomorphisms of (V , ω) form a group
which we denote by Sp(V , ω). In the case of the standard
symplectic structure on R2n, we denote
Sp(2n) = Sp(R2n, ω0).

Let W ⊂ V be a vector subspace. The symplectic
orthogonal of W is the vector space

W ω = {u ∈ V , ω(u, v) = 0 ∀v ∈ W } .
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Proposition.

We have

dimW ω + dimW = dimV and (W ω)ω = W .

Theorem.

Let (V , ω) be a symplectic vector space of dimension 2n.
Then there exists a basis (e1, . . . , en, ē1, . . . , ēn) such that

ω(ei , ej) = ω(ēi , ēj) = 0 and ω(ei , ēj) = δij .

Such a basis is called a symplectic basis. Moreover, there
exists a vector space isomorphism Φ : R2n −→ V such that

Φ∗ω = ω0.
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The volume form associated to a symplectic vector space
(V , ω) is the 2n-form given by

Ω = ωn =

n︷ ︸︸ ︷
ω ∧ . . . ∧ ω .

Note that Ω 6= 0 and, more precisely, if (e1, . . . , en, ē1, . . . , ēn)
is a symplectic basis then

Ω = n! (e∗1 ∧ ē∗1 ∧ . . . ∧ e∗n ∧ ē∗n) .
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Linear symplectic group

Let B0 be the canonical basis of R2n and 〈 , 〉 the Euclidean
inner product of R2n. The matrix of ω0 in B0 is the matrix

J0 =

(
0 In
−In 0

)
.

We have obviously J2
0 = −I2n,

〈J0u, J0v〉 = 〈u, v〉 and ω0(u, v) = 〈J0u, v〉. (2)
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An isomorphism of R2n is a linear symplectomorphism iff its
matrix Φ in B0 satisfies

ΦTJ0Φ = J0. (3)

Sp(2n) '
{

Φ ∈ GL(2n,R),ΦTJ0Φ = J0.
}
.

We have

Sp(2n) ⊂ SL(2n,R) := {Φ ∈ GL(2n,R), det Φ = 1} .

Since J−1
0 = −J0 we get that Φ ∈ Sp(2n) iff ΦT ∈ Sp(2n).
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We identify GL(n,C) as

GL(n,C) =

{(
X −Y
Y X

)
,X ,Y ∈ GL(n,R)

}
= {Φ ∈ GL(2n,R),ΦJ0 = J0Φ} .

The unitary group is identified to

U(n) =

{(
X −Y
Y X

)
∈ GL(n,C), (X + ıY )(X − ıY )T = In

}
.
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Lemma.

We have

Sp(2n)∩O(2n) = Sp(2n)∩GL(n,C) = O(2n)∩GL(n,C) = U(n).

Let Φ be a 2n × 2n real matrix. We have the following
equivalence :

Φ ∈ GL(n,C) ⇐⇒ ΦJ0 = J0Φ,

Φ ∈ Sp(2n) ⇐⇒ ΦTJ0Φ = J0,

Φ ∈ O(2n) ⇐⇒ ΦTΦ = I2n.

It is obvious that any of these conditions imply the third.
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Now, according to (??), the subgroup Sp(2n) ∩GL(n,C)
consists of this matrix

Φ =

(
X −Y
Y X

)
∈ GL(2n,R)

which satisfy

XY T = YXT and XXT + YY T = In.

This is precisely the condition

(X + ıY )(X − ıY )T = In.

�
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Lemma.

If P = PT ∈ Sp(2n) is symmetric, positive definite symplectic
matrix then Pα ∈ Sp(2n) for any real number α > 0.

Proof. We will show that, for any z , z ′ ∈ R2n,

ω0(Pαz ,Pαz ′) = ω0(z , z ′). (∗)

First, denote by 0 < λ1 < . . . < λr the different eigenvalues of
P and Vλ1 , . . . ,Vλr the corresponding eigenspaces. We have

R2n = Vλ1 ⊕ . . .⊕ Vλr .

We distinguish two cases :

z ∈ Vλi , z
′ ∈ Vλj and λiλj 6= 1. Then Pαz = λαi z and

Pαz ′ = λαj z
′ and according to Lemma ?? ω0(z , z ′) = 0

and (∗) holds.

z ∈ Vλi , z
′ ∈ Vλj and λiλj = 1. Then Pαz = λαi z ,

Pαz ′ = λαj z
′ and (∗) holds. �
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Proposition.

The unitary group U(n) is a maximal compact subgroup of
Sp(2n) and the quotient Sp(2n)/U(n) is contractible.

Proof : Thus the map

Sp(2n)× [0, 1] −→ Sp(2n) : (Φ, t) 7→ (ΦΦT)−
t
2 Φ

is a retraction of Sp(2n) onto U(n).
Let G ⊂ Sp(2n) be any compact subgroup. Put
P =

∫
G
gTgdg . We have, for any Φ ∈ G,

ΦTPΦ = P

and hence

P
1
2GP−

1
2 ⊂ Sp(2n) ∩O(2n) = U(n).

�
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An affine symplectomorphism of R2n is a map
φ : R2n −→ R2n of the form

φ(z) = Φz + z0,

where Φ ∈ Sp(2n) and z0 ∈ R2n. We denote by ASp(2n) the
group of affine symplectomorphisms. The affine nonsqueezing
theorem asserts that a ball in R2n can only be embedded into
a symplectic cylinder by an affine symplectomorphism if it has
a smaller radius. The symplectic cylinder of radius R > 0 is

Z 2n(R) =
{

(x , y) ∈ R2n, x2
1 + y 2

1 ≤ R2
}
' B2(R)× R2n−2.

We denote the Euclidean closed ball of center 0 and the radius
r in R2n by B2n(r).
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Theorem.

Let φ ∈ ASp(2n) and assume that φ(B2n(r)) ⊂ Z 2n(R). Then
r ≤ R .

Proof. Write φ(z) = Φ(z) + z0 with Φ ∈ Sp(2n) and z0 ∈ R2n

and denote by (e1, . . . , e2n) the canonical basis of R2n. The
condition φ(B2n(r)) ⊂ Z 2n(R) is equivalent to

∀u ∈ B2n(r), ((Φ(u))1 + z1
0 )2 + ((Φ(u))n+1 + zn+1

0 )2 ≤ R2.
(∗)

Now it is easy to see that

(Φ(u))1 = 〈ΦTe1, u〉 and (Φ(u))n+1 = 〈ΦTen+1, u〉.
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The crucial point is that since ΦT ∈ Sp(2n),

ω0(ΦTe1,Φ
Ten+1) = ω0(e1, en+1) = 1.

So, by using (2) and the Cauchy-Schwarz inequality, we get

1 = ω0(ΦTe1,Φ
Ten+1) ≤ |ΦTe1||ΦTen+1|.

This inequality implies that either |ΦTe1| or |ΦTen+1| is
greater than or equal to one. Assume without loss of generality
that |ΦTe1| ≥ 1 and choose in (∗) u = εr ΦTe1

|ΦTe1| where ε is the

sign of z1
0 . We get

r 2 ≤ (r |ΦTe1|+ |z1
0 |)2 + ((Φ(u))n+1 + zn+1

0 )2 ≤ R2,

and the theorem follows. �
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We call a subset A ⊂ R2n a linear symplectic ball of radius
r if there exists Φ ∈ Sp(2n) such that A = Φ(B2n(r)). It
results that A and B2n(r) must have the same volume and
hence r does not depend on Φ.

In a similar way, a subset Z ∈ R2n is called linear symplectic
cylinder if there exists Φ ∈ Sp(2n) and r > 0 such that
Z = Φ(Z 2n(r)). It follows from Theorem 9 that for any linear
symplectic cylinder Z the number r > 0 is a linear symplectic
invariant.
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A nonsingular 2n × 2n matrix Φ is said to have the linear
nonsqueezing property if for every linear symplectic ball B
of radius r and every linear symplectic cylinder Z of radius R
we have

Φ(B) ⊂ Z =⇒ r ≤ R .

Theorem.

Let Φ be a non singular 2n × 2n matrix such that Φ and Φ−1

have the linear nonsqueezing property. Then Φ is either
symplectic or anti-symplectic.
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Proof.

Suppose that Φ is neither symplectic or anti-symplectic. Then
there exist u, v ∈ R2n such that

0 < λ2 = ω0(ΦTu,ΦTv) < ω0(u, v) = 1.

Hence there exist symplectic bases B1 = (u1, v1, . . . , un, vn)
and B2 = (u′1, v

′
1, . . . , u

′
n, v
′
n) of R2n such that

u1 = u, v1 = v , u′1 = λ−1ΦTu, v ′1 = λ−1ΦTv .

Denote by Ψ ∈ Sp(2n) (resp. Ψ′ ∈ Sp(2n)) the matrix which
maps B0 to B1 (resp. B2).
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Then the matrix
A = Ψ′−1ΦTΨ

satisfies
Ae1 = λe1 and Aen+1 = ±λen+1.

This implies that the transposed matrix AT maps the unit ball
B2n(1) to cylinder Z 2n(λ). But since λ < 1 this means that Φ
does not have the nonsqueezing property in contradiction to
our assumption. This proves the theorem. �
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The affine nonsqueezing theorem gives rise to the notion of
the linear symplectic width of an arbitrary subset A ⊂ R2n,
defined by

WL(A) = sup
{
πr 2| φ(B2n(r)) ⊂ A for some φ ∈ ASp(R2n)

}
.

It follows from Theorem 9 that the linear symplectic width
has the following properties :

(Monotonicity) If φ(A) ⊂ B for some φ ∈ ASp(R2n)
then WL(A) ≤WL(B).

(Conformality) WL(λA) = λ2WL(A).

(Nontriviality) WL(B2n(r)) = WL(Z 2n(r)) = πr 2.
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The nontriviality axiom implies that WL is a two-dimensional
invariant. It is obvious from the monotonicity property that
affine symplectomorphisms preserve the linear symplectic
width. We shall prove that this property in fact characterizes
symplectic and anti-symplectic linear maps.
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Recall that an ellipsoid centered at 0 in the Euclidean space
R2n is given by

E =

{
x ∈ R2n|

2n∑
i ,j=1

aijxixj = 〈Ax , x〉 ≤ 1

}

where the 2n × 2n matrix A = (aij) is symmetric positive
definite.

Proposition.

1 For any r > 0 and for any Φ an isomorphism, Φ(B2n(r))
is an ellipsoid centered at 0.

2 If E is an ellipsoid centered at 0 then for any r > 0 there
exists Φ an isomorphism such that E = Φ(B2n(r)).
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There exists Φ ∈ O(2n) such that

Φ−1(E ) =

{
(x1, . . . , x2n) ∈ R2n|

2n∑
i=1

x2
i

ρ2
i

≤ 1

}
,

where ρi =
√
λ−1
i and 0 < λ1 ≤ . . . ≤ λ2n are the eigenvalues

of the matrix (aij).
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Symplectically an ellipsoid can be characterized as follows.

Lemma.

Given any ellipsoid

E =

{
(x1, . . . , x2n) ∈ R2n|

2n∑
i ,j=1

aijxixj ≤ 1

}

there is a linear symplectomorphism Φ ∈ Sp(2n) such that

Φ(E ) = E (r) :=

{
(x , y) ∈ R2n|

n∑
j=1

x2
j + y 2

j

r 2
j

≤ 1

}
,

for some n-uple r = (r1, . . . , rn) with 0 < r1 ≤ . . . ≤ rn.
Moreover, r is entirely determined by E .
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Proof.

Since ω0 is nondegenerate there exists a skew-symmetric (with
respect to 〈 , 〉A) nonsingular endomorphism J such that

ω0(u, v) = 〈Ju, v〉A.

According to a classical result in linear algebra there exists an
orthonormal basis of 〈 , 〉A say (u1, . . . , un, v1, . . . , vn) and a
family of real number 0 < a1 ≤ . . . ≤ an such that, for
i = 1, . . . , n,

Jui = aivi and Jvi = −aiui .

For i = 1, . . . , n, put u′i =
√

a−1
i ui and v ′i =

√
a−1
i vi . It is easy

to check that (u′1, . . . , u
′
n, v
′
1, . . . , v

′
n) is a symplectic basis of

R2n. Denote by Φ the element of Sp(2n) which maps the
canonical basis to this basis.
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Now, we have

〈u, u〉A = ω0(J−1u, u)

=
n∑

i=1

(
ω0(J−1u, v ′i )ω0(u′i , u)− ω0(J−1u, u′i )ω0(v ′i , u)

)
=

n∑
i=1

(
ω0(J−1v ′i , u)ω0(Φei , u)− ω0(J−1u′i , u)ω0(Φen+1, u)

)
=

n∑
i=1

(
1

ai
(ω0(u′i , u)ω0(Φei , u) + ω0(v ′i , u)ω0(Φen+1, u))

)

=
n∑

i=1

(
1

ai
(ω0(Φei , u)ω0(Φei , u) + ω0(Φen+1, u)ω0(Φen+1, u))

)

=
n∑

i=1

(
1

ai
(ω0(ei ,Φ−1u)2 + ω0(en+1,Φ−1u)2)

)
,

and the first statement of the lemma follows.
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To prove uniqueness of the n-uple r1 ≤ . . . ≤ rn consider the
diagonal matrix

D(r) = diag(1/r 2
1 , . . . , 1/r

2
n , 1/r

2
1 , . . . , 1/r

2
n ).

We must show that if there is a symplectic matrix Φ such that

ΦTD(r)Φ = D(r ′)

then r = r ′. Since J0ΦT = Φ−1J0 the above identity is
equivalent to

Φ−1J0D(r)Φ = J0D(r ′).

Hence J0D(r) and J0D(r ′) have the same eigenvalues. But it
is easy the check that the eigenvalues of J0D(r) are
±ı/r 2

1 , . . . ,±ı/r 2
n . This proves the lemma. �
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In view of Lemma 12 we define the symplectic spectrum of
an ellipsoid E to be the unique n-uple r = (r1, . . . , rn) with
0 < r1 ≤ . . . ≤ rn such that E is linearly symplectomorphic to
E (r). The spectrum is invariant under linear
symplectomorphisms and, in fact, two ellipsoids in Rn, which
are centered at 0, are linearly symplectomorphic if and only if
they have the same spectrum. Moreover, the volume of an
ellipsoid E ⊂ R2n is given by

Vol(E ) =

∫
E

ωn
0

n!
= πn

n∏
i=1

r 2
i .

Note that

B2n(r1) ⊂ E (r1, . . . , rn) ⊂ Z 2n(r1).

Thus
WL(E (r1, . . . , rn)) = πr 2

1 .
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The following theorem characterizes the linear symplectic
width of an ellipsoid in terms of the spectrum.

Proposition.

Let E ⊂ R2n an ellipsoid centered at 0. Then

WL(E ) = πr 2
1 ,

where r = (r1, . . . , rn) is the symplectic spectrum associated to
E .
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We finish this section by the following characterization of
linear symplectic or anti-symplectic maps.

Theorem.

Let Φ : R2n −→ R2n be a linear map. Then the following are
equivalent.
(i) Φ preserves the linear width of ellipsoids centered at 0.
(ii) The matrix Φ is either symplectic or anti-symplectic, i.e.,
Φ∗ω0 = ±ω0.
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Proof.

(ii) implies (i) is obvious. Now assume (i). Note first that Φ is
invertible and Φ−1 preserves the linear width of ellipsoids
centered at 0. Indeed,

WL(Φ−1E ) = WL(ΦΦ−1E ) = WL(E )

for every ellipsoid E which is centered at zero.
We shall prove that Φ has the nonsqueezing property. To see
this let B be a linear symplectic ball or radius r and Z be a
linear symplectic cylinder of radius R such that

ΦB ⊂ Z .

Then it follows that

πr 2 = WL(B) = WL(ΦB) ≤WL(Z ) = πR2

and hence r ≤ R . �
75



Symplectic manifolds and Hamiltonian flows

A symplectic structure on a manifold M is non-degenerate
closed 2-form ω ∈ Ω2(M), i.e., ω is a differential 2-form such
that :

1 for any x ∈ M , (TxM , ωx) is a symplectic vector space,
2 dω = 0.

The couple (M , ω) is called symplectic manifold.

Let (M , ω) be symplectic manifold. The nondegeneracy implies
to the existence of a canonical isomorphism between the
tangent and the cotangent bundle, namely,

ω[ : TM −→ T ∗M : u −→ iuω = ω(u, .).

In particular, for any function H ∈ C∞(M), there exists a
unique vector field denoted by XH such that

iXH
ω = dH . (4)
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The vector field XH is called Hamiltonian vector field
associated to H .

On the other hand, the nondegeneracy is equivalent to the
fact that the maximal form Ω = ∧nω is a volume form and
hence any symplectic manifold is orientable.
A symplectomorphism of (M , ω) is a diffeomorphism
φ : M −→ M such that φ∗ω = ω. We denote the group of
symplectomorphisms by Symp(M , ω).
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The vector field XH is called Hamiltonian vector field
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A vector field X is called symplectic if its flow preserves ω,
i.e., the Lie derivative of ω is the direction of X .

Note that according to the Cartan’s formula

LXω = diXω + iXdω

and since dω = 0, X is symplectic if and only if iXω is closed.
We denote by X (M , ω) the space of symplectic vector fields.
It is obvious that any Hamiltonian vector field is symplectic.
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Example.

1 (R2n, ω0) is the standard model of symplectic manifold.

2 Any oriented surface S is a symplectic manifold.

3 The canonical symplectic structure of the
cotangent bundle. Let L be a smooth manifold, consider
T ∗L the total space of its cotangent bundle and denote
by π : T ∗L −→ L the canonical projection. The Liouville
form in T ∗L is the differential 1-form λ in T ∗L given by

λ(Zα) = α(Tαπ(Zα)),

where α ∈ T ∗L and Zα ∈ Tα(T ∗L). Let (q1, . . . , qn) be a
coordinates system on L and (q1, . . . , qn, p1, . . . , pn) the
associated coordinates system on T ∗L. Then

λ =
n∑

i=1

pidqi .

This relation implies that

dλ =
n∑

i=1

dpi ∧ dqi

and hence (T ∗L, dλ) is a symplectic manifold. This
symplectic structure on T ∗L is called canonical.
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Darboux’s Theorem asserts that there is no local invariant in
symplectic geometry, more precisely, in a given dimension all
symplectic forms are locally diffeomorphic.

Theorem.

Let (M , ω) be a symplectic manifold and m ∈ M . Then there
exists a coordinates system (x1, . . . , xn, y1, . . . , yn) such that

ω =
n∑

i=1

dxi ∧ dyi .

Such coordinates are called Darboux’s coordinates.

86



Proof.

According to Theorem 5 there is a coordinates system
(q1, . . . , qn, p1, . . . , pn) defined on an open set U containing m

such that if ω1 =
n∑

i=1

dqi ∧ dpi then

ω(m) = ω1(m).

Moreover, since ω1 − ω0 is closed there exists σ ∈ Ω1(U) such
that

dσ = ω1 − ω0.

For t ∈ [0, 1] put ωt = ω + tdσ. Since ωt(m) is
nondegenerate and [0, 1] is compact, we can choose U such
that ωt is nondegenerate on U for every t ∈ [0, 1].
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We consider now the family of vector fields (Xt) defined by

iXtωt = −σ

and Φt the family of diffeomorphisms defined by

d

dt
Φt = Xt ◦ Φt and Φ0 = id.

Since Xt(m) = 0 for every t ∈ [0, 1] we can shrink U if
necessary to get Φt defined for every t ∈ [0, 1] and
Φt(U) ⊂ U . Now

d

dt
Φ∗tωt = Φ∗t

(
d

dt
ωt + iXtdωt + diXtωt

)
= Φ∗t (dσ − dσ) = 0,

and hence Φ∗1ω1 = ω and the theorem follows. �
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A Hamiltonian system is a triple (M , ω,H) where (M , ω) is
a symplectic manifold and H a function on M . The
Hamiltonian vector field XH associated to H has a flow called
Hamiltonian flow and its integral curves are solution of

ẋ(t) = XH(x(t)).

If (x1, . . . , xn, y1, . . . , yn) are Darboux’s coordinates then this
differential system is equivalent to

ẋi =
∂H

∂yi
and ẏi = −∂H

∂xi
, i = 1, . . . , n. (5)
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Example.

The harmonic oscillator is the Hamiltonian system (R2, ω0,H)
with

H(x , y) =
1

2
(x2 + y 2).

The differential system (5) is written

ẋ = y and ẏ = −x

which equivalent to

ẋ = y and ẍ = −x .

The corresponding Hamiltonian flow is given by

Φt(x , y) = (x cos t + y sin t,−x sin t + y cos t).
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The Hofer-Zehnder Capacity

In this final section we establish the existence of the
Hofer-Zehnder capacity and hence prove the Gromov’s
nonsqueezing theorem. This capacity is based on properties of
the periodic orbits of Hamiltonian flows on a symplectic
manifold (M , ω) and was introduced in [4].
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Let (M , ω) be a symplectic manifold. Denote the set of all
nonnegative Hamiltonian functions which are compactly
supported on the interior of M and which attain their
maximum on some open set by

H(M) =
{
H ∈ C∞0 (intM)|H ≥ 0,H|U = supH form some open set U

}
.
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For every function H consider the time-independent
Hamiltonian flow φt

H ∈ Sympc(M , ω) generated by the
Hamiltonian vector field XH .

An orbit x(t) = φt
H(x0) is called T -periodic if

x(t + T ) = x(t) for every t ∈ R.

Call a function H ∈ H(M) admissible if the corresponding
Hamiltonian flow has no nonconstant T -periodic orbit with
period T ≤ 1. In other word, every nonconstant periodic orbit
has period > 1.

Denote the set of admissible Hamiltonian functions by

Had(M , ω) = {H ∈ H(M)| H admissible} .
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The following lemma shows that for every Hamiltonian
function H ∈ H(M) the function εH is admissible for ε > 0
sufficiently small. Roughly speaking, if a vector field is small
then its orbits are slow and hence the period is long.

Lemma.

Let x(t) = x(t + T ) ∈ Rm be a periodic solution of the
differential equation

ẋ(t) = f (x),

where f : Rm −→ Rm is continuously differentiable. If

T . sup
x
‖df (x)‖ < 1

then x(t) is constant.
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Proof.

Since x(0) = x(T ) an easy calculation shows that

ẋ(t) =

∫ t

0

s

T
ẍ(s)ds +

∫ T

t

s − T

T
ẍ(s)ds.

This implies

|ẋ(t)| ≤
∫ T

0

|ẍ(s)|ds ≤
√
T‖ẍ‖L2[0,T ]

and hence
‖ẋ‖L2 ≤ T‖ẍ‖L2 .
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Note denote ε = sup ‖df (x)‖ and note that

|ẍ | ≤ ‖df (x)‖.|ẋ | ≤ ε|ẋ |.

Hence
‖ẍ‖L2 ≤ ε‖ẋ‖L2 ≤ εT‖ẍ‖L2 .

Since εT < 1 it follows ẍ(t) ≡ 0. Hence ẋ(t) is constant and
periodic and hence x(t) is constant. �
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The Hofer-Zehnder capacity of (M , ω) is defined by

cHZ (M , ω) = sup
H∈Had(M,ω)

‖H‖

where ‖H‖ is the Hofer norm given by

‖H‖ = sup
x∈M

H(x)− inf
x∈M

H(x).

One can deduce easily from Lemma 18 that for every
nonempty symplectic manifold (M , ω), cHZ (M , ω) > 0.
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The following theorem is due to Hofer and Zehnder [4].

Theorem.

The map (M , ω) 7→ cHZ (M , ω) satisfies the monotonicity,
conformality and normalization axioms of symplectic capacity.
Moreover,

cHZ (B2n(r), ω0) = cHZ (Z 2n(r), ω0) = πr 2

for every r > 0.
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The proof of this theorem rests on the following existence
result for periodic orbits of Hamiltonian differential equation in
R2n which a proof will be given in the last section.

Theorem.

Assume H ∈ H(Z 2n(1)) with supH > π. Then the
Hamiltonian flow of H has a nonconstant periodic orbit of
period 1.
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Proof of Theorem 19.
Monotonicity.

Let φ : (M1, ω1) −→ (M2, ω2) be a symplectic embedding with
dimM1 = dimM2.

If H1 : M1 −→ R is a compactly supported function then there
is a unique compactly supported function H2 : M2 −→ R such
that H2 vanishes on M2 − φ(M1) and H1 = H2 ◦ φ. Since H1 is
compactly supported the function H2 is smooth.
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Since φ intertwine the Hamiltonian flows of H1 et H2 there is a
one-to-one correspondence of nonconstant periodic orbits of
these flow. Hence

cHZ (M1, ω1) = sup
H1∈Had(M1,ω1)

‖H1‖

= sup
H2∈Had(M2,ω2)

supp(H2)⊂φ(M1)

‖H2‖

≤ cHZ (M2, ω2).

This proves monotonicity.
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Conformality.

Since the Hamiltonian vector field of H with respect to ω
agree with the Hamiltonian field of λH with respect to λω and
hence

Had(M , λω) = {λH |H ∈ Had(M , ω)}

and conformality follows.
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Non triviality.

We shall now prove the inequality cHZ (B2n(1), ω0) ≥ π.

Let ε > 0 and choose a smooth function f : [0, 1] −→ R such
that

∀r , −π < f ′(r) ≤ 0, f (r) = π − ε, for r near 0,

f (r) = 0 for r near 1.

Define H(z) = f (|z |2) for z ∈ B2n(1). Then

H ∈ H(B2n(1)) and ‖H‖ = π − ε.

We must prove now that H is admissible.
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But the orbits of the Hamiltonian flow are easy to calculate
explicitly. According to (5), the Hamiltonian differential
equation of H is of the form

ẋ = 2f ′(|z |2)y and ẏ = −2f ′(|z |2)x

and it follows that r = |z(t)|2 is constant along the solutions.
In complex notation z = x + ıy the solutions are

z(t) = exp(−2ıf ′(r)t)z0

and are all periodic.
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They are nonconstant whenever f ′(r) 6= 0 and in this case the
period is T = π

f ′(r)
> 1. Hence for every ε > 0 there is an

admissible Hamiltonian function H ∈ H(B2n) with
‖H‖ = π − ε and this proves the inequality

cHZ (B2n(1), ω0) ≥ π.
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Now Theorem 20 asserts that for every H ∈ H(Z 2n(1)) with
‖H‖ > π the corresponding Hamiltonian flow has nonconstant
periodic orbit of period 1. Hence any such function is not
admissible and this implies

cHZ (Z 2n(1), ω0) ≤ π.

By the monotonicity axiom we have

cHZ (B2n(1), ω0) = cHZ (Z 2n(1), ω0) = π

and this proves the theorem. �
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