On the Geometry of Noncommutative Deformations

Mohamed Boucetta
Joint work with Zouhair Saassai
m.boucetta@uca.ac.ma
Cadi-Ayyad University
Morocco

Workshop on Differential Geometry and Non Associative Algebras CIRM Marseille 12-15 November 2019

Outline

- Origin of the problem
- Basic tools
- Hawkins's Result

■ Fundamental example

- Problem
- Solution

Origin of the problem : [Hawkins, J. Diff. Geom. 77 (2007) 385-424]

Let \mathcal{A}_{0} be an algebra. A deformation in the sense of Hawkins of \mathcal{A}_{0} is an extension of \mathcal{A}_{0} of the form

$$
0 \longrightarrow \hbar \mathcal{A} \longrightarrow \mathcal{A} \xrightarrow{P} \mathcal{A}_{0} \longrightarrow 0
$$

where \hbar is central in \mathcal{A} and for any $a \in \mathcal{A}$

$$
\hbar a=0 \Longrightarrow a=0 .
$$

Origin of the problem :[Hawkins, J. Diff. Geom. 77 (2007) 385-424]

Let \mathcal{A}_{0} be an algebra. A deformation in the sense of Hawkins of \mathcal{A}_{0} is an extension of \mathcal{A}_{0} of the form

$$
0 \longrightarrow \hbar \mathcal{A} \longrightarrow \mathcal{A} \xrightarrow{P} \mathcal{A}_{0} \longrightarrow 0,
$$

where \hbar is central in \mathcal{A} and for any $a \in \mathcal{A}$

$$
\hbar a=0 \Longrightarrow a=0 .
$$

Example

Fix $a \in \mathbb{C}$. Take $\mathcal{A}_{0}=\mathbb{C}, \mathcal{A}=\mathbb{C}[X], \hbar=(X-a)$ and $P(Q)=Q(a)$.

Example
$\mathcal{A}_{0}=C^{\infty}(M, \mathbb{C})$ and

$$
\mathcal{A}:=\left\{\sum_{n \geq 0} f_{n} \hbar^{n}, f_{n} \in \mathcal{A}_{0}\right\}
$$

a - $^{\text {product }}{ }^{1}$ on \mathcal{A} given by, $f, g \in \mathcal{A}_{0} \subset \mathcal{A}$,

$$
f \star g=f g+\sum_{n \geq 1} B_{n}(f, g) \hbar^{n}
$$

and $P: \mathcal{A} \longrightarrow \mathcal{A}_{0}$ given by

$$
P\left(\sum_{n \geq 0} f_{n} \hbar^{n}\right)=f_{0} .
$$

1. By virtue of a famous theorem of Kontsevich such a \star-product exists.

Origin of the problem : [Hawkins, J. Diff. Geom. 77 (2007) 385-424]

Let $\left(\Omega^{*}(M), \wedge, d\right)$ be the graded algebra of differential forms on a manifold M and

$$
0 \longrightarrow \hbar \mathcal{A} \longrightarrow \mathcal{A} \xrightarrow{\mathcal{P}} \Omega^{*}(M) \longrightarrow 0
$$

a deformation of $\Omega^{*}(M)$ in the sense of Hawkins.

Origin of the problem :[Hawkins, J. Diff. Geom. 77 (2007) 385-424]

Let $\left(\Omega^{*}(M), \wedge, d\right)$ be the graded algebra of differential forms on a manifold M and

$$
0 \longrightarrow \hbar \mathcal{A} \longrightarrow \mathcal{A} \xrightarrow{\mathcal{P}} \Omega^{*}(M) \longrightarrow 0
$$

a deformation of $\Omega^{*}(M)$ in the sense of Hawkins. Consider the bracket

$$
\{\mathcal{P}(\alpha), \mathcal{P}(\beta)\}=\mathcal{P}\left(\frac{1}{\hbar}[\alpha, \beta]\right), \quad \alpha, \beta \in \mathcal{A}
$$

where

$$
[\alpha, \beta]=\alpha \cdot \beta-(-1)^{\operatorname{deg} \alpha \operatorname{deg} \beta} \beta \cdot \alpha
$$

is the graded commutator in \mathcal{A}.

The bracket $\{$,$\} defines a Poisson graded differential algebra structure$ on $\Omega^{*}(M)$.

The bracket $\{$,$\} defines a Poisson graded differential algebra structure$ on $\Omega^{*}(M)$. It is entirely determined by

$$
\pi(d f, d g):=\{f, g\} \quad \text { and } \quad \mathcal{D}_{d f} \alpha:=\{f, \alpha\}, \quad f, g \in C^{\infty}(M), \alpha \in \Omega^{1}(M) .
$$

The bracket $\{$,$\} defines a Poisson graded differential algebra structure$ on $\Omega^{*}(M)$. It is entirely determined by $\pi(d f, d g):=\{f, g\} \quad$ and $\quad \mathcal{D}_{d f} \alpha:=\{f, \alpha\}, \quad f, g \in C^{\infty}(M), \alpha \in \Omega^{1}(M)$.

Thus a deformation of $\Omega^{*}(M)$ defines on M a tensor field $\pi \in \Gamma\left(\wedge^{2} T M\right)$ and a map

$$
\mathcal{D}: \Omega^{1}(M) \times \Omega^{1}(M) \longrightarrow \Omega^{1}(M) .
$$

The bracket $\{$,$\} defines a Poisson graded differential algebra structure$ on $\Omega^{*}(M)$. It is entirely determined by
$\pi(d f, d g):=\{f, g\} \quad$ and $\quad \mathcal{D}_{d f} \alpha:=\{f, \alpha\}, \quad f, g \in C^{\infty}(M), \alpha \in \Omega^{1}(M)$.
Thus a deformation of $\Omega^{*}(M)$ defines on M a tensor field $\pi \in \Gamma\left(\wedge^{2} T M\right)$ and a map

$$
\mathcal{D}: \Omega^{1}(M) \times \Omega^{1}(M) \longrightarrow \Omega^{1}(M) .
$$

The Leibniz rule gives

$$
\mathcal{D}_{d f} g \alpha=\pi_{\#}(d f)(g) \alpha+g \mathcal{D}_{d f} \alpha,
$$

i.e., \mathcal{D} is a contravariant connection associated to π.

The bracket $\{$,$\} defines a Poisson graded differential algebra structure$ on $\Omega^{*}(M)$. It is entirely determined by
$\pi(d f, d g):=\{f, g\} \quad$ and $\quad \mathcal{D}_{d f} \alpha:=\{f, \alpha\}, \quad f, g \in C^{\infty}(M), \alpha \in \Omega^{1}(M)$.
Thus a deformation of $\Omega^{*}(M)$ defines on M a tensor field $\pi \in \Gamma\left(\wedge^{2} T M\right)$ and a map

$$
\mathcal{D}: \Omega^{1}(M) \times \Omega^{1}(M) \longrightarrow \Omega^{1}(M) .
$$

The Leibniz rule gives

$$
\mathcal{D}_{d f} g \alpha=\pi_{\#}(d f)(g) \alpha+g \mathcal{D}_{d f} \alpha,
$$

i.e., \mathcal{D} is a contravariant connection associated to π.

The graded Jacobi identity of $\{$,$\} is equivalent to :$

- π is Poisson tensor,

The graded Jacobi identity of $\{$,$\} is equivalent to :$

- π is Poisson tensor,
- the curvature of \mathcal{D} vanishes,

The graded Jacobi identity of $\{$,$\} is equivalent to :$

- π is Poisson tensor,
- the curvature of \mathcal{D} vanishes,
- the metacurvature of \mathcal{D} vanishes.

Moreover, the fact that d is a derivation of $\{$,$\} implies that \mathcal{D}$ is torsion free.

The graded Jacobi identity of $\{$,$\} is equivalent to :$

- π is Poisson tensor,
- the curvature of \mathcal{D} vanishes,
- the metacurvature of \mathcal{D} vanishes.

Moreover, the fact that d is a derivation of $\{$,$\} implies that \mathcal{D}$ is torsion free.

The triple (M, π, \mathcal{D}) constitutes the geometry of the deformation of $\Omega^{*}(M)$.

Deformation of the spectral triple associated to a Riemannian manifold

Let (M, g) be a Riemannian manifold. Any deformation of the spectral triple ${ }^{2}$ of (M, g) induces a deformation of $\Omega^{*}(M)$ and hence, gives rise to a Poisson tensor π and a contravariant connexion \mathcal{D} satisfying the conditions above.
2. (Hilbert space, an algebra, unbounded self-adjoint operator).

Deformation of the spectral triple associated to a Riemannian manifold

Let (M, g) be a Riemannian manifold. Any deformation of the spectral triple ${ }^{2}$ of (M, g) induces a deformation of $\Omega^{*}(M)$ and hence, gives rise to a Poisson tensor π and a contravariant connexion \mathcal{D} satisfying the conditions above.
In this case \mathcal{D} is the Levi-Civita contravariant connection associated to (π, g).
2. (Hilbert space, an algebra, unbounded self-adjoint operator).

Deformation of the spectral triple associated to a Riemannian manifold

Let (M, g) be a Riemannian manifold. Any deformation of the spectral triple ${ }^{2}$ of (M, g) induces a deformation of $\Omega^{*}(M)$ and hence, gives rise to a Poisson tensor π and a contravariant connexion \mathcal{D} satisfying the conditions above.
In this case \mathcal{D} is the Levi-Civita contravariant connection associated to (π, g).
(M, g, π, \mathcal{D}) is the geometry of the deformation of the spectral triple associated to (M, g).
2. (Hilbert space, an algebra, unbounded self-adjoint operator).

Poisson manifolds

DEFINITION

A Poisson bracket on M is

$$
\{\cdot, \cdot\}: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

- \mathbb{R}-bilinear
- $\{f, g\}=-\{g, f\} \quad$ (anti-symmetric)
- $\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}=0 \quad$ (Jacobi)
- $\{f, g h\}=g\{f, h\}+h\{f, g\} \quad$ (Leibniz)

Endowed with this bracket, M is a Poisson manifold.

Poisson manifolds

DEFINITION

A Poisson bracket on M is

$$
\{\cdot, \cdot\}: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

- \mathbb{R}-bilinear
- $\{f, g\}=-\{g, f\} \quad$ (anti-symmetric)
- $\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}=0 \quad$ (Jacobi)
- $\{f, g h\}=g\{f, h\}+h\{f, g\} \quad$ (Leibniz)

Endowed with this bracket, M is a Poisson manifold.

ExAmples

- Every symplectic manifold $(M, \omega):\{f, g\}:=\omega\left(X_{f}, X_{g}\right)$.
- The dual of a Lie algebra $(\mathfrak{g},[\cdot, \cdot])$:

$$
\{f, g\}(a):=\prec a,\left[d_{a} f, d_{a} g\right] \succ \quad\left(a \in \mathfrak{g}^{*}, f, g \in C^{\infty}\left(\mathfrak{g}^{*}\right)\right) .
$$

Poisson manifolds

A Poisson bracket defines :

- a bivector field $\pi \in \Gamma\left(\wedge^{2} T M\right): \pi(d f, d g):=\{f, g\}$. Jacobi $\Longleftrightarrow[\pi, \pi]=0$ where $[\cdot, \cdot]$ Schouten-Nijenhuis bracket. .

Poisson manifolds

A Poisson bracket defines :

- a bivector field $\pi \in \Gamma\left(\wedge^{2} T M\right): \pi(d f, d g):=\{f, g\}$. Jacobi $\Longleftrightarrow[\pi, \pi]=0$ where $[\cdot, \cdot]$ Schouten-Nijenhuis bracket. .
- a morphism of vector bundles $\pi_{\sharp}: T^{*} M \rightarrow T M, a \mapsto \pi(a, \cdot)$, called anchor.

Poisson manifolds

A Poisson bracket defines :

- a bivector field $\pi \in \Gamma\left(\wedge^{2} T M\right): \pi(d f, d g):=\{f, g\}$. Jacobi $\Longleftrightarrow[\pi, \pi]=0$ where $[\cdot, \cdot]$ Schouten-Nijenhuis bracket. .
- a morphism of vector bundles $\pi_{\sharp}: T^{*} M \rightarrow T M, a \mapsto \pi(a, \cdot)$, called anchor.
- a distribution $\mathcal{C}: x \in M \mapsto \operatorname{Im} \pi_{\sharp}(x)$.

Poisson manifolds

A Poisson bracket defines :

- a bivector field $\pi \in \Gamma\left(\wedge^{2} T M\right): \pi(d f, d g):=\{f, g\}$. Jacobi $\Longleftrightarrow[\pi, \pi]=0$ where $[\cdot, \cdot]$ Schouten-Nijenhuis bracket. .
- a morphism of vector bundles $\pi_{\sharp}: T^{*} M \rightarrow T M, a \mapsto \pi(a, \cdot)$, called anchor.
- a distribution $\mathcal{C}: x \in M \mapsto \operatorname{Im} \pi_{\sharp}(x)$.
$-\rho_{\pi}(x):=\operatorname{dim} \mathcal{C}_{x}$ is the rank of π on x;

Poisson manifolds

A Poisson bracket defines :

- a bivector field $\pi \in \Gamma\left(\wedge^{2} T M\right): \pi(d f, d g):=\{f, g\}$. Jacobi $\Longleftrightarrow[\pi, \pi]=0$ where $[\cdot, \cdot]$ Schouten-Nijenhuis bracket. .
- a morphism of vector bundles $\pi_{\sharp}: T^{*} M \rightarrow T M, a \mapsto \pi(a, \cdot)$, called anchor.
- a distribution $\mathcal{C}: x \in M \mapsto \operatorname{Im} \pi_{\sharp}(x)$.
- $\rho_{\pi}(x):=\operatorname{dim} \mathcal{C}_{x}$ is the rank of π on x;
- \mathcal{C} is singular : $\rho_{\pi} \neq$ cst ;

Poisson manifolds

A Poisson bracket defines :

- a bivector field $\pi \in \Gamma\left(\wedge^{2} T M\right): \pi(d f, d g):=\{f, g\}$. Jacobi $\Longleftrightarrow[\pi, \pi]=0$ where $[\cdot, \cdot]$ Schouten-Nijenhuis bracket. .
- a morphism of vector bundles $\pi_{\sharp}: T^{*} M \rightarrow T M, a \mapsto \pi(a, \cdot)$, called anchor.
- a distribution $\mathcal{C}: x \in M \mapsto \operatorname{Im} \pi_{\sharp}(x)$.
- $\rho_{\pi}(x):=\operatorname{dim} \mathcal{C}_{x}$ is the rank of π on x;
$-\mathcal{C}$ is singular : $\rho_{\pi} \neq$ cst;
- Th open set $M^{\text {reg }}=\left\{\right.$ points où ρ_{π} locally constant $\}$ is dense in M; a point in $M^{\text {reg }}$ is called regular.

Poisson manifolds

A Poisson bracket defines :

- a bivector field $\pi \in \Gamma\left(\wedge^{2} T M\right): \pi(d f, d g):=\{f, g\}$. Jacobi $\Longleftrightarrow[\pi, \pi]=0$ where $[\cdot, \cdot]$ Schouten-Nijenhuis bracket. .
- a morphism of vector bundles $\pi_{\sharp}: T^{*} M \rightarrow T M, a \mapsto \pi(a, \cdot)$, called anchor.
- a distribution $\mathcal{C}: x \in M \mapsto \operatorname{Im} \pi_{\sharp}(x)$.
$-\rho_{\pi}(x):=\operatorname{dim} \mathcal{C}_{x}$ is the rank of π on x;
$-\mathcal{C}$ is singular : $\rho_{\pi} \neq \mathrm{cst}$;
- Th open set $M^{\text {reg }}=\left\{\right.$ points où ρ_{π} locally constant $\}$ is dense in M; a point in $M^{\text {reg }}$ is called regular.
- a Lie bracket on $\Omega^{1}(M)$, called de Koszul's bracket :

$$
[\alpha, \beta]_{\pi}:=L_{\pi_{\sharp}(\alpha)} \beta-L_{\pi_{\sharp}(\beta)} \alpha-d(\pi(\alpha, \beta)) .
$$

Contravariant connections

DEFINITION

A contravariant connection on (M, π) is

$$
\mathcal{D}: \Omega^{1}(M) \times \Omega^{1}(M) \rightarrow \Omega^{1}(M), \text { notée }(\alpha, \beta) \mapsto \mathcal{D}_{\alpha} \beta,
$$

\mathbb{R}-bilinear and satisfying

$$
\mathcal{D}_{f \alpha} \beta=f \mathcal{D}_{\alpha} \beta, \quad \mathcal{D}_{\alpha}(f \beta)=f \mathcal{D}_{\alpha} \beta+\pi_{\sharp}(\alpha)(f) \beta \quad\left(f \in \mathcal{C}^{\infty}(M)\right) .
$$

Contravariant connections

Definition

A contravariant connection on (M, π) is

$$
\mathcal{D}: \Omega^{1}(M) \times \Omega^{1}(M) \rightarrow \Omega^{1}(M), \text { notée }(\alpha, \beta) \mapsto \mathcal{D}_{\alpha} \beta,
$$

\mathbb{R}-bilinear and satisfying

$$
\mathcal{D}_{f \alpha} \beta=f \mathcal{D}_{\alpha} \beta, \quad \mathcal{D}_{\alpha}(f \beta)=f \mathcal{D}_{\alpha} \beta+\pi_{\sharp}(\alpha)(f) \beta \quad\left(f \in \mathcal{C}^{\infty}(M)\right) .
$$

The torsion and the curvature of \mathcal{D} are :

$$
\begin{aligned}
T(\alpha, \beta) & :=\mathcal{D}_{\alpha} \beta-\mathcal{D}_{\beta} \alpha-[\alpha, \beta]_{\pi}, \\
R(\alpha, \beta) \gamma & :=\mathcal{D}_{\alpha} \mathcal{D}_{\beta} \gamma-\mathcal{D}_{\beta} \mathcal{D}_{\alpha} \gamma-\mathcal{D}_{[\alpha, \beta]_{\pi}} \gamma .
\end{aligned}
$$

When $T=0$ (resp. $R=0$), \mathcal{D} is called torsionless (resp. flat).

Contravariant connexion

Fundamental Example

Given a Riemannian metric g on $(M, \pi), \exists$! contravariant connection \mathcal{D} of (M, π) such that $T=0$ et $\mathcal{D} g=0$; it is given by :

$$
\begin{aligned}
\left\langle\mathcal{D}_{\alpha} \beta, \gamma\right\rangle & =\frac{1}{2}\left\{\pi_{\sharp}(\alpha) \cdot\langle\beta, \gamma\rangle+\pi_{\sharp}(\beta) \cdot\langle\alpha, \gamma\rangle-\pi_{\sharp}(\gamma) \cdot\langle\alpha, \beta\rangle\right. \\
& \left.+\left\langle[\alpha, \beta]_{\pi}, \gamma\right\rangle-\left\langle[\beta, \gamma]_{\pi}, \alpha\right\rangle+\left\langle[\gamma, \alpha]_{\pi}, \beta\right\rangle\right\}
\end{aligned}
$$

and called the Levi-Civita contravariant connection associated to (π, g) (in short : CLCC).

Metacurvature?

Hawkins's Bracket

If \mathcal{D} is a contravariant connection torsionless on (M, π),

$$
\exists!\{\cdot, \cdot\}: \Omega^{*}(M) \times \Omega^{*}(M) \longrightarrow \Omega^{*}(M)
$$

- \mathbb{R}-bilinear,
- degree 0 : $\operatorname{deg}\{\sigma, \tau\}=\operatorname{deg} \sigma+\operatorname{deg} \tau$,
- graded commutative : $\{\sigma, \tau\}=-(-1)^{\operatorname{deg} \sigma \operatorname{deg} \tau}\{\tau, \sigma\}$,
- Leibniz : $\quad\{\sigma, \tau \wedge \rho\}=\{\sigma, \tau\} \wedge \rho+(-1)^{\operatorname{deg} \sigma \operatorname{deg} \tau} \tau \wedge\{\sigma, \rho\}$,
- derivation: $d\{\sigma, \tau\}=\{d \sigma, \tau\}+(-1)^{\operatorname{deg} \sigma}\{\sigma, d \tau\}$,
- For any $f, g \in C^{\infty}(M)$ and any $\alpha \in \Omega^{1}(M)$,

$$
\{f, g\}=\pi(d f, d g), \quad\{f, \alpha\}=\mathcal{D}_{d f} \alpha
$$

Metacurvature?

Jacobi identity and metacurvature

What about the Jocobi identity,

$$
\{\sigma,\{\tau, \rho\}\}-\{\{\sigma, \tau\}, \rho\}-(-1)^{\operatorname{deg} \sigma \operatorname{deg} \tau}\{\tau,\{\sigma, \rho\}\}=0 ?
$$

Metacurvature?

Jacobi identity and metacurvature

What about the Jocobi identity,

$$
\mathcal{J}(\sigma, \tau, \rho):=\{\sigma,\{\tau, \rho\}\}-\{\{\sigma, \tau\}, \rho\}-(-1)^{\operatorname{deg} \sigma \operatorname{deg} \tau}\{\tau,\{\sigma, \rho\}\}=0 ?
$$

Metacurvature?

Jacobi identity and metacurvature

What about the Jocobi identity,

$$
\mathcal{J}(\sigma, \tau, \rho):=\{\sigma,\{\tau, \rho\}\}-\{\{\sigma, \tau\}, \rho\}-(-1)^{\operatorname{deg} \sigma \operatorname{deg} \tau}\{\tau,\{\sigma, \rho\}\}=0 ?
$$

In low degrees, we have :

- $\mathcal{J}(f, g, h)=0$ since π is Poisson.

■ $\mathcal{J}(f, g, \alpha)=\mathcal{D}_{d f} \mathcal{D}_{d g} \alpha-\mathcal{D}_{d\{f, g\}} \alpha-\mathcal{D}_{d g} \mathcal{D}_{d f} \alpha=R(d f, d g) \alpha$.

- If \mathcal{D} is flat then the formula

$$
\mathcal{M}(d f, \alpha, \beta):=\mathcal{J}(f, \alpha, \beta)=\{f,\{\alpha, \beta\}\}-\{\{f, \alpha\}, \beta\}-\{\{f, \beta\}, \alpha\}
$$

where $\alpha, \beta \in \Omega^{1}(M)$ defines a tensor field \mathcal{M} of type $(2,3)$.

Proposition

$\mathcal{J}=0$ if and only if \mathcal{D} flat and $\mathcal{M}=0$.

Proposition

$\mathcal{J}=0$ if and only if \mathcal{D} flat and $\mathcal{M}=0$.
\mathcal{M} is the metacurvature of \mathcal{D}.

Proposition

$\mathcal{J}=0$ if and only if \mathcal{D} flat and $\mathcal{M}=0$.
\mathcal{M} is the metacurvature of \mathcal{D}.
It is $C^{\infty}(M)$-trilinear symmetric

$$
\mathcal{M}: \Omega^{1}(M) \times \Omega^{1}(M) \times \Omega^{1}(M) \longrightarrow \Omega^{2}(M)
$$

Proposition

$\mathcal{J}=0$ if and only if \mathcal{D} flat and $\mathcal{M}=0$.
\mathcal{M} is the metacurvature of \mathcal{D}.
It is $C^{\infty}(M)$-trilinear symmetric

$$
\mathcal{M}: \Omega^{1}(M) \times \Omega^{1}(M) \times \Omega^{1}(M) \longrightarrow \Omega^{2}(M)
$$

One can see \mathcal{M} as an element of $\Gamma\left(S^{3} T M \otimes \wedge^{2} T^{*} M\right)$.

Computation of Hawkins's bracket and the metacurvature

Let (M, π, \mathcal{D}) be a manifold endowed with a Poisson tensor and a contravariant connexion torsionless and flat. The Hawkins's bracket in low degrees is given by

$$
\{f, g\}=\pi(d f, d g), \quad\{f, \alpha\}=\mathcal{D}_{d f} \alpha, f, g \in C^{\infty}(M), \alpha \in \Omega^{1}(M)
$$

Computation of Hawkins's bracket and the metacurvature

Let (M, π, \mathcal{D}) be a manifold endowed with a Poisson tensor and a contravariant connexion torsionless and flat. The Hawkins's bracket in low degrees is given by

$$
\begin{gathered}
\{f, g\}=\pi(d f, d g), \quad\{f, \alpha\}=\mathcal{D}_{d f} \alpha, f, g \in C^{\infty}(M), \alpha \in \Omega^{1}(M) . \\
\{\alpha, \beta\}=-\mathcal{D}_{\alpha} d \beta-\mathcal{D}_{\beta} d \alpha+d \mathcal{D}_{\alpha} \beta+[\alpha, d \beta]_{\pi}, \alpha, \beta \in \Omega^{1}(M) .
\end{gathered}
$$

Computation of Hawkins's bracket and the metacurvature

Let (M, π, \mathcal{D}) be a manifold endowed with a Poisson tensor and a contravariant connexion torsionless and flat. The Hawkins's bracket in low degrees is given by

$$
\begin{gathered}
\{f, g\}=\pi(d f, d g), \quad\{f, \alpha\}=\mathcal{D}_{d f} \alpha, f, g \in C^{\infty}(M), \alpha \in \Omega^{1}(M) . \\
\{\alpha, \beta\}=-\mathcal{D}_{\alpha} d \beta-\mathcal{D}_{\beta} d \alpha+d \mathcal{D}_{\alpha} \beta+[\alpha, d \beta]_{\pi}, \alpha, \beta \in \Omega^{1}(M) .
\end{gathered}
$$

The metacurvature is given

$$
\mathcal{M}(d f, \alpha, \beta)=\{f,\{\alpha, \beta\}\}-\{\{f, \alpha\}, \beta\}-\{\alpha,\{f, \beta\}\}, f \in C^{\infty}(M), \alpha, \beta \in \Omega^{1}(M)
$$

Important Remark

If α is parallel, i.e., $\mathcal{D} \alpha=0$, for any $\beta \in \Omega^{1}(M)$,

$$
\begin{equation*}
\{\alpha, \beta\}=-\mathcal{D}_{\beta} d \alpha . \tag{1}
\end{equation*}
$$

Important Remark

If α is parallel, i.e., $\mathcal{D} \alpha=0$, for any $\beta \in \Omega^{1}(M)$,

$$
\begin{equation*}
\{\alpha, \beta\}=-\mathcal{D}_{\beta} d \alpha . \tag{1}
\end{equation*}
$$

If α an β are parallel, for any $\gamma \in \Omega^{1}(M)$,

$$
\begin{equation*}
\mathcal{M}(\alpha, \beta, \gamma)=-\mathcal{D}_{\gamma} \mathcal{D}_{\beta} d \alpha . \tag{2}
\end{equation*}
$$

Back to the initial problem

If (M, g) is a Riemannian manifold,

A deformation of the spectrale triple of $(M, g)]$

$$
\downarrow
$$

$[\exists$ a Poisson tensor π on M such that:
$\left(H_{1}\right)$ The CLCC \mathcal{D} assocatied to (π, g) is flat $\left(\mathrm{H}_{2}\right)$ The metacurvature of \mathcal{D} vanishes $\left(H_{3}\right) d\left(i_{\pi} \mu\right)=0$, where μ is the Riemannian volume

Main result of Hawkins

Theorem 1 [Hawkins, J. Diff. Geom. 77 (2007) 385-424]

Let (M, π) be a Poisson manifold endowed with a Riemannian metric g. Assume that M is compact satisfying $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}\right)$. Then, near any $x \in M^{\text {reg }}$,

$$
\pi=\frac{1}{2} \sum_{i, j} a_{i j} X_{i} \wedge X_{j}
$$

where $\left(a_{i j}\right)$ is constant and invertible and $X_{1}, \ldots, X_{2 r}$ are linearly independent commuting Killing vector fields. Moreover, $\mathcal{D} \pi=0 .{ }^{3}$.
3. Not present in Hawkins's Theorem

Having this theorem in mind, it is natural to look for examples:

Having this theorem in mind, it is natural to look for examples :

- of Poisson manifolds (M, π) endowed with a contravariant connection \mathcal{D} such the torsion, the curvature and the metacurvature of \mathcal{D} vanish.

Having this theorem in mind, it is natural to look for examples :

- of Poisson manifolds (M, π) endowed with a contravariant connection \mathcal{D} such the torsion, the curvature and the metacurvature of \mathcal{D} vanish.
- of Poisson manifold (M, g, π) endowed with a Riemannian metric such that the Levi-Civita contravariant connection associated à (π, g) is flat and metaflat.

Fundamental Example

Let

- $\zeta: \mathfrak{g} \rightarrow \mathfrak{X}^{1}(M)$ an action of a Lie algebra \mathfrak{g}, of finite dimension on M.

Fundamental Example

Let
$>\zeta: \mathfrak{g} \rightarrow \mathfrak{X}^{1}(M)$ an action of a Lie algebra \mathfrak{g}, of finite dimension on M.
$-r \in \wedge^{2} \mathfrak{g} \quad$ a solution of the classical Yang-Baxter equation.

Fundamental Example

Let
$>\zeta: \mathfrak{g} \rightarrow \mathfrak{X}^{1}(M)$ an action of a Lie algebra \mathfrak{g}, of finite dimension on M.
$-r \in \wedge^{2} \mathfrak{g} \quad$ a solution of the classical Yang-Baxter equation.
Consider

$$
\pi^{r}:=\frac{1}{2} \sum_{i, j} a_{i j} \zeta\left(u_{i}\right) \wedge \zeta\left(u_{j}\right)
$$

Fundamental Example

Let

- $\zeta: \mathfrak{g} \rightarrow \mathfrak{X}^{1}(M)$ an action of a Lie algebra \mathfrak{g}, of finite dimension on M.
$-r \in \wedge^{2} \mathfrak{g} \quad$ a solution of the classical Yang-Baxter equation.
Consider

$$
\pi^{r}:=\frac{1}{2} \sum_{i, j} a_{i j} \zeta\left(u_{i}\right) \wedge \zeta\left(u_{j}\right)
$$

and $\mathcal{D}^{r}: \Omega^{1}(M) \times \Omega^{1}(M) \rightarrow \Omega^{1}(M)$,

$$
(\alpha, \beta) \mapsto \mathcal{D}_{\alpha}^{r} \beta:=\sum_{i, j} a_{i j} \alpha\left(\zeta\left(u_{i}\right)\right) \mathcal{L}_{\zeta\left(u_{j}\right)} \beta
$$

where $r=\sum a_{i j} u_{i} \wedge u_{j}$ and $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis of \mathfrak{g}.

Fundamental Example

Theorem 2 [Boucetta, Lett. Math. Phys. 83 (2008) 69-81]

(a) π^{r} and \mathcal{D}^{r} depend only on r and ζ and define, respectively, a Poisson tensor and a contravariant connection torsionless and flat on M.
(b) If g is a Riemannian metric on M and ζ preserves g, i.e., for any $u \in \mathfrak{g}, \zeta(u)$ is a Killing vector field, then \mathcal{D}^{r} is the contravariant Levi-Civita connection of $\left(\pi^{r}, g\right)$.
(c) If ζ is free, i.e., for any $x \in M$, the map $v \mapsto \zeta(v)(x)$ is injective then the metacurvature of \mathcal{D}^{r} vanishes.

Fundamental Example

Theorem 2 [Boucetta, Lett. Math. Phys. 83 (2008) 69-81]

(a) π^{r} and \mathcal{D}^{r} depend only on r and ζ and define, respectively, a Poisson tensor and a contravariant connection torsionless and flat on M.
(b) If g is a Riemannian metric on M and ζ preserves g, i.e., for any $u \in \mathfrak{g}, \zeta(u)$ is a Killing vector field, then \mathcal{D}^{r} is the contravariant Levi-Civita connection of $\left(\pi^{r}, g\right)$.
(c) If ζ is free, i.e., for any $x \in M$, the map $v \mapsto \zeta(v)(x)$ is injective then the metacurvature of \mathcal{D}^{r} vanishes.

Remark. In (c), we cannot drop the hypothesis ζ free.

The problem?

Given a Poisson manifold (M, π) endowed with a contravariant connection without torsion, flat and metaflat, for any regular point x there exists a neighborhood U of x, a free action of a finite dimensional Lie algebra $\zeta: \mathfrak{g} \rightarrow \mathfrak{X}(U)$, and a solution $r \in \wedge^{2} \mathfrak{g}$ of CYBE such that $\pi_{\mid U}=\pi^{r}$ and $\mathcal{D}=\mathcal{D}^{r}$?

The problem?

Given a Poisson manifold (M, π) endowed with a contravariant connection without torsion, flat and metaflat, for any regular point x there exists a neighborhood U of x, a free action of a finite dimensional Lie algebra $\zeta: \mathfrak{g} \rightarrow \mathfrak{X}(U)$, and a solution $r \in \wedge^{2} \mathfrak{g}$ of CYBE such that $\pi_{\mid U}=\pi^{r}$ and $\mathcal{D}=\mathcal{D}^{r}$?
Moreover, if \mathcal{D} is the Levi-Civita contravariant connection of (M, π, g), the action ζ preserves g ?

Important Remarks

When we study this problem, we remark:

Important Remarks

When we study this problem, we remark:

- Hawkins's Theorem gives a positive answer to this problem in the compact case and with an additional hypothesis.

Important Remarks

When we study this problem, we remark:

- Hawkins's Theorem gives a positive answer to this problem in the compact case and with an additional hypothesis.
- As a consequence of Hawkins's theorem $\mathcal{D} \pi=0$ and \mathcal{D} is $\mathcal{F}^{\text {reg }}$-connection, i.e.,

$$
\begin{equation*}
\left(\forall x \in M^{r e g}, \forall a \in T_{x}^{*} M\right), \pi_{\sharp}(a)=0 \Longrightarrow \mathcal{D}_{a}=0 . \tag{3}
\end{equation*}
$$

Important Remarks

When we study this problem, we remark:

- Hawkins's Theorem gives a positive answer to this problem in the compact case and with an additional hypothesis.
- As a consequence of Hawkins's theorem $\mathcal{D} \pi=0$ and \mathcal{D} is $\mathcal{F}^{\text {reg }}$-connection, i.e.,

$$
\begin{equation*}
\left(\forall x \in M^{r e g}, \forall a \in T_{x}^{*} M\right), \pi_{\sharp}(a)=0 \Longrightarrow \mathcal{D}_{a}=0 \tag{3}
\end{equation*}
$$

- In the fundamental example if the action ζ is free then \mathcal{D}^{r} satisfies (3).

Important Remarks

When we study this problem, we remark:

- Hawkins's Theorem gives a positive answer to this problem in the compact case and with an additional hypothesis.
- As a consequence of Hawkins's theorem $\mathcal{D} \pi=0$ and \mathcal{D} is $\mathcal{F}^{\text {reg }}$-connection, i.e.,

$$
\begin{equation*}
\left(\forall x \in M^{r e g}, \forall a \in T_{x}^{*} M\right), \pi_{\sharp}(a)=0 \Longrightarrow \mathcal{D}_{a}=0 \tag{3}
\end{equation*}
$$

- In the fundamental example if the action ζ is free then \mathcal{D}^{r} satisfies (3).
- If (M, π, \mathcal{D}) is a Poisson manifold endowed with a contravariant connection torsionless and flat satisfying (3) then there exits on $M^{\text {reg }}$ a tensor field \mathbf{T} of type (2,2) satisfying $\mathcal{D} \mathbf{T}=\mathcal{M}$.

Important Remarks

When we study this problem, we remark:

- Hawkins's Theorem gives a positive answer to this problem in the compact case and with an additional hypothesis.
- As a consequence of Hawkins's theorem $\mathcal{D} \pi=0$ and \mathcal{D} is $\mathcal{F}^{\text {reg }}$-connection, i.e.,

$$
\begin{equation*}
\left(\forall x \in M^{r e g}, \forall a \in T_{x}^{*} M\right), \pi_{\sharp}(a)=0 \Longrightarrow \mathcal{D}_{a}=0 . \tag{3}
\end{equation*}
$$

- In the fundamental example if the action ζ is free then \mathcal{D}^{r} satisfies (3).
- If (M, π, \mathcal{D}) is a Poisson manifold endowed with a contravariant connection torsionless and flat satisfying (3) then there exits on $M^{\text {reg }}$ a tensor field \mathbf{T} of type (2,2) satisfying $\mathcal{D} \mathbf{T}=\mathcal{M}$.
- In the fundamental example, if ζ is free the it is \mathbf{T} which vanishes implying the vanishing of the metacurvature.

The problem reformulated :

Given a Poisson manifold (M, π) endowed with a $\mathcal{F}^{\text {reg }}$ contravariant connection without torsion, flat and $\mathbf{T}=0$, for any regular point x there exists a neighborhood U of x, a free action of a finite dimensional Lie algebra $\zeta: \mathfrak{g} \rightarrow \mathfrak{X}(U)$, and a solution $r \in \wedge^{2} \mathfrak{g}$ of CYBE such that $\pi_{\mid U}=\pi^{r}$ and $\mathcal{D}=\mathcal{D}^{r}$?

The problem reformulated :

Given a Poisson manifold (M, π) endowed with a $\mathcal{F}^{\text {reg }}$ contravariant connection without torsion, flat and $\mathbf{T}=0$, for any regular point x there exists a neighborhood U of x, a free action of a finite dimensional Lie algebra $\zeta: \mathfrak{g} \rightarrow \mathfrak{X}(U)$, and a solution $r \in \wedge^{2} \mathfrak{g}$ of CYBE such that $\pi_{\mid U}=\pi^{r}$ and $\mathcal{D}=\mathcal{D}^{r}$?
Moreover, if \mathcal{D} is the Levi-Civita contravariant connection of (M, π, g), the action ζ preserves g ?

Solution : Main result

Théorème 3 [Boucetta \& Saassai, J. Geom. Phys. 82 (2014) 64-74]

Let (M, π, \mathcal{D}) be a Poisson manifold endowed with a contravariant connection torsionless and flat.

■ If \mathcal{D} is a $\mathcal{F}^{\text {reg }}$-connection and $\mathbf{T}=0$, then for any $x_{0} \in M^{r e g}$ there exists a neighborhood U of x, a free action of a finite dimensional Lie algebra $\zeta: \mathfrak{g} \rightarrow \mathfrak{X}(U)$, and an invertible solution $r \in \wedge^{2} \mathfrak{g}$ of CYBE such that $\pi_{\mid U}=\pi^{r}$ and $\mathcal{D}=\mathcal{D}^{r}$.

- Moreover, if \mathcal{D} is the Levi-Civita contravariant connection of (M, π, g) then the action ζ preserves g.

Solution : Building a flat co-frame

Let (M, π, \mathcal{D}) such that \mathcal{D} is a $\mathcal{F}^{\text {reg -connection, torsionless and flat. Let }}$ $x_{0} \in M^{\text {reg }}$ and $\left(a_{1}, \ldots, a_{2 r}\right)$ a family of covectors in $T_{x_{0}}^{*} M$ such that $\left(\pi_{\#}\left(a_{1}\right), \ldots, \pi_{\#}\left(a_{2 r}\right)\right)$ is a basis of $\operatorname{Im} \pi_{\#}\left(x_{0}\right)$.

Solution : Building a flat co-frame

Let (M, π, \mathcal{D}) such that \mathcal{D} is a $\mathcal{F}^{r e g}$-connection, torsionless and flat. Let $x_{0} \in M^{r e g}$ and $\left(a_{1}, \ldots, a_{2 r}\right)$ a family of covectors in $T_{x_{0}}^{*} M$ such that $\left(\pi_{\#}\left(a_{1}\right), \ldots, \pi_{\#}\left(a_{2 r}\right)\right)$ is a basis of $\operatorname{Im} \pi_{\#}\left(x_{0}\right)$.

■ For any $a \in T_{x_{0}}^{*} M$, there exists an open set $U \ni x_{0}$ and $\beta^{a} \in \Omega^{1}(U)$ such that $\beta^{a}\left(x_{0}\right)=a$ and $\mathcal{D} \beta^{a}=0$.

Solution : Building a flat co-frame

Let (M, π, \mathcal{D}) such that \mathcal{D} is a $\mathcal{F}^{r e g}$-connection, torsionless and flat. Let $x_{0} \in M^{r e g}$ and $\left(a_{1}, \ldots, a_{2 r}\right)$ a family of covectors in $T_{x_{0}}^{*} M$ such that $\left(\pi_{\#}\left(a_{1}\right), \ldots, \pi_{\#}\left(a_{2 r}\right)\right)$ is a basis of $\operatorname{Im} \pi_{\#}\left(x_{0}\right)$.

■ For any $a \in T_{x_{0}}^{*} M$, there exists an open set $U \ni x_{0}$ and $\beta^{a} \in \Omega^{1}(U)$ such that $\beta^{a}\left(x_{0}\right)=a$ and $\mathcal{D} \beta^{a}=0$.
■ Note $\phi_{i}=\beta^{a_{i}}$. The vector fields $\left(\pi_{\#}\left(\phi_{1}\right), \ldots, \pi_{\#}\left(\phi_{2 r}\right)\right)$ are commuting linearly independent so there exists a coordinates system $\left(\left(x^{i}\right)_{i=1}^{2 r},\left(y^{j}\right)_{j=1}^{d-2 r}\right)$ such that $\pi_{\#}\left(\phi_{i}\right)=\frac{\partial}{\partial x^{i}}, i=1, \ldots, 2 r$.

Solution : Building a flat co-frame

Let (M, π, \mathcal{D}) such that \mathcal{D} is a $\mathcal{F}^{r e g}$-connection, torsionless and flat. Let $x_{0} \in M^{r e g}$ and $\left(a_{1}, \ldots, a_{2 r}\right)$ a family of covectors in $T_{x_{0}}^{*} M$ such that $\left(\pi_{\#}\left(a_{1}\right), \ldots, \pi_{\#}\left(a_{2 r}\right)\right)$ is a basis of $\operatorname{Im} \pi_{\#}\left(x_{0}\right)$.

■ For any $a \in T_{x_{0}}^{*} M$, there exists an open set $U \ni x_{0}$ and $\beta^{a} \in \Omega^{1}(U)$ such that $\beta^{a}\left(x_{0}\right)=a$ and $\mathcal{D} \beta^{a}=0$.
■ Note $\phi_{i}=\beta^{a_{i}}$. The vector fields $\left(\pi_{\#}\left(\phi_{1}\right), \ldots, \pi_{\#}\left(\phi_{2 r}\right)\right)$ are commuting linearly independent so there exists a coordinates system $\left(\left(x^{i}\right)_{i=1}^{2 r},\left(y^{j}\right)_{j=1}^{d-2 r}\right)$ such that $\pi_{\#}\left(\phi_{i}\right)=\frac{\partial}{\partial x^{i}}, i=1, \ldots, 2 r$. We have $\pi_{\#}\left(d y^{i}\right)=0, i=1, \ldots, d-2 r$.

Solution : Building a flat co-frame

Let (M, π, \mathcal{D}) such that \mathcal{D} is a $\mathcal{F}^{r e g}$-connection, torsionless and flat. Let $x_{0} \in M^{\text {reg }}$ and $\left(a_{1}, \ldots, a_{2 r}\right)$ a family of covectors in $T_{x_{0}}^{*} M$ such that $\left(\pi_{\#}\left(a_{1}\right), \ldots, \pi_{\#}\left(a_{2 r}\right)\right)$ is a basis of $\operatorname{Im} \pi_{\#}\left(x_{0}\right)$.

■ For any $a \in T_{x_{0}}^{*} M$, there exists an open set $U \ni x_{0}$ and $\beta^{a} \in \Omega^{1}(U)$ such that $\beta^{a}\left(x_{0}\right)=a$ and $\mathcal{D} \beta^{a}=0$.

- Note $\phi_{i}=\beta^{a_{i}}$. The vector fields $\left(\pi_{\#}\left(\phi_{1}\right), \ldots, \pi_{\#}\left(\phi_{2 r}\right)\right)$ are commuting linearly independent so there exists a coordinates system $\left(\left(x^{i}\right)_{i=1}^{2 r},\left(y^{j}\right)_{j=1}^{d-2 r}\right)$ such that $\pi_{\#}\left(\phi_{i}\right)=\frac{\partial}{\partial x^{i}}, i=1, \ldots, 2 r$. We have $\pi_{\#}\left(d y^{i}\right)=0, i=1, \ldots, d-2 r$.
■ For any $x \in U$, put $\mathcal{H}_{x}=\operatorname{vect}\left\{\phi_{1}(x), \ldots, \phi_{2 r}(x)\right\}$. We have $T_{U}^{*} M=\operatorname{ker} \pi_{\#} \oplus \mathcal{H}$ and $\mathcal{D} \mathcal{H} \subset \mathcal{H}$.

Solution : Building a flat co-frame

Let (M, π, \mathcal{D}) such that \mathcal{D} is a $\mathcal{F}^{r e g}$-connection, torsionless and flat. Let $x_{0} \in M^{\text {reg }}$ and $\left(a_{1}, \ldots, a_{2 r}\right)$ a family of covectors in $T_{x_{0}}^{*} M$ such that $\left(\pi_{\#}\left(a_{1}\right), \ldots, \pi_{\#}\left(a_{2 r}\right)\right)$ is a basis of $\operatorname{Im} \pi_{\#}\left(x_{0}\right)$.

■ For any $a \in T_{x_{0}}^{*} M$, there exists an open set $U \ni x_{0}$ and $\beta^{a} \in \Omega^{1}(U)$ such that $\beta^{a}\left(x_{0}\right)=a$ and $\mathcal{D} \beta^{a}=0$.

- Note $\phi_{i}=\beta^{a_{i}}$. The vector fields $\left(\pi_{\#}\left(\phi_{1}\right), \ldots, \pi_{\#}\left(\phi_{2 r}\right)\right)$ are commuting linearly independent so there exists a coordinates system $\left(\left(x^{i}\right)_{i=1}^{2 r},\left(y^{j}\right)_{j=1}^{d-2 r}\right)$ such that $\pi_{\#}\left(\phi_{i}\right)=\frac{\partial}{\partial x^{i}}, i=1, \ldots, 2 r$. We have $\pi_{\#}\left(d y^{i}\right)=0, i=1, \ldots, d-2 r$.
\square For any $x \in U$, put $\mathcal{H}_{x}=\operatorname{vect}\left\{\phi_{1}(x), \ldots, \phi_{2 r}(x)\right\}$. We have $T_{U}^{*} M=\operatorname{ker} \pi_{\#} \oplus \mathcal{H}$ and $\mathcal{D} \mathcal{H} \subset \mathcal{H}$.
■ $\mathbf{F}^{*}=\left\{\phi_{1}, \ldots, \phi_{2 r}, d y^{1}, \ldots, d y^{d-2 r}\right\}$ is a flat co-frame.

Solution : The frame dual of F^{*}

For any $i=1, \ldots, 2 r$, there exists a unique family of functions $A_{i}^{1}, \ldots, A_{i}^{s}$ such that $d x^{i}+\sum_{u} A_{i}^{u} d y_{u} \in \mathcal{H}$. Consider

$$
X^{i}:=-X_{x^{i}}=-\pi_{\sharp}\left(d x^{i}\right), \quad Y_{u}:=\frac{\partial}{\partial y_{u}}-\sum_{i=1}^{2 r} A_{i}^{u} \frac{\partial}{\partial x^{i}} .
$$

Solution : The frame dual of F^{*}

For any $i=1, \ldots, 2 r$, there exists a unique family of functions $A_{i}^{1}, \ldots, A_{i}^{s}$ such that $d x^{i}+\sum_{u} A_{i}^{u} d y_{u} \in \mathcal{H}$. Consider

$$
X^{i}:=-X_{x^{i}}=-\pi_{\sharp}\left(d x^{i}\right), \quad Y_{u}:=\frac{\partial}{\partial y_{u}}-\sum_{i=1}^{2 r} A_{i}^{u} \frac{\partial}{\partial x^{i}} .
$$

Lemma 3

$\left\{X_{i}, Y_{u}\right\}$ is the dual frame of \mathbf{F}^{*}. Moreover, the vector fields X_{i} and Y_{u} are, respectively, Hamiltonian and Poisson, and satisfy :

$$
\begin{aligned}
& {\left[X_{i}, X_{j}\right]=-\sum_{k=1}^{2 r} \frac{\partial \pi_{i j}}{\partial x_{k}} X_{k} ; \quad\left[X_{i}, Y_{u}\right]=\sum_{j=1}^{2 r} \frac{\partial A_{i}^{u}}{\partial x_{j}} X_{j} ;} \\
& {\left[Y_{u}, Y_{v}\right]=\sum_{i, j=1}^{2 r} \pi^{i j}\left(\frac{\partial A_{j}^{u}}{\partial y_{v}}-\frac{\partial A_{j}^{v}}{\partial y_{u}}+\sum_{k=1}^{2 r} A_{k}^{u} \frac{\partial A_{j}^{v}}{\partial x_{k}}-A_{k}^{v} \frac{\partial A_{j}^{u}}{\partial x_{k}}\right) X_{i} .}
\end{aligned}
$$

with $\left(\pi_{i j}\right)=\left(\pi\left(d x^{i}, d x^{j}\right)\right)$ and $\left(\pi^{i j}\right)$ is the inverse of the matrix $\left(\pi_{i j}\right)$.

Solution : The tensor fields \mathcal{M} et \mathbf{T}

Theorem 4

- For any $u, \mathcal{M}\left(d y_{u}, \cdot, \cdot\right)=0$.
- For any i, j, k,

$$
\begin{aligned}
& \mathcal{M}\left(\phi_{i}, \phi_{j}, \phi_{k}\right)=-\sum_{l<m} \frac{\partial^{3} \pi_{l m}}{\partial x_{i} \partial x_{j} \partial x_{k}} \phi_{l} \wedge \phi_{m}+\sum_{l, u} \frac{\partial^{3} A_{l}^{u}}{\partial x_{i} \partial x_{j} \partial x_{k}} \phi_{l} \wedge d y_{u} \\
& +\sum_{u<v, l} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left(\pi^{k l}\left(\frac{\partial A_{l}^{u}}{\partial y_{v}}-\frac{\partial A_{l}^{v}}{\partial y_{u}}+\sum_{m} A_{m}^{u} \frac{\partial A_{l}^{v}}{\partial x_{m}}-A_{m}^{v} \frac{\partial A_{l}^{u}}{\partial x_{m}}\right)\right) d y_{u} \wedge d y_{v}
\end{aligned}
$$

Solution : The tensor fields \mathcal{M} et \mathbf{T}

Theorem 4

- For any $u, \mathcal{M}\left(d y_{u}, \cdot, \cdot\right)=0$.
- For any i, j, k,

$$
\begin{aligned}
& \mathcal{M}\left(\phi_{i}, \phi_{j}, \phi_{k}\right)=-\sum_{l<m} \frac{\partial^{3} \pi_{l m}}{\partial x_{i} \partial x_{j} \partial x_{k}} \phi_{l} \wedge \phi_{m}+\sum_{l, u} \frac{\partial^{3} A_{l}^{u}}{\partial x_{i} \partial x_{j} \partial x_{k}} \phi_{l} \wedge d y_{u} \\
& +\sum_{u<v, l} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left(\pi^{k l}\left(\frac{\partial A_{l}^{u}}{\partial y_{v}}-\frac{\partial A_{l}^{v}}{\partial y_{u}}+\sum_{m} A_{m}^{u} \frac{\partial A_{l}^{v}}{\partial x_{m}}-A_{m}^{v} \frac{\partial A_{l}^{u}}{\partial x_{m}}\right)\right) d y_{u} \wedge d y_{v}
\end{aligned}
$$

Theorem 5

■ For any $u, \mathbf{T}\left(d y_{u}, \cdot\right)=0$.

- For any i, j,

$$
\begin{aligned}
& \mathbf{T}\left(\phi_{i}, \phi_{j}\right)=-\sum_{k<l} \frac{\partial^{2} \pi_{k l}}{\partial x_{i} \partial x_{j}} \phi_{k} \wedge \phi_{l}+\sum_{k, u} \frac{\partial^{2} A_{k}^{u}}{\partial x_{i} \partial x_{j}} \phi_{k} \wedge d y_{u} \\
& +\sum_{u<v, k} \frac{\partial}{\partial x_{i}}\left(\pi^{j k}\left(\frac{\partial A_{k}^{u}}{\partial y_{v}}-\frac{\partial A_{k}^{v}}{\partial y_{u}}+\sum_{l} A_{l}^{u} \frac{\partial A_{k}^{v}}{\partial x_{l}}-A_{l}^{v} \frac{\partial A_{k}^{u}}{\partial x_{l}}\right)\right) d y_{u} \wedge d y_{v}
\end{aligned}
$$

Solution : Proof of Theorem 3

SkETCH OF THE PROOF

The idea is to build near x_{0} a family of linearly independent vector fields $Z_{1}, \ldots, Z_{2 r} \in \Gamma(\mathcal{C})$ which commute with X_{i} and Y_{u}. In this case

- $\left[Z_{i}, Z_{j}\right]=\sum_{k} c_{i j}^{k} Z_{k}$ with $c_{i j}^{k}=c s t$ hence $Z_{1}, \ldots, Z_{2 r}$ generate a Lie algebra of dimension $2 r$ which acts freely near x_{0}.
- $\pi=\frac{1}{2} \sum_{i, j} a_{i j} Z_{i} \wedge Z_{j}$ where $\left(a_{i j}\right)$ is constant and invertible.
- $\mathcal{D}_{\alpha} \beta=\sum_{i, j} a_{i j} \alpha\left(Z_{i}\right) \mathcal{L}_{Z_{j}} \beta$; indeed, this is true for $\beta=\phi_{i}$ or $d y_{u}$ since $\mathcal{L}_{Z_{i}} \phi_{j}=\mathcal{L}_{Z_{i}} d y_{u}=0$. And $\mathcal{D}_{\alpha} \beta-\sum_{i, j} a_{i j} \alpha\left(Z_{i}\right) \mathcal{L}_{Z_{j}} \beta$ is tensorial in β.

Solution : Proof of Theorem 3

We proceed on two steps :

First STEP

We build a family of vector fields $T_{1}, \ldots, T_{2 r} \in \Gamma(\mathcal{C})$ which commute with the X_{i}. Indeed, the vanishing of \mathbf{T} and Lemma 3, imply :

$$
\left[X_{i}, X_{j}\right]=\sum_{k=1}^{2 r} \lambda_{i j}^{k} X_{k}, \quad\left[X_{i}, Y_{u}\right]=\sum_{j=1}^{2 r} \mu_{i u}^{j} X_{j}, \quad\left[Y_{u}, Y_{v}\right]=\sum_{i=1}^{2 r} \nu_{u v}^{i} X_{i}
$$

where $\lambda_{i j}^{k}, \mu_{i u}^{j}, \nu_{u v}^{i}$ are Casimir, i.e., depend only on the y^{i}.

Solution : Proof of Theorem 3

We proceed on two steps :

First STEP

We build a family of vector fields $T_{1}, \ldots, T_{2 r} \in \Gamma(\mathcal{C})$ which commute with the X_{i}. Indeed, the vanishing of \mathbf{T} and Lemma 3, imply :

$$
\left[X_{i}, X_{j}\right]=\sum_{k=1}^{2 r} \lambda_{i j}^{k} X_{k}, \quad\left[X_{i}, Y_{u}\right]=\sum_{j=1}^{2 r} \mu_{i u}^{j} X_{j}, \quad\left[Y_{u}, Y_{v}\right]=\sum_{i=1}^{2 r} \nu_{u v}^{i} X_{i}
$$

where $\lambda_{i j}^{k}, \mu_{i u}^{j}, \nu_{u v}^{i}$ are Casimir, i.e., depend only on the y^{i}.
We choose a transversal \mathcal{T} to the symplectic foliation \mathcal{S} passing through x_{0}. For $y \in \mathcal{T}$ fix, $X_{1 \mid s_{y}}, \ldots, X_{2 r \mid s_{y}}$ span a Lie algebra \mathfrak{g}_{y} which act freely and transitively on \mathcal{S}_{y}, so \exists an anti-homomorphism of Lie algebras $\Gamma_{y}: \mathfrak{g}_{y} \rightarrow \mathfrak{X}^{1}\left(\mathcal{S}_{y}\right)$, such that

$$
\Gamma_{y}\left(X_{i \mid \mathcal{S}_{y}}\right)(y)=X_{i}(y), \quad\left[\Gamma_{y}\left(X_{i \mid \mathcal{s}_{y}}\right), X_{j \mid \mathcal{s}_{y}}\right]=0 \quad \forall i, j .
$$

We take $T_{i}(z):=\Gamma_{y}\left(X_{i}^{y}\right)(z), z \in \mathcal{S}_{y}$ and we variate y to obtain T_{i}.

Solution : Proof of Theorem 3

Now, the $\mu_{i u}^{j}$ are Casimir

$$
\left[T_{i}, Y_{u}\right]=\sum_{j=1}^{2 r} \gamma_{i u}^{j} T_{j}
$$

with $\gamma_{i u}^{j}$ Casimir and satisfy

$$
\begin{equation*}
\frac{\partial \gamma_{j u}^{i}}{\partial y_{v}}-\frac{\partial \gamma_{j v}^{i}}{\partial y_{u}}+\sum_{k=1}^{2 r} \gamma_{k u}^{i} \gamma_{j v}^{k}-\gamma_{k v}^{i} \gamma_{j u}^{k}=0 \tag{*}
\end{equation*}
$$

since the $\nu_{u v}^{i}$ are Casimir and $\left[T_{i},\left[Y_{u}, Y_{v}\right]\right]=0$ for any i, u, v.

Solution : Proof of Theorem 3

Now, the $\mu_{i u}^{j}$ are Casimir

$$
\left[T_{i}, Y_{u}\right]=\sum_{j=1}^{2 r} \gamma_{i u}^{j} T_{j}
$$

with $\gamma_{i u}^{j}$ Casimir and satisfy

$$
\begin{equation*}
\frac{\partial \gamma_{j u}^{i}}{\partial y_{v}}-\frac{\partial \gamma_{j v}^{i}}{\partial y_{u}}+\sum_{k=1}^{2 r} \gamma_{k u}^{i} \gamma_{j v}^{k}-\gamma_{k v}^{i} \gamma_{j u}^{k}=0 \tag{*}
\end{equation*}
$$

since the $\nu_{u v}^{i}$ are Casimir and $\left[T_{i},\left[Y_{u}, Y_{v}\right]\right]=0$ for any i, u, v.

SECOND STEP

We look for the Z_{i} in the form :

$$
Z_{i}:=\sum_{j=1}^{2 r} \xi_{j i} T_{j}
$$

where $\xi_{i j}$ are Casimir and $\xi=\left(\xi_{i j}\right)$ is invertible. They exist by virtue of (*).

Thank you

