On the Geometry of Noncommutative Deformations

Mohamed Boucetta Joint work with Zouhair Saassai m.boucetta@uca.ac.ma

> Cadi-Ayyad University Morocco

Workshop on Differential Geometry and Non Associative Algebras CIRM Marseille 12-15 November 2019

- Origin of the problem
- Basic tools
- Hawkins's Result
- Fundamental example
- Problem
- Solution

Let A_0 be an algebra. A deformation in the sense of Hawkins of A_0 is an extension of A_0 of the form

$$0 \longrightarrow \hbar \mathcal{A} \longrightarrow \mathcal{A} \xrightarrow{P} \mathcal{A}_0 \longrightarrow 0,$$

where \hbar is central in \mathcal{A} and for any $a \in \mathcal{A}$

$$\hbar a = 0 \implies a = 0.$$

Let A_0 be an algebra. A deformation in the sense of Hawkins of A_0 is an extension of A_0 of the form

$$0 \longrightarrow \hbar \mathcal{A} \longrightarrow \mathcal{A} \xrightarrow{P} \mathcal{A}_0 \longrightarrow 0,$$

where \hbar is central in \mathcal{A} and for any $a \in \mathcal{A}$

$$\hbar a = 0 \implies a = 0.$$

Example Fix $a \in \mathbb{C}$. Take $\mathcal{A}_0 = \mathbb{C}$, $\mathcal{A} = \mathbb{C}[X]$, $\hbar = (X - a)$ and P(Q) = Q(a).

Example $\mathcal{A}_0 = C^\infty(M, \mathbb{C})$ and

$$\mathcal{A} := \left\{ \sum_{n \ge 0} f_n \hbar^n, f_n \in \mathcal{A}_0 \right\}$$

a *-product 1 on ${\mathcal A}$ given by, $f,g\in {\mathcal A}_0\subset {\mathcal A}$,

$$f \star g = fg + \sum_{n \ge 1} B_n(f,g)\hbar^n$$

and $P: \mathcal{A} \longrightarrow \mathcal{A}_0$ given by

$$P\left(\sum_{n\geq 0}f_n\hbar^n\right)=f_0.$$

^{1.} By virtue of a famous theorem of Kontsevich such a *-product exists.

Let $(\Omega^*(M),\wedge,d)$ be the graded algebra of differential forms on a manifold M and

$$0 \longrightarrow \hbar \mathcal{A} \longrightarrow \mathcal{A} \xrightarrow{\mathcal{P}} \Omega^*(M) \longrightarrow 0,$$

a **deformation** of $\Omega^*(M)$ in the sense of Hawkins.

Let $(\Omega^*(M),\wedge,d)$ be the graded algebra of differential forms on a manifold M and

$$0 \longrightarrow \hbar \mathcal{A} \longrightarrow \mathcal{A} \xrightarrow{\mathcal{P}} \Omega^*(M) \longrightarrow 0,$$

a **deformation** of $\Omega^*(M)$ in the sense of Hawkins. Consider the bracket

$$\{\mathcal{P}(\alpha), \mathcal{P}(\beta)\} = \mathcal{P}\left(\frac{1}{\hbar}[\alpha, \beta]\right), \quad \alpha, \beta \in \mathcal{A}$$

where

$$[\alpha,\beta] = \alpha.\beta - (-1)^{\deg\alpha \deg\beta}\beta.\alpha$$

is the graded commutator in \mathcal{A} .

The bracket $\{\ ,\ \}$ defines a Poisson graded differential algebra structure on $\Omega^*(M).$

 $\left| \pi(df, dg) := \{f, g\} \quad \text{and} \quad \mathcal{D}_{df} \alpha := \{f, \alpha\}, \quad f, g \in C^{\infty}(M), \; \alpha \in \Omega^{1}(M).$

 $\pi(df, dg) := \{f, g\} \text{ and } \mathcal{D}_{df} \alpha := \{f, \alpha\}, \quad f, g \in C^{\infty}(M), \ \alpha \in \Omega^{1}(M).$

Thus a deformation of $\Omega^*(M)$ defines on M a tensor field $\pi\in \Gamma(\wedge^2 TM)$ and a map

 $\mathcal{D}: \Omega^1(M) \times \Omega^1(M) \longrightarrow \Omega^1(M).$

 $\pi(df, dg) := \{f, g\} \text{ and } \mathcal{D}_{df} \alpha := \{f, \alpha\}, \quad f, g \in C^{\infty}(M), \ \alpha \in \Omega^{1}(M).$

Thus a deformation of $\Omega^*(M)$ defines on M a tensor field $\pi \in \Gamma(\wedge^2 TM)$ and a map

$$\mathcal{D}: \Omega^1(M) \times \Omega^1(M) \longrightarrow \Omega^1(M).$$

The Leibniz rule gives

$$\mathcal{D}_{df}g\alpha = \pi_{\#}(df)(g)\alpha + g\mathcal{D}_{df}\alpha,$$

i.e., \mathcal{D} is a contravariant connection associated to π .

 $\pi(df, dg) := \{f, g\} \text{ and } \mathcal{D}_{df} \alpha := \{f, \alpha\}, \quad f, g \in C^{\infty}(M), \ \alpha \in \Omega^{1}(M).$

Thus a deformation of $\Omega^*(M)$ defines on M a tensor field $\pi \in \Gamma(\wedge^2 TM)$ and a map

$$\mathcal{D}: \Omega^1(M) \times \Omega^1(M) \longrightarrow \Omega^1(M).$$

The Leibniz rule gives

$$\mathcal{D}_{df}g\alpha = \pi_{\#}(df)(g)\alpha + g\mathcal{D}_{df}\alpha,$$

i.e., \mathcal{D} is a contravariant connection associated to π .

The graded Jacobi identity of $\{\ ,\ \}$ is equivalent to :

• π is **Poisson tensor**,

The graded Jacobi identity of $\{\ ,\ \}$ is equivalent to :

- π is **Poisson tensor**,
- the **curvature** of \mathcal{D} vanishes,

The graded Jacobi identity of $\{\;,\;\}$ is equivalent to :

- π is **Poisson tensor**,
- the curvature of $\mathcal D$ vanishes,
- the **metacurvature** of \mathcal{D} vanishes.

Moreover, the fact that d is a derivation of $\{\ ,\ \}$ implies that ${\cal D}$ is torsion free.

The graded Jacobi identity of $\{, \}$ is equivalent to :

- π is **Poisson tensor**,
- the curvature of \mathcal{D} vanishes,
- the **metacurvature** of \mathcal{D} vanishes.

Moreover, the fact that d is a derivation of $\{\ ,\ \}$ implies that ${\cal D}$ is torsion free.

The triple (M,π,\mathcal{D}) constitutes the geometry of the deformation of $\Omega^*(M).$

Deformation of the spectral triple associated to a Riemannian manifold

Let (M,g) be a Riemannian manifold. Any deformation of the **spectral** triple² of (M,g) induces a deformation of $\Omega^*(M)$ and hence, gives rise to a Poisson tensor π and a contravariant connexion \mathcal{D} satisfying the conditions above.

Deformation of the spectral triple associated to a Riemannian manifold

Let (M,g) be a Riemannian manifold. Any deformation of the **spectral** triple² of (M,g) induces a deformation of $\Omega^*(M)$ and hence, gives rise to a Poisson tensor π and a contravariant connexion \mathcal{D} satisfying the conditions above.

In this case ${\mathcal D}$ is the Levi-Civita contravariant connection associated to $(\pi,g).$

Deformation of the spectral triple associated to a Riemannian manifold

Let (M,g) be a Riemannian manifold. Any deformation of the **spectral** triple² of (M,g) induces a deformation of $\Omega^*(M)$ and hence, gives rise to a Poisson tensor π and a contravariant connexion \mathcal{D} satisfying the conditions above.

In this case ${\mathcal D}$ is the Levi-Civita contravariant connection associated to $(\pi,g).$

 (M, g, π, D) is the geometry of the deformation of the spectral triple associated to (M, g).

^{2. (}Hilbert space, an algebra, unbounded self-adjoint operator):

DEFINITION

A Poisson bracket on M is

$$\{\cdot, \cdot\}: C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$$

R-bilinear

•
$$\{f,g\} = -\{g,f\}$$
 (anti-symmetric)

•
$$\{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0$$
 (Jacobi)

• $\{f, gh\} = g\{f, h\} + h\{f, g\}$ (Leibniz)

Endowed with this bracket, M is a *Poisson manifold*.

DEFINITION

A Poisson bracket on M is

$$\{\cdot, \cdot\}: C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$$

R-bilinear

•
$$\{f,g\} = -\{g,f\}$$
 (anti-symmetric)

•
$$\{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0$$
 (Jacobi)

• $\{f, gh\} = g\{f, h\} + h\{f, g\}$ (Leibniz)

Endowed with this bracket, M is a *Poisson manifold*.

EXAMPLES

- Every symplectic manifold (M, ω) : $\{f, g\} := \omega(X_f, X_g)$.
- \blacktriangleright The dual of a Lie algebra $(\mathfrak{g}, [\cdot, \cdot])$:

 $\{f,g\}(a):=\prec a, \left[d_af,d_ag\right]\succ \quad (a\in \mathfrak{g}^*, f,g\in C^\infty(\mathfrak{g}^*)).$

A Poisson bracket defines :

• a bivector field $\pi \in \Gamma(\wedge^2 TM)$: $\pi(df, dg) := \{f, g\}$. Jacobi $\iff [\pi, \pi] = 0$ where $[\cdot, \cdot]$ Schouten-Nijenhuis bracket.

- a bivector field $\pi \in \Gamma(\wedge^2 TM)$: $\pi(df, dg) := \{f, g\}$. Jacobi $\iff [\pi, \pi] = 0$ where $[\cdot, \cdot]$ Schouten-Nijenhuis bracket.
- a morphism of vector bundles $\pi_{\sharp}: T^*M \to TM$, $a \mapsto \pi(a, \cdot)$, called *anchor*.

- a bivector field $\pi \in \Gamma(\wedge^2 TM)$: $\pi(df, dg) := \{f, g\}$. Jacobi $\iff [\pi, \pi] = 0$ where $[\cdot, \cdot]$ Schouten-Nijenhuis bracket.
- a morphism of vector bundles $\pi_{\sharp}: T^*M \to TM$, $a \mapsto \pi(a, \cdot)$, called *anchor*.
- a distribution $\mathcal{C} : x \in M \mapsto \operatorname{Im} \pi_{\sharp}(x)$.

- a bivector field $\pi \in \Gamma(\wedge^2 TM)$: $\pi(df, dg) := \{f, g\}$. Jacobi $\iff [\pi, \pi] = 0$ where $[\cdot, \cdot]$ Schouten-Nijenhuis bracket.
- a morphism of vector bundles $\pi_{\sharp}: T^*M \to TM$, $a \mapsto \pi(a, \cdot)$, called *anchor*.
- a distribution $\mathcal{C} : x \in M \mapsto \operatorname{Im} \pi_{\sharp}(x)$.
 - $ho_{\pi}(x) := \dim \mathcal{C}_x$ is the rank of π on x;

- a bivector field $\pi \in \Gamma(\wedge^2 TM)$: $\pi(df, dg) := \{f, g\}$. Jacobi $\iff [\pi, \pi] = 0$ where $[\cdot, \cdot]$ Schouten-Nijenhuis bracket.
- a morphism of vector bundles $\pi_{\sharp}: T^*M \to TM$, $a \mapsto \pi(a, \cdot)$, called *anchor*.
- a distribution $\mathcal{C} : x \in M \mapsto \operatorname{Im} \pi_{\sharp}(x)$.
 - $ho_{\pi}(x) := \dim \mathcal{C}_x$ is the rank of π on x;
 - \mathcal{C} is singular : $ho_{\pi} \neq \mathsf{cst}$;

- a bivector field $\pi \in \Gamma(\wedge^2 TM)$: $\pi(df, dg) := \{f, g\}$. Jacobi $\iff [\pi, \pi] = 0$ where $[\cdot, \cdot]$ Schouten-Nijenhuis bracket.
- a morphism of vector bundles $\pi_{\sharp}: T^*M \to TM$, $a \mapsto \pi(a, \cdot)$, called *anchor*.
- a distribution $\mathcal{C} : x \in M \mapsto \operatorname{Im} \pi_{\sharp}(x)$.
 - $ho_{\pi}(x) := \dim \mathcal{C}_x$ is the rank of π on x;
 - \mathcal{C} is singular : $ho_{\pi} \neq \mathsf{cst}$;
 - Th open set $M^{reg} = \{ \text{points où } \rho_{\pi} \text{ locally constant} \}$ is dense in M; a point in M^{reg} is called *regular*.

- a bivector field $\pi \in \Gamma(\wedge^2 TM)$: $\pi(df, dg) := \{f, g\}$. Jacobi $\iff [\pi, \pi] = 0$ where $[\cdot, \cdot]$ Schouten-Nijenhuis bracket.
- a morphism of vector bundles $\pi_{\sharp}: T^*M \to TM$, $a \mapsto \pi(a, \cdot)$, called *anchor*.
- a distribution $\mathcal{C} : x \in M \mapsto \operatorname{Im} \pi_{\sharp}(x)$.
 - $ho_{\pi}(x) := \dim \mathcal{C}_x$ is the rank of π on x;
 - \mathcal{C} is singular : $ho_{\pi} \neq \mathsf{cst}$;
 - Th open set $M^{reg} = \{ \text{points où } \rho_{\pi} \text{ locally constant} \}$ is dense in M; a point in M^{reg} is called *regular*.
- a Lie bracket on $\Omega^1(M)$, called *de Koszul's bracket* :

$$[\alpha,\beta]_{\pi} := L_{\pi_{\sharp}(\alpha)}\beta - L_{\pi_{\sharp}(\beta)}\alpha - d(\pi(\alpha,\beta)).$$

Contravariant connections

DEFINITION

A contravariant connection on (M, π) is

$$\mathcal{D}: \Omega^1(M) \times \Omega^1(M) \to \Omega^1(M), \text{ notée } (\alpha, \beta) \mapsto \mathcal{D}_{\alpha}\beta,$$

 $\mathbb R\text{-bilinear}$ and satisfying

 $\mathcal{D}_{f\alpha}\beta = f\mathcal{D}_{\alpha}\beta, \quad \mathcal{D}_{\alpha}(f\beta) = f\mathcal{D}_{\alpha}\beta + \pi_{\sharp}(\alpha)(f)\beta \quad (f \in \mathcal{C}^{\infty}(M)).$

DEFINITION

A contravariant connection on (M, π) is

 $\mathcal{D}: \Omega^1(M) \times \Omega^1(M) \to \Omega^1(M), \text{ notée } (\alpha, \beta) \mapsto \mathcal{D}_{\alpha}\beta,$

 \mathbb{R} -bilinear and satisfying

 $\mathcal{D}_{f\alpha}\beta = f\mathcal{D}_{\alpha}\beta, \quad \mathcal{D}_{\alpha}(f\beta) = f\mathcal{D}_{\alpha}\beta + \pi_{\sharp}(\alpha)(f)\beta \quad (f \in \mathcal{C}^{\infty}(M)).$

The torsion and the curvature of \mathcal{D} are :

$$T(\alpha,\beta) := \mathcal{D}_{\alpha}\beta - \mathcal{D}_{\beta}\alpha - [\alpha,\beta]_{\pi},$$
$$R(\alpha,\beta)\gamma := \mathcal{D}_{\alpha}\mathcal{D}_{\beta}\gamma - \mathcal{D}_{\beta}\mathcal{D}_{\alpha}\gamma - \mathcal{D}_{[\alpha,\beta]_{\pi}}\gamma$$

When T = 0 (resp. R = 0), \mathcal{D} is called *torsionless* (resp. *flat*).

FUNDAMENTAL EXAMPLE

Given a Riemannian metric g on (M, π) , \exists ! contravariant connection \mathcal{D} of (M, π) such that T = 0 et $\mathcal{D}g = 0$; it is given by:

$$\langle \mathcal{D}_{\alpha}\beta,\gamma\rangle = \frac{1}{2} \{ \pi_{\sharp}(\alpha) \cdot \langle \beta,\gamma\rangle + \pi_{\sharp}(\beta) \cdot \langle \alpha,\gamma\rangle - \pi_{\sharp}(\gamma) \cdot \langle \alpha,\beta\rangle \\ + \langle [\alpha,\beta]_{\pi},\gamma\rangle - \langle [\beta,\gamma]_{\pi},\alpha\rangle + \langle [\gamma,\alpha]_{\pi},\beta\rangle \}$$

and called *the Levi-Civita contravariant connection* associated to (π, g) (in short : *CLCC*).

Metacurvature?

HAWKINS'S BRACKET

If \mathcal{D} is a contravariant connection <u>torsionless</u> on (M, π) ,

$$\exists! \ \{\cdot, \cdot\}: \ \Omega^*(M) \times \Omega^*(M) \longrightarrow \Omega^*(M)$$

R-bilinear,

- degree 0: $\deg \{\sigma, \tau\} = \deg \sigma + \deg \tau$,
- graded commutative : $\{\sigma, \tau\} = -(-1)^{\deg \sigma \deg \tau} \{\tau, \sigma\},\$

- For any $f,g \in C^{\infty}(M)$ and any $\alpha \in \Omega^{1}(M)$,

$$\{f,g\} = \pi(df,dg), \quad \{f,\alpha\} = \mathcal{D}_{df}\alpha.$$

JACOBI IDENTITY AND METACURVATURE

What about the Jocobi identity,

 $\{\sigma, \{\tau, \rho\}\} - \{\{\sigma, \tau\}, \rho\} - (-1)^{\deg \sigma \deg \tau} \{\tau, \{\sigma, \rho\}\} = 0 ?$

JACOBI IDENTITY AND METACURVATURE

What about the Jocobi identity,

 $\mathcal{J}(\sigma,\tau,\rho) := \{\sigma,\{\tau,\rho\}\} - \{\{\sigma,\tau\},\rho\} - (-1)^{\deg\sigma \deg\tau}\{\tau,\{\sigma,\rho\}\} = 0 ?$

JACOBI IDENTITY AND METACURVATURE

What about the Jocobi identity,

 $\mathcal{J}(\sigma,\tau,\rho) := \{\sigma,\{\tau,\rho\}\} - \{\{\sigma,\tau\},\rho\} - (-1)^{\deg\sigma \deg\tau}\{\tau,\{\sigma,\rho\}\} = 0 ?$

In low degrees, we have :

•
$$\mathcal{J}(f, g, h) = 0$$
 since π is Poisson.

 \blacksquare If ${\mathcal D}$ is flat then the formula

 $\mathcal{M}(df,\alpha,\beta) := \mathcal{J}(f,\alpha,\beta) = \{f,\{\alpha,\beta\}\} - \{\{f,\alpha\},\beta\} - \{\{f,\beta\},\alpha\}$

where $\alpha, \beta \in \Omega^1(M)$ defines a tensor field \mathcal{M} of type (2,3).
$\mathcal{J} = 0$ if and only if \mathcal{D} flat and $\mathcal{M} = 0$.

 $\mathcal{J}=0$ if and only if \mathcal{D} flat and $\mathcal{M}=0$.

 \mathcal{M} is the *metacurvature* of \mathcal{D} .

 $\mathcal{J}=0$ if and only if \mathcal{D} flat and $\mathcal{M}=0$.

 \mathcal{M} is the *metacurvature* of \mathcal{D} . It is $C^{\infty}(M)$ -trilinear symmetric

$$\mathcal{M}: \Omega^1(M) \times \Omega^1(M) \times \Omega^1(M) \longrightarrow \Omega^2(M).$$

 $\mathcal{J} = 0$ if and only if \mathcal{D} flat and $\mathcal{M} = 0$.

 \mathcal{M} is the *metacurvature* of \mathcal{D} . It is $C^{\infty}(M)$ -trilinear symmetric

$$\mathcal{M}: \Omega^1(M) \times \Omega^1(M) \times \Omega^1(M) \longrightarrow \Omega^2(M).$$

One can see \mathcal{M} as an element of $\Gamma(S^3TM \otimes \wedge^2T^*M)$.

Let (M,π,\mathcal{D}) be a manifold endowed with a Poisson tensor and a contravariant connexion torsionless and flat. The Hawkins's bracket in low degrees is given by

 $\{f,g\} = \pi(df,dg), \quad \{f,\alpha\} = \mathcal{D}_{df}\alpha, \ f,g \in C^{\infty}(M), \ \alpha \in \Omega^{1}(M).$

Let (M, π, D) be a manifold endowed with a Poisson tensor and a contravariant connexion torsionless and flat. The Hawkins's bracket in low degrees is given by

$$\{f,g\} = \pi(df,dg), \quad \{f,\alpha\} = \mathcal{D}_{df}\alpha, \ f,g \in C^{\infty}(M), \ \alpha \in \Omega^{1}(M).$$

$$\{\alpha,\beta\} = -\mathcal{D}_{\alpha}d\beta - \mathcal{D}_{\beta}d\alpha + d\mathcal{D}_{\alpha}\beta + [\alpha,d\beta]_{\pi}, \ \alpha,\beta \in \Omega^{1}(M).$$

Let (M, π, D) be a manifold endowed with a Poisson tensor and a contravariant connexion torsionless and flat. The Hawkins's bracket in low degrees is given by

$$\{f,g\} = \pi(df,dg), \quad \{f,\alpha\} = \mathcal{D}_{df}\alpha, \ f,g \in C^{\infty}(M), \ \alpha \in \Omega^{1}(M).$$

$$\{\alpha,\beta\} = -\mathcal{D}_{\alpha}d\beta - \mathcal{D}_{\beta}d\alpha + d\mathcal{D}_{\alpha}\beta + [\alpha,d\beta]_{\pi}, \ \alpha,\beta \in \Omega^{1}(M).$$

The metacurvature is given

 $\mathcal{M}(df,\alpha,\beta) = \{f,\{\alpha,\beta\}\} - \{\{f,\alpha\},\beta\} - \{\alpha,\{f,\beta\}\}, \ f \in C^{\infty}(M), \ \alpha,\beta \in \Omega^{1}(M).$

If α is parallel, i.e., $\mathcal{D}\alpha = 0$, for any $\beta \in \Omega^1(M)$,

$$\{\alpha,\beta\} = -\mathcal{D}_{\beta}d\alpha. \tag{1}$$

If α is parallel, i.e., $\mathcal{D}\alpha = 0$, for any $\beta \in \Omega^1(M)$,

$$\{\alpha,\beta\} = -\mathcal{D}_{\beta}d\alpha.$$
(1)

If α an β are parallel, for any $\gamma \in \Omega^1(M)$,

$$\mathcal{M}(\alpha,\beta,\gamma) = -\mathcal{D}_{\gamma}\mathcal{D}_{\beta}d\alpha.$$
 (2)

If (M,g) is a Riemannian manifold,

Main result of Hawkins

Theorem 1 | Hawkins, J. Diff. Geom. 77 (2007) 385-424

Let (M, π) be a Poisson manifold endowed with a Riemannian metric g. Assume that M is compact satisfying (H_1) , (H_2) and (H_3) . Then, near any $x \in M^{reg}$,

$$\pi = \frac{1}{2} \sum_{i,j} a_{ij} X_i \wedge X_j$$

where (a_{ij}) is constant and invertible and X_1, \ldots, X_{2r} are linearly independent commuting Killing vector fields. Moreover, $\mathcal{D}\pi = 0.3$.

3. Not present in Hawkins's Theorem

▲□▶ ▲@▶ ▲≧▶ ▲≧▶ = 差 = ∽��(

Having this theorem in mind, it is natural to look for examples :

Having this theorem in mind, it is natural to look for examples :

• of Poisson manifolds (M, π) endowed with a contravariant connection \mathcal{D} such the torsion, the curvature and the metacurvature of \mathcal{D} vanish.

Having this theorem in mind, it is natural to look for examples :

- of Poisson manifolds (M, π) endowed with a contravariant connection \mathcal{D} such the torsion, the curvature and the metacurvature of \mathcal{D} vanish.
- of Poisson manifold (M, g, π) endowed with a Riemannian metric such that the Levi-Civita contravariant connection associated à (π, g) is flat and metaflat.

Let

▶ $\zeta : \mathfrak{g} \to \mathfrak{X}^1(M)$ an action of a Lie algebra \mathfrak{g} , of finite dimension on M.

Let

- ▶ $\zeta : \mathfrak{g} \to \mathfrak{X}^1(M)$ an action of a Lie algebra \mathfrak{g} , of finite dimension on M.
- ▶ $r \in \wedge^2 \mathfrak{g}$ a solution of the classical Yang-Baxter equation.

Let

- ▶ $\zeta : \mathfrak{g} \to \mathfrak{X}^1(M)$ an action of a Lie algebra \mathfrak{g} , of finite dimension on M.
- ▶ $r \in \wedge^2 \mathfrak{g}$ a solution of the classical Yang-Baxter equation.

Consider

$$\pi^r := \frac{1}{2} \sum_{i,j} a_{ij} \zeta(u_i) \wedge \zeta(u_j)$$

Let

- ▶ $\zeta : \mathfrak{g} \to \mathfrak{X}^1(M)$ an action of a Lie algebra \mathfrak{g} , of finite dimension on M.
- ▶ $r \in \wedge^2 \mathfrak{g}$ a solution of the classical Yang-Baxter equation.

Consider

$$\pi^r := \frac{1}{2} \sum_{i,j} a_{ij} \zeta(u_i) \wedge \zeta(u_j)$$

and $\mathcal{D}^r: \Omega^1(M) \times \Omega^1(M) \to \Omega^1(M)$,

$$(\alpha,\beta)\mapsto \mathcal{D}^r_{\alpha}\beta:=\sum_{i,j}a_{ij}\alpha(\zeta(u_i))\mathcal{L}_{\zeta(u_j)}\beta$$

where $r = \sum a_{ij} u_i \wedge u_j$ and $\{u_1, \ldots, u_n\}$ is a basis of \mathfrak{g} .

Theorem 2 [Boucetta, Lett. Math. Phys. 83 (2008) 69-81]

- (a) π^r and \mathcal{D}^r depend only on r and ζ and define, respectively, a Poisson tensor and a contravariant connection torsionless and flat on M.
- (b) If g is a Riemannian metric on M and ζ preserves g, i.e., for any $u \in \mathfrak{g}, \zeta(u)$ is a Killing vector field, then \mathcal{D}^r is the contravariant Levi-Civita connection of (π^r, g) .
- (c) If ζ is **free**, i.e., for any $x \in M$, the map $v \mapsto \zeta(v)(x)$ is injective then the metacurvature of \mathcal{D}^r vanishes.

Theorem 2 [Boucetta, Lett. Math. Phys. 83 (2008) 69-81]

- (a) π^r and \mathcal{D}^r depend only on r and ζ and define, respectively, a Poisson tensor and a contravariant connection torsionless and flat on M.
- (b) If g is a Riemannian metric on M and ζ preserves g, i.e., for any $u \in \mathfrak{g}, \zeta(u)$ is a Killing vector field, then \mathcal{D}^r is the contravariant Levi-Civita connection of (π^r, g) .
- (c) If ζ is **free**, i.e., for any $x \in M$, the map $v \mapsto \zeta(v)(x)$ is injective then the metacurvature of \mathcal{D}^r vanishes.

Remark. In (c), we cannot drop the hypothesis ζ free.

The problem?

Given a Poisson manifold (M, π) endowed with a contravariant connection without torsion, flat and metaflat, for any regular point x there exists a neighborhood U of x, a free action of a finite dimensional Lie algebra $\zeta : \mathfrak{g} \to \mathfrak{X}(U)$, and a solution $r \in \wedge^2 \mathfrak{g}$ of CYBE such that $\pi_{|U} = \pi^r$ and $\mathcal{D} = \mathcal{D}^r$?

The problem?

Given a Poisson manifold (M, π) endowed with a contravariant connection without torsion, flat and metaflat, for any regular point x there exists a neighborhood U of x, a free action of a finite dimensional Lie algebra $\zeta : \mathfrak{g} \to \mathfrak{X}(U)$, and a solution $r \in \wedge^2 \mathfrak{g}$ of CYBE such that $\pi_{|U} = \pi^r$ and $\mathcal{D} = \mathcal{D}^r$? Moreover, if \mathcal{D} is the Levi-Civita contravariant connection of (M, π, g) , the action ζ preserves g?

When we study this problem, we remark :

When we study this problem, we remark :

 Hawkins's Theorem gives a positive answer to this problem in the compact case and with an additional hypothesis.

When we study this problem, we remark :

- Hawkins's Theorem gives a positive answer to this problem in the compact case and with an additional hypothesis.
- As a consequence of Hawkins's theorem $\mathcal{D}\pi = 0$ and \mathcal{D} is \mathcal{F}^{reg} -connection, i.e.,

$$(\forall x \in M^{reg}, \forall a \in T_x^*M), \ \pi_{\sharp}(a) = 0 \implies \mathcal{D}_a = 0.$$
 (3)

When we study this problem, we remark :

- Hawkins's Theorem gives a positive answer to this problem in the compact case and with an additional hypothesis.
- As a consequence of Hawkins's theorem $\mathcal{D}\pi = 0$ and \mathcal{D} is \mathcal{F}^{reg} -connection, i.e.,

$$(\forall x \in M^{reg}, \forall a \in T_x^*M), \ \pi_{\sharp}(a) = 0 \implies \mathcal{D}_a = 0.$$
 (3)

In the fundamental example if the action ζ is free then \mathcal{D}^r satisfies (3).

When we study this problem, we remark :

- Hawkins's Theorem gives a positive answer to this problem in the compact case and with an additional hypothesis.
- As a consequence of Hawkins's theorem $\mathcal{D}\pi = 0$ and \mathcal{D} is \mathcal{F}^{reg} -connection, i.e.,

$$\left(\forall x \in M^{reg}, \forall a \in T_x^*M\right), \ \pi_{\sharp}(a) = 0 \implies \mathcal{D}_a = 0.$$
 (3)

- In the fundamental example if the action ζ is free then \mathcal{D}^r satisfies (3).
- If (M, π, \mathcal{D}) is a Poisson manifold endowed with a contravariant connection torsionless and flat satisfying (3) then there exits on M^{reg} a tensor field **T** of type (2, 2) satisfying $\mathcal{D}\mathbf{T} = \mathcal{M}$.

When we study this problem, we remark :

- Hawkins's Theorem gives a positive answer to this problem in the compact case and with an additional hypothesis.
- As a consequence of Hawkins's theorem $\mathcal{D}\pi = 0$ and \mathcal{D} is \mathcal{F}^{reg} -connection, i.e.,

$$\left(\forall x \in M^{reg}, \forall a \in T_x^*M\right), \ \pi_{\sharp}(a) = 0 \implies \mathcal{D}_a = 0.$$
 (3)

- In the fundamental example if the action ζ is free then \mathcal{D}^r satisfies (3).
- If (M, π, \mathcal{D}) is a Poisson manifold endowed with a contravariant connection torsionless and flat satisfying (3) then there exits on M^{reg} a tensor field **T** of type (2, 2) satisfying $\mathcal{D}\mathbf{T} = \mathcal{M}$.
- In the fundamental example, if ζ is free the it is T which vanishes implying the vanishing of the metacurvature.

Given a Poisson manifold (M, π) endowed with a \mathcal{F}^{reg} contravariant connection without torsion, flat and $\mathbf{T} = 0$, for any regular point x there exists a neighborhood U of x, a free action of a finite dimensional Lie algebra $\zeta : \mathfrak{g} \to \mathfrak{X}(U)$, and a solution $r \in \wedge^2 \mathfrak{g}$ of CYBE such that $\pi_{|U} = \pi^r$ and $\mathcal{D} = \mathcal{D}^r$? Given a Poisson manifold (M, π) endowed with a \mathcal{F}^{reg} contravariant connection without torsion, flat and $\mathbf{T} = 0$, for any regular point x there exists a neighborhood U of x, a free action of a finite dimensional Lie algebra $\zeta : \mathfrak{g} \to \mathfrak{X}(U)$, and a solution $r \in \wedge^2 \mathfrak{g}$ of CYBE such that $\pi_{|U} = \pi^r$ and $\mathcal{D} = \mathcal{D}^r$? Moreover, if \mathcal{D} is the Levi-Civita contravariant connection of (M, π, g) , the action ζ preserves g?

Théorème 3 Boucetta & Saassai, J. Geom. Phys. 82 (2014) 64-74

Let (M,π,\mathcal{D}) be a Poisson manifold endowed with a contravariant connection torsionless and flat.

- If \mathcal{D} is a \mathcal{F}^{reg} -connection and $\mathbf{T} = 0$, then for any $x_0 \in M^{reg}$ there exists a neighborhood U of x, a free action of a finite dimensional Lie algebra $\zeta : \mathfrak{g} \to \mathfrak{X}(U)$, and an invertible solution $r \in \wedge^2 \mathfrak{g}$ of CYBE such that $\pi_{|U} = \pi^r$ and $\mathcal{D} = \mathcal{D}^r$.
- Moreover, if \mathcal{D} is the Levi-Civita contravariant connection of (M, π, g) then the action ζ preserves g.

For any $a \in T^*_{x_0}M$, there exists an open set $U \ni x_0$ and $\beta^a \in \Omega^1(U)$ such that $\beta^a(x_0) = a$ and $\mathcal{D}\beta^a = 0$.

- For any $a \in T^*_{x_0}M$, there exists an open set $U \ni x_0$ and $\beta^a \in \Omega^1(U)$ such that $\beta^a(x_0) = a$ and $\mathcal{D}\beta^a = 0$.
- Note $\phi_i = \beta^{a_i}$. The vector fields $(\pi_{\#}(\phi_1), \dots, \pi_{\#}(\phi_{2r}))$ are commuting linearly independent so there exists a coordinates system $((x^i)_{i=1}^{2r}, (y^j)_{j=1}^{d-2r})$ such that $\pi_{\#}(\phi_i) = \frac{\partial}{\partial x^i}$, $i = 1, \dots, 2r$.

- For any $a \in T^*_{x_0}M$, there exists an open set $U \ni x_0$ and $\beta^a \in \Omega^1(U)$ such that $\beta^a(x_0) = a$ and $\mathcal{D}\beta^a = 0$.
- Note $\phi_i = \beta^{a_i}$. The vector fields $(\pi_{\#}(\phi_1), \ldots, \pi_{\#}(\phi_{2r}))$ are commuting linearly independent so there exists a coordinates system $((x^i)_{i=1}^{2r}, (y^j)_{j=1}^{d-2r})$ such that $\pi_{\#}(\phi_i) = \frac{\partial}{\partial x^i}$, $i = 1, \ldots, 2r$. We have $\pi_{\#}(dy^i) = 0$, $i = 1, \ldots, d-2r$.

- For any $a \in T^*_{x_0}M$, there exists an open set $U \ni x_0$ and $\beta^a \in \Omega^1(U)$ such that $\beta^a(x_0) = a$ and $\mathcal{D}\beta^a = 0$.
- Note $\phi_i = \beta^{a_i}$. The vector fields $(\pi_{\#}(\phi_1), \ldots, \pi_{\#}(\phi_{2r}))$ are commuting linearly independent so there exists a coordinates system $((x^i)_{i=1}^{2r}, (y^j)_{j=1}^{d-2r})$ such that $\pi_{\#}(\phi_i) = \frac{\partial}{\partial x^i}$, $i = 1, \ldots, 2r$. We have $\pi_{\#}(dy^i) = 0$, $i = 1, \ldots, d-2r$.
- For any $x \in U$, put $\mathcal{H}_x = \text{vect}\{\phi_1(x), \dots, \phi_{2r}(x)\}$. We have $T_U^*M = \ker \pi_\# \oplus \mathcal{H}$ and $\mathcal{DH} \subset \mathcal{H}$.
Let (M, π, \mathcal{D}) such that \mathcal{D} is a \mathcal{F}^{reg} -connection, torsionless and flat. Let $x_0 \in M^{reg}$ and (a_1, \ldots, a_{2r}) a family of covectors in $T^*_{x_0}M$ such that $(\pi_{\#}(a_1), \ldots, \pi_{\#}(a_{2r}))$ is a basis of $\operatorname{Im}\pi_{\#}(x_0)$.

- For any $a \in T^*_{x_0}M$, there exists an open set $U \ni x_0$ and $\beta^a \in \Omega^1(U)$ such that $\beta^a(x_0) = a$ and $\mathcal{D}\beta^a = 0$.
- Note $\phi_i = \beta^{a_i}$. The vector fields $(\pi_{\#}(\phi_1), \ldots, \pi_{\#}(\phi_{2r}))$ are commuting linearly independent so there exists a coordinates system $((x^i)_{i=1}^{2r}, (y^j)_{j=1}^{d-2r})$ such that $\pi_{\#}(\phi_i) = \frac{\partial}{\partial x^i}$, $i = 1, \ldots, 2r$. We have $\pi_{\#}(dy^i) = 0$, $i = 1, \ldots, d-2r$.
- For any $x \in U$, put $\mathcal{H}_x = \text{vect}\{\phi_1(x), \dots, \phi_{2r}(x)\}$. We have $T_U^*M = \ker \pi_\# \oplus \mathcal{H}$ and $\mathcal{DH} \subset \mathcal{H}$.
- $\mathbf{F}^* = \left\{\phi_1, \dots, \phi_{2r}, dy^1, \dots, dy^{d-2r}\right\}$ is a flat co-frame.

Solution : The frame dual of \mathbf{F}^*

For any $i = 1, \ldots, 2r$, there exists a unique family of functions A_i^1, \ldots, A_i^s such that $dx^i + \sum_u A_i^u dy_u \in \mathcal{H}$. Consider

$$X^{i} := -X_{x^{i}} = -\pi_{\sharp}(dx^{i}), \qquad Y_{u} := \frac{\partial}{\partial y_{u}} - \sum_{i=1}^{2r} A_{i}^{u} \frac{\partial}{\partial x^{i}}.$$

Solution : The frame dual of \mathbf{F}^*

For any $i = 1, \ldots, 2r$, there exists a unique family of functions A_i^1, \ldots, A_i^s such that $dx^i + \sum_u A_i^u dy_u \in \mathcal{H}$. Consider

$$X^{i} := -X_{x^{i}} = -\pi_{\sharp}(dx^{i}), \qquad Y_{u} := \frac{\partial}{\partial y_{u}} - \sum_{i=1}^{2r} A^{u}_{i} \frac{\partial}{\partial x^{i}}.$$

Lemma 3

wit

 $\{X_i, Y_u\}$ is the dual frame of \mathbf{F}^* . Moreover, the vector fields X_i and Y_u are, respectively, Hamiltonian and Poisson, and satisfy :

$$\begin{split} [X_i, X_j] &= -\sum_{k=1}^{2r} \frac{\partial \pi_{ij}}{\partial x_k} X_k \,; \quad [X_i, Y_u] = \sum_{j=1}^{2r} \frac{\partial A_i^u}{\partial x_j} X_j \,; \\ [Y_u, Y_v] &= \sum_{i,j=1}^{2r} \pi^{ij} \left(\frac{\partial A_j^u}{\partial y_v} - \frac{\partial A_j^v}{\partial y_u} + \sum_{k=1}^{2r} A_k^u \frac{\partial A_j^v}{\partial x_k} - A_k^v \frac{\partial A_j^u}{\partial x_k} \right) X_i \,. \\ h \ (\pi_{ij}) &= (\pi (dx^i, dx^j)) \text{ and } (\pi^{ij}) \text{ is the inverse of the matrix } (\pi_{ij}) \end{split}$$

Solution : The tensor fields \mathcal{M} et \mathbf{T}

Theorem 4

For any
$$u$$
, $\mathcal{M}(dy_u, \cdot, \cdot) = 0$.
For any i, j, k ,
$$\mathcal{M}(\phi_i, \phi_j, \phi_k) = -\sum_{l < m} \frac{\partial^3 \pi_{lm}}{\partial x_i \partial x_j \partial x_k} \phi_l \wedge \phi_m + \sum_{l, u} \frac{\partial^3 A_l^u}{\partial x_i \partial x_j \partial x_k} \phi_l \wedge dy_u$$

$$+\sum_{u < v, l} \frac{\partial^2}{\partial x_i \partial x_j} \left(\pi^{kl} \left(\frac{\partial A_l^u}{\partial y_v} - \frac{\partial A_l^v}{\partial y_u} + \sum_m A_m^u \frac{\partial A_l^v}{\partial x_m} - A_m^v \frac{\partial A_l^u}{\partial x_m} \right) \right) dy_u \wedge dy_v.$$

Solution : The tensor fields \mathcal{M} et \mathbf{T}

Theorem 4

For any
$$u$$
, $\mathcal{M}(dy_u, \cdot, \cdot) = 0$.
For any i, j, k ,
$$\mathcal{M}(\phi_i, \phi_j, \phi_k) = -\sum_{l < m} \frac{\partial^3 \pi_{lm}}{\partial x_i \partial x_j \partial x_k} \phi_l \wedge \phi_m + \sum_{l, u} \frac{\partial^3 A_l^u}{\partial x_i \partial x_j \partial x_k} \phi_l \wedge dy_u$$

$$+\sum_{u < v, l} \frac{\partial^2}{\partial x_i \partial x_j} \left(\pi^{kl} \left(\frac{\partial A_l^u}{\partial y_v} - \frac{\partial A_l^v}{\partial y_u} + \sum_m A_m^u \frac{\partial A_l^v}{\partial x_m} - A_m^v \frac{\partial A_l^u}{\partial x_m} \right) \right) dy_u \wedge dy_v.$$

Theorem 5

For any
$$u$$
, $\mathbf{T}(dy_u, \cdot) = 0$.
For any i, j ,
 $\mathbf{T}(\phi_i, \phi_j) = -\sum_{k < l} \frac{\partial^2 \pi_{kl}}{\partial x_i \partial x_j} \phi_k \wedge \phi_l + \sum_{k, u} \frac{\partial^2 A_k^u}{\partial x_i \partial x_j} \phi_k \wedge dy_u$
 $+\sum_{u < v, k} \frac{\partial}{\partial x_i} \left(\pi^{jk} \left(\frac{\partial A_k^u}{\partial y_v} - \frac{\partial A_k^v}{\partial y_u} + \sum_l A_l^u \frac{\partial A_k^v}{\partial x_l} - A_l^v \frac{\partial A_k^u}{\partial x_l} \right) \right) dy_u \wedge dy_v.$

Sketch of the proof

The idea is to build near x_0 a family of linearly independent vector fields $Z_1, \ldots, Z_{2r} \in \Gamma(\mathcal{C})$ which commute with X_i and Y_u . In this case

- $[Z_i, Z_j] = \sum_k c_{ij}^k Z_k$ with $c_{ij}^k = cst$ hence Z_1, \ldots, Z_{2r} generate a Lie algebra of dimension 2r which acts freely near x_0 .
- $\pi = \frac{1}{2} \sum_{i,j} a_{ij} Z_i \wedge Z_j$ where (a_{ij}) is constant and invertible.
- $\mathcal{D}_{\alpha}\beta = \sum_{i,j} a_{ij}\alpha(Z_i) \mathcal{L}_{Z_j}\beta$; indeed, this is true for $\beta = \phi_i$ or dy_u since $\mathcal{L}_{Z_i}\phi_j = \mathcal{L}_{Z_i}dy_u = 0$. And $\mathcal{D}_{\alpha}\beta - \sum_{i,j} a_{ij}\alpha(Z_i)\mathcal{L}_{Z_j}\beta$ is tensorial in β .

We proceed on two steps :

First step

We build a family of vector fields $T_1, \ldots, T_{2r} \in \Gamma(\mathcal{C})$ which commute with the X_i . Indeed, the vanishing of **T** and Lemma 3, imply :

$$[X_i, X_j] = \sum_{k=1}^{2r} \lambda_{ij}^k X_k , \quad [X_i, Y_u] = \sum_{j=1}^{2r} \mu_{iu}^j X_j , \quad [Y_u, Y_v] = \sum_{i=1}^{2r} \nu_{uv}^i X_i$$

where $\lambda_{ij}^k, \, \mu_{iu}^j, \, \nu_{uv}^i$ are Casimir, i.e., depend only on the y^i .

We proceed on two steps :

First step

We build a family of vector fields $T_1, \ldots, T_{2r} \in \Gamma(\mathcal{C})$ which commute with the X_i . Indeed, the vanishing of **T** and Lemma 3, imply :

$$[X_i, X_j] = \sum_{k=1}^{2r} \lambda_{ij}^k X_k \,, \quad [X_i, Y_u] = \sum_{j=1}^{2r} \mu_{iu}^j X_j \,, \quad [Y_u, Y_v] = \sum_{i=1}^{2r} \nu_{uv}^i X_i$$

where $\lambda_{ij}^k, \mu_{iu}^j, \nu_{uv}^i$ are Casimir, i.e., depend only on the y^i . We choose a transversal \mathcal{T} to the symplectic foliation \mathcal{S} passing through x_0 . For $y \in \mathcal{T}$ fix, $X_{1|S_y}, \ldots, X_{2r|S_y}$ span a Lie algebra \mathfrak{g}_y which act freely and transitively on \mathcal{S}_y , so \exists an anti-homomorphism of Lie algebras $\Gamma_y : \mathfrak{g}_y \to \mathfrak{X}^1(\mathcal{S}_y)$, such that

$$\Gamma_y(X_{i|_{\mathcal{S}_y}})(y) = X_i(y), \quad [\Gamma_y(X_{i|_{\mathcal{S}_y}}), X_{j|_{\mathcal{S}_y}}] = 0 \quad \forall i, j.$$

We take $T_i(z) := \Gamma_y(X_i^y)(z), \ z \in S_y$ and we variate y to obtain T_i .

Now, the μ_{iu}^j are Casimir

$$T_i, Y_u] = \sum_{j=1}^{2r} \gamma_{iu}^j T_j$$

with γ_{iu}^{j} Casimir and satisfy

$$\frac{\partial \gamma_{ju}^{i}}{\partial y_{v}} - \frac{\partial \gamma_{jv}^{i}}{\partial y_{u}} + \sum_{k=1}^{2r} \gamma_{ku}^{i} \gamma_{jv}^{k} - \gamma_{kv}^{i} \gamma_{ju}^{k} = 0 \qquad (*)$$

since the ν_{uv}^i are Casimir and $[T_i, [Y_u, Y_v]] = 0$ for any i, u, v.

Now, the μ_{iu}^j are Casimir

$$[T_i, Y_u] = \sum_{j=1}^{2r} \gamma_{iu}^j T_j$$

with γ_{iu}^{j} Casimir and satisfy

$$\frac{\partial \gamma_{ju}^{i}}{\partial y_{v}} - \frac{\partial \gamma_{jv}^{i}}{\partial y_{u}} + \sum_{k=1}^{2r} \gamma_{ku}^{i} \gamma_{jv}^{k} - \gamma_{kv}^{i} \gamma_{ju}^{k} = 0 \qquad (*)$$

since the ν_{uv}^i are Casimir and $[T_i, [Y_u, Y_v]] = 0$ for any i, u, v.

Second step

We look for the Z_i in the form :

$$Z_i := \sum_{j=1}^{2r} \xi_{ji} T_j$$

where ξ_{ij} are Casimir and $\xi = (\xi_{ij})$ is invertible. They exist by virtue of (*).

・ ロ ト ・ 昼 ト ・ 星 ト ・ 星 ・ うのの