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Let (M, g) be a pseudo-Riemannian manifold. An isometry
of (M, g) is a diffeomorphism f :M −→M such that
f ∗g = g.

We denote by Isom(M, g) the group of isometries of (M, g)
and [Isom(M, g)], the identity component of Isom(M, g)

Theorem.
If (M, g) is Riemannian and f :M −→M is a surjective
smooth map then f is an isometry if and only if f preserves
the Riemannian distance.
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Theorem. (S. B. Myers-N. Steenrod)
Let (M, g) be a pseudo-Riemannian manifold. Then
(a) The group Isom(M, g) is a Lie group which acts

effectively and differentiably on M .
(b) For any m ∈M , the isotropy subgroup

Isomm(M, g) = {f ∈ Isom(M, g), f(m) = m}

is a closed subgroup of Isom(M, g). Moreover, if we
denote by

ρ : Isomm(M, g) −→ GL(TmM), f 7→ ρ(f) = Tmf,

then ρ define an isomorphism of Isomm(M, g) into a
closed subgroup of O(TmM, gm).
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Corollary.
If (M, g) is a Riemannian manifold, Isomm(M, g) is
compact. Moreover, if (M, g) is compact then Isom(M, g) is
compact

6



Remark.
1 More generally, if (M, g) is Riemannian then

Isom(M, g) act properly on M .
2 Note that Isom(M, g) may be compact (even trivial)

even if (M, g) is not compact or non-Riemannian.
3 Note also that dim Isom(M, g) ≤ n(n+1)

2
with equality

only if (M, g) has constant sectional curvature.
4 If (M, g) is Riemannian and n = dimM 6= 0 then

Isom(M, g) contains non closed subgroup of dimension
r with

1

2
n(n− 1) + 1 < r <

1

2
n(n+ 1).
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The following theorem shows that there are deep relations
between the curvature and the group of isometries.

Theorem. (S. Bochner.)
Let (M, g) be a compact manifold and ric its Ricci
curvature. Then

1 If for u 6= 0 ric(u, u) < 0 then Isom(M, g) is finite.
2 If for u ric(u, u) ≤ 0 then Isom(M, g) is a torus.
3 If for u ric(u, u) = 0 then

dim Isom(M, g) = dimH1(M,R).
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Background on Lie algebras and Lie groups
A Lie algebra g is called simple if g contains no proper
ideal.

A Lie algebra g is called semi-simple if g is not abelian and
contains no proper solvable ideal.

Theorem. (Folklore)
Let g be a Lie algebra. Then the following are equivalent:

1 g is a semi-simple.
2 g has a splitting g = g1 ⊕ . . .⊕ gs, where {g1, . . . , gs} is

the set of all simple ideals of g.
3 The Killing form K of g is non-degenerate.a

Moreover, the integer s appearing in the splitting above is
an invariant of g.

aRecall that K is given by K(u, v) = tr(adu ◦ adv).
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Let g be a Lie algebra over R. Then ad(g) is a subalgebra
of gl(g). Let Int(g) the subgroup of GL(g) whose Lie
algebra is ad(g).

The group Aut(g) of automorphisms of g is a closed
subgroup of GL(g) and hence a Lie group. Its Lie algebra is
the Lie algebra δ(g) of the derivations of g.
We have ad(g) ⊂ δ(g) and hence Int(g) ⊂ Aut(g).

Definition.
1 A Lie algebra g is called compact if ad(g) is compact.
2 A Lie group is called simple (resp. semi-simple) if its

Lie algebra is simple (resp. semi-simple).
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Proposition.
If g is semi-simple then ad(g) = δ(g), i.e., every derivation
is an inner derivation.

Corollary.
For a semi-simple Lie algebra over R, the adjoint group
Int(g) is the identity component of Aut(g). In particular,
Int(g) is closed in Aut(g).
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Proposition.
(a) Let g be a semi-simple Lie algebra over R. Then g is

compact if and only if the Killing form of g is strictly
negative definite.

(b) Every compact Lie algebra is the direct sum
g = Z(g)⊕ [g, g], where Z(g) is the center of g and the
ideal [g, g] is semi-simple compact.

(b) If g is compact then g = Z(g)⊕ g1 ⊕ . . .⊕ gs where gi
is simple compact.

Corollary.
A Lie algebra over R is compact if and only if there exists a
compact Lie group G with the Lie algebra isomorphic to g.
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Theorem.
Let G be a compact, connected semi-simple Lie group. Then
the universal covering G∗ of G is compact. In particular, a
compact connected Lie group is semi-simple if and only if
π1(G) is finite.

Theorem.
Let G be a compact, connected semi-simple Lie group. Then
π3(G) ' Zs, where s is the cardinal of the set of the proper
ideals in g.
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Main result

Let G be a connected Lie group. For any a ∈ G, we denote
by La : G −→ G and Ra : G −→ G, respectively, the left
translation and the right translation given by

La(b) = ab and Ra(b) = ba−1.

L(G) and R(G) are groups of transformations of G which
are isomorphic to G. Moreover,

L(G)R(G) = {La ◦ Rb, a, b ∈ G}

is a Lie group isomorphic to G×G.
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Let g is a left invariant Riemannian metric on G. Then
Isom(G, g) contains L(G). If it contains R(G) then the
metric is bi-invariant.

We state now the main result.

Theorem. (Math. Ann. 223, 91-96 (1976))
Let G be a compact, connected, simple Lie group and g a
left invariant Riemannian metric on G. Then
[Isom(G, g)] ⊂ L(G)R(G).

Remark.
We can derive from this theorem that if G is connected
compact simple with a left invariant Riemannian metric of
constant curvature then G ≡ S3 or SO(3).
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Preparation of the proof of the theorem

Let G be a compact, connected Lie group and g a left
invariant Riemannian metric on G. Since G is compact
[Isom(G, g)] is compact and connected.

Let

H = {f ∈ [Isom(G, g)], f(e) = e} .

H is a compact subgroup of [Isom(G, g)] and we have

[Isom(G, g)] = L(G)H and L(G) ∩H = {e}. (1)

This implies that [Isom(G, g)] is a diffeomorphic to a
product manifold L(G)×H and H is connected.
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If [Isom(G, g)] is contained in L(G)R(G) then L(G) is a
normal subgroup of [Isom(G, g)]. Moreover, each element of
H has form La ◦ Ra, i.e., H is contained in the inner
automorphism group of G.

Conversely, assume H is
contained in the inner automorphism group of G. If
f ∈ [Isom(G, g)] then by (1), f = La ◦ h where h ∈ H. Or
h = Lb ◦ Rb and hence f = Lab ◦ Rb. Thus f ∈ L(G)R(G).

Theorem.
(a) If [Isom(G, g)] is contained in L(G)R(G) then L(G) is

a normal subgroup of [Isom(G, g)].
(b) [Isom(G, g)] is contained in L(G)R(G) if and only if H

is contained in the inner automorphism group of G.
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Actually, the converse of (b) is true if G is semi-simple.

Indeed, suppose that G is semi-simple and L(G) is a
normal subgroup of [Isom(G, g)]. Let h ∈ H. For any
y ∈ G, there exists x ∈ G such that h ◦ Ly ◦ h−1 = Lx. This
is equivalent to, h(yz) = xh(y) for any z ∈ G.
Thus x = h(y) and hence h is an automorphism of G. So
H ⊂ Aut(G). But G is semi-simple and hence
Aut0(G) = Inner(G).

Theorem.
Let (G, g) be a compact, connected semi-simple Lie group.
Then [Isom(G, g)] is contained in L(G)R(G) if and only if
L(G) is a normal subgroup of [Isom(G, g)].
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Let (G, g) be a compact, connected simple Lie group. We
have:

1 [Isom(G, g)] is a compact connected Lie group.
2 L(G) is a compact, connected simple Lie group

contained in [Isom(G, g)] .
3 [Isom(G, g)] = L(G)H and L(G) ∩H = {e} with H

closed.
4 H contains non normal subgroup of [Isom(G, g)] except
{e}.

5 [Isom(G, g)] is contained in L(G)R(G) if and only if
L(G) is a normal subgroup of [Isom(G, g)].
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To prove our main theorem it suffices to prove the following
theorem.

Theorem.

Let K be a compact connected Lie group. Let G and H be
closed connected subgroups of K such that
(A) G is simple.
(B) K = GH and G ∩H = {e}.
(C) H contains non normal subgroup of K except {e}.
Then G is a normal subgroup of K.
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A fundamental Lemma

Lemma.
Let K be a compact connected Lie group. Let G and H be
closed proper subgroups of K such that K = GH and
G ∩H = {e}. Then
(a) G and H are connected.
(b) K is semi-simple if and only if both G and H are

semi-simple.
(c) If K, G and H are semi-simple then

s(K) = s(G) + s(H).a

as(G) is the number of proper ideals contained in the Lie algebra g
of G.
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Proof.
From the assumption it follows that G and H and compact
and K is diffeomorphic to G×H. Hence G and H are
connected and

πi(K) = πi(G) + πi(H), i = 1, . . . .

Then π1(K) is finite if and only if π1(G) and π1(H) are
finite, which implies (b). Now if K, G and H are
semi-simple then

Zs(K) = π3(K) = π3(G) + π3(H) = Zs(G) + Zs(H)

and hence s(K) = s(G) + s(K) and (c) follows.
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Corollary.
If a real Lie algebra K = g⊕ h where g and h are compact
semi-simple then K is compact semi-simple and
s(K) = s(g) + s(h).

Proof.
Let K be the simply connected Lie group of Lie algebra K,
G and H the connected subgroups of K whose Lie algebras
are g and h. Then G and H are compact and semi-simple.
We have also G ∩H = {e} and K = GH and the corollary
follows from the lemma.
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Proof of Theorem 18

Denote by K, g and h, respectively, the Lie algebras of K,
G and H. We have

1 g is simple,
2 K = g⊕ h,
3 h contains no proper ideal of K except {0}.
4 K = Z(K)⊕ a1 ⊕ . . .⊕ as, where ai is simple compact.

To show the theorem, it suffices to show that g is an ideal
of K.

To do so, we first prove the following: If there exists i
such that g ⊂ ai then g is an ideal of K.
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Denote by K, g and h, respectively, the Lie algebras of K,
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4 K = Z(K)⊕ a1 ⊕ . . .⊕ as, where ai is simple compact.

To show the theorem, it suffices to show that g is an ideal
of K.
To do so, we first prove the following: If there exists i
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Suppose that g ⊂ a and a is a simple ideal of K.

The
connected Lie subgroup A of K corresponding to a is
compact and simple. G is closed subgroup of A and
H ′ = A ∩H is compact. From the assumption, we have
A = GH ′, G ∩H ′ = {e}. Suppose that G is proper
subgroup of A. Then H ′ is also proper subgroup of A.
Then from the fundamental lemma we have
s(A) = s(G) + s(H ′). Or s(G) = S(A) = 1 and hence
s(H ′) = 0, which is a contradiction, so A = G.
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Suppose that g ⊂ a and a is a simple ideal of K. The
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To complete the proof, we suppose that for any i = 1, . . . , s
g is not contained in ai and deduce a contradiction.

Denote by pi : K −→ ai the projection with respect to the
splitting

K = Z(K)⊕ a1 ⊕ . . .⊕ as, Z(K) = a0.

For any i = 0, . . . , s, pi is a Lie algebra homomorphism and
hence g ∩ ker pi is an ideal in g and hence g ∩ ker pi = {0}
or g ∩ ker pi = g. Since g 6= {0} then there exist i0 such
that g ∩ ker pi0 6= g and hence g ∩ ker pi0 = {0}. Suppose
that i0 = 0. Then p0(g) is abelian and isomorphic to g
which is impossible. So i0 6= 0. Put i0 = 1.
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To complete the proof, we suppose that for any i = 1, . . . , s
g is not contained in ai and deduce a contradiction.
Denote by pi : K −→ ai the projection with respect to the
splitting

K = Z(K)⊕ a1 ⊕ . . .⊕ as, Z(K) = a0.

For any i = 0, . . . , s, pi is a Lie algebra homomorphism and
hence g ∩ ker pi is an ideal in g and hence g ∩ ker pi = {0}
or g ∩ ker pi = g. Since g 6= {0} then there exist i0 such
that g ∩ ker pi0 6= g and hence g ∩ ker pi0 = {0}. Suppose
that i0 = 0. Then p0(g) is abelian and isomorphic to g
which is impossible. So i0 6= 0. Put i0 = 1.
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We have g ∩ ker p1 = {0}. Moreover, g ∩ a1 is an ideal in g
and since g is not contained in a1 then g ∩ a1 = {0}. This
implies

g ∩ p1(g) = {0}. (2)
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