On the isometry group of left invariant Riemannian metric on Lie groups

Mohamed Boucetta m.boucetta@uca.ma

Cadi-Ayyad University Faculty of Sciences and Technology Marrakesh Morocco

Seminar Geometry, Topology and Applications 30 April 2016

Let (M, g) be a pseudo-Riemannian manifold. An isometry of (M, g) is a diffeomorphism $f : M \longrightarrow M$ such that $f^*g = g$. Let (M, g) be a pseudo-Riemannian manifold. An isometry of (M, g) is a diffeomorphism $f : M \longrightarrow M$ such that $f^*g = g$.

We denote by Isom(M, g) the group of isometries of (M, g)and [Isom(M, g)], the identity component of Isom(M, g) Let (M, g) be a pseudo-Riemannian manifold. An isometry of (M, g) is a diffeomorphism $f : M \longrightarrow M$ such that $f^*g = g$.

We denote by Isom(M, g) the group of isometries of (M, g)and [Isom(M, g)], the identity component of Isom(M, g)

Theorem.

If (M, g) is Riemannian and $f : M \longrightarrow M$ is a surjective smooth map then f is an isometry if and only if f preserves the Riemannian distance.

Theorem. (S. B. Myers-N. Steenrod)

Let (M, g) be a pseudo-Riemannian manifold. Then

- (a) The group Isom(M,g) is a Lie group which acts effectively and differentiably on M.
- (b) For any $m \in M$, the isotropy subgroup

 $\operatorname{Isom}_m(M, g) = \{ f \in \operatorname{Isom}(M, g), f(m) = m \}$

is a closed subgroup of Isom(M, g). Moreover, if we denote by

 $\rho : \operatorname{Isom}_m(M, g) \longrightarrow \operatorname{GL}(T_m M), \quad f \mapsto \rho(f) = T_m f,$

then ρ define an isomorphism of $\operatorname{Isom}_m(M, g)$ into a closed subgroup of $O(T_mM, g_m)$.

Corollary.

If (M, g) is a Riemannian manifold, $\operatorname{Isom}_m(M, g)$ is compact. Moreover, if (M, g) is compact then $\operatorname{Isom}(M, g)$ is compact

6

Remark.

- More generally, if (M, g) is Riemannian then Isom(M, g) act properly on M.
- Note that Isom(M,g) may be compact (even trivial) even if (M,g) is not compact or non-Riemannian.
- Note also that dim Isom $(M, g) \le \frac{n(n+1)}{2}$ with equality only if (M, g) has constant sectional curvature.
- If (M,g) is Riemannian and n = dim M ≠ 0 then Isom(M,g) contains non closed subgroup of dimension r with

$$\frac{1}{2}n(n-1) + 1 < r < \frac{1}{2}n(n+1).$$

The following theorem shows that there are deep relations between the curvature and the group of isometries.

Theorem. (S. Bochner.)

Let (M, g) be a compact manifold and ric its Ricci curvature. Then

- If for $u \neq 0$ ric(u, u) < 0 then Isom(M, g) is finite.
- 2 If for $u \operatorname{ric}(u, u) \leq 0$ then $\operatorname{Isom}(M, g)$ is a torus.

If for
$$u \operatorname{ric}(u, u) = 0$$
 then

$$\dim \operatorname{Isom}(M, g) = \dim H^1(M, \mathbb{R}).$$

Background on Lie algebras and Lie groups

A Lie algebra ${\mathfrak g}$ is called simple if ${\mathfrak g}$ contains no proper ideal.

Background on Lie algebras and Lie groups

A Lie algebra ${\mathfrak g}$ is called simple if ${\mathfrak g}$ contains no proper ideal.

A Lie algebra $\mathfrak g$ is called semi-simple if $\mathfrak g$ is not abelian and contains no proper solvable ideal.

Background on Lie algebras and Lie groups

A Lie algebra ${\mathfrak g}$ is called simple if ${\mathfrak g}$ contains no proper ideal.

A Lie algebra \mathfrak{g} is called semi-simple if \mathfrak{g} is not abelian and contains no proper solvable ideal.

Theorem. (Folklore)

Let ${\mathfrak g}$ be a Lie algebra. Then the following are equivalent:

- \bigcirc g is a semi-simple.
- 𝔅 has a splitting 𝔅 = 𝔅₁ ⊕ ... ⊕ 𝔅_s, where {𝔅₁,...,𝔅_s} is the set of all simple ideals of 𝔅.

• The Killing form K of g is non-degenerate.^a Moreover, the integer s appearing in the splitting above is an invariant of g.

^{*a*}Recall that K is given by $K(u, v) = tr(ad_u \circ ad_v)$.

The group $\operatorname{Aut}(\mathfrak{g})$ of automorphisms of \mathfrak{g} is a closed subgroup of $\operatorname{GL}(\mathfrak{g})$ and hence a Lie group. Its Lie algebra is the Lie algebra $\delta(\mathfrak{g})$ of the derivations of \mathfrak{g} .

The group $\operatorname{Aut}(\mathfrak{g})$ of automorphisms of \mathfrak{g} is a closed subgroup of $\operatorname{GL}(\mathfrak{g})$ and hence a Lie group. Its Lie algebra is the Lie algebra $\delta(\mathfrak{g})$ of the derivations of \mathfrak{g} .

We have $\operatorname{ad}(\mathfrak{g}) \subset \delta(\mathfrak{g})$ and hence $\operatorname{Int}(\mathfrak{g}) \subset \operatorname{Aut}(\mathfrak{g})$.

The group $\operatorname{Aut}(\mathfrak{g})$ of automorphisms of \mathfrak{g} is a closed subgroup of $\operatorname{GL}(\mathfrak{g})$ and hence a Lie group. Its Lie algebra is the Lie algebra $\delta(\mathfrak{g})$ of the derivations of \mathfrak{g} . We have $\operatorname{ad}(\mathfrak{g}) \subset \delta(\mathfrak{g})$ and hence $\operatorname{Int}(\mathfrak{g}) \subset \operatorname{Aut}(\mathfrak{g})$.

Definition.

- **Q** A Lie algebra \mathfrak{g} is called compact if $\operatorname{ad}(\mathfrak{g})$ is compact.
- A Lie group is called simple (resp. semi-simple) if its Lie algebra is simple (resp. semi-simple).

If \mathfrak{g} is semi-simple then $\operatorname{ad}(\mathfrak{g}) = \delta(\mathfrak{g})$, i.e., every derivation is an inner derivation.

If \mathfrak{g} is semi-simple then $\operatorname{ad}(\mathfrak{g}) = \delta(\mathfrak{g})$, i.e., every derivation is an inner derivation.

Corollary.

For a semi-simple Lie algebra over \mathbb{R} , the adjoint group $\operatorname{Int}(\mathfrak{g})$ is the identity component of $\operatorname{Aut}(\mathfrak{g})$. In particular, $\operatorname{Int}(\mathfrak{g})$ is closed in $\operatorname{Aut}(\mathfrak{g})$.

- (a) Let g be a semi-simple Lie algebra over ℝ. Then g is compact if and only if the Killing form of g is strictly negative definite.
- (b) Every compact Lie algebra is the direct sum
 g = Z(g) ⊕ [g, g], where Z(g) is the center of g and the ideal [g, g] is semi-simple compact.
- (b) If \mathfrak{g} is compact then $\mathfrak{g} = Z(\mathfrak{g}) \oplus \mathfrak{g}_1 \oplus \ldots \oplus \mathfrak{g}_s$ where \mathfrak{g}_i is simple compact.

- (a) Let g be a semi-simple Lie algebra over ℝ. Then g is compact if and only if the Killing form of g is strictly negative definite.
- (b) Every compact Lie algebra is the direct sum
 g = Z(g) ⊕ [g, g], where Z(g) is the center of g and the ideal [g, g] is semi-simple compact.
- (b) If \mathfrak{g} is compact then $\mathfrak{g} = Z(\mathfrak{g}) \oplus \mathfrak{g}_1 \oplus \ldots \oplus \mathfrak{g}_s$ where \mathfrak{g}_i is simple compact.

Corollary.

A Lie algebra over \mathbb{R} is compact if and only if there exists a compact Lie group G with the Lie algebra isomorphic to \mathfrak{g} .

Theorem.

Let G be a compact, connected semi-simple Lie group. Then the universal covering G^* of G is compact. In particular, a compact connected Lie group is semi-simple if and only if $\pi_1(G)$ is finite.

Theorem.

Let G be a compact, connected semi-simple Lie group. Then the universal covering G^* of G is compact. In particular, a compact connected Lie group is semi-simple if and only if $\pi_1(G)$ is finite.

Theorem.

Let G be a compact, connected semi-simple Lie group. Then $\pi_3(G) \simeq \mathbb{Z}^s$, where s is the cardinal of the set of the proper ideals in \mathfrak{g} .

Let G be a connected Lie group. For any $a \in G$, we denote by $L_a : G \longrightarrow G$ and $R_a : G \longrightarrow G$, respectively, the left translation and the right translation given by

$$L_a(b) = ab$$
 and $R_a(b) = ba^{-1}$.

Let G be a connected Lie group. For any $a \in G$, we denote by $L_a : G \longrightarrow G$ and $R_a : G \longrightarrow G$, respectively, the left translation and the right translation given by

$$L_a(b) = ab$$
 and $R_a(b) = ba^{-1}$.

L(G) and R(G) are groups of transformations of G which are isomorphic to G. Moreover,

$$\mathcal{L}(G)\mathcal{R}(G) = \{\mathcal{L}_a \circ \mathcal{R}_b, a, b \in G\}$$

is a Lie group isomorphic to $G \times G$.

Let g is a left invariant Riemannian metric on G. Then Isom(G, g) contains L(G). If it contains R(G) then the metric is bi-invariant.

Let g is a left invariant Riemannian metric on G. Then Isom(G, g) contains L(G). If it contains R(G) then the metric is bi-invariant. We state now the main result.

Theorem. (Math. Ann. 223, 91-96 (1976))

Let G be a compact, connected, simple Lie group and g a left invariant Riemannian metric on G. Then $[Isom(G,g)] \subset L(G)R(G).$ Let g is a left invariant Riemannian metric on G. Then Isom(G, g) contains L(G). If it contains R(G) then the metric is bi-invariant. We state now the main result.

Theorem. (Math. Ann. 223, 91-96 (1976))

Let G be a compact, connected, simple Lie group and g a left invariant Riemannian metric on G. Then $[Isom(G,g)] \subset L(G)R(G).$

Remark.

We can derive from this theorem that if G is connected compact simple with a left invariant Riemannian metric of constant curvature then $G \equiv S^3$ or SO(3).

Preparation of the proof of the theorem

Let G be a compact, connected Lie group and g a left invariant Riemannian metric on G. Since G is compact [Isom(G,g)] is compact and connected. Let G be a compact, connected Lie group and g a left invariant Riemannian metric on G. Since G is compact [Isom(G,g)] is compact and connected. Let

$$H = \left\{ f \in [\operatorname{Isom}(G, g)], f(e) = e \right\}.$$

H is a compact subgroup of [Isom(G, g)] and we have

 $[\operatorname{Isom}(G, g)] = \mathcal{L}(G)H \quad \text{and} \quad \mathcal{L}(G) \cap H = \{e\}.$ (1)

Let G be a compact, connected Lie group and g a left invariant Riemannian metric on G. Since G is compact [Isom(G,g)] is compact and connected. Let

$$H = \{ f \in [\text{Isom}(G, g)], f(e) = e \}.$$

H is a compact subgroup of $[\operatorname{Isom}(G,\mathbf{g})]$ and we have

 $[\operatorname{Isom}(G, g)] = \mathcal{L}(G)H \quad \text{and} \quad \mathcal{L}(G) \cap H = \{e\}.$ (1)

This implies that [Isom(G, g)] is a diffeomorphic to a product manifold $L(G) \times H$ and H is connected.

If [Isom(G, g)] is contained in L(G)R(G) then L(G) is a normal subgroup of [Isom(G, g)]. Moreover, each element of H has form $L_a \circ R_a$, i.e., H is contained in the inner automorphism group of G. If [Isom(G, g)] is contained in L(G)R(G) then L(G) is a normal subgroup of [Isom(G, g)]. Moreover, each element of H has form $L_a \circ R_a$, i.e., H is contained in the inner automorphism group of G. Conversely, assume H is contained in the inner automorphism group of G. If $f \in [\text{Isom}(G, g)]$ then by (1), $f = L_a \circ h$ where $h \in H$. Or $h = L_b \circ R_b$ and hence $f = L_{ab} \circ R_b$. Thus $f \in L(G)R(G)$. If [Isom(G, g)] is contained in L(G)R(G) then L(G) is a normal subgroup of [Isom(G, g)]. Moreover, each element of H has form $L_a \circ R_a$, i.e., H is contained in the inner automorphism group of G. Conversely, assume H is contained in the inner automorphism group of G. If $f \in [\text{Isom}(G, g)]$ then by (1), $f = L_a \circ h$ where $h \in H$. Or $h = L_b \circ R_b$ and hence $f = L_{ab} \circ R_b$. Thus $f \in L(G)R(G)$.

Theorem.

(a) If [Isom(G,g)] is contained in L(G)R(G) then L(G) is a normal subgroup of [Isom(G,g)].

(b) [Isom(G,g)] is contained in L(G)R(G) if and only if H is contained in the inner automorphism group of G.

Actually, the converse of (b) is true if G is semi-simple.

Actually, the converse of (b) is true if G is semi-simple. Indeed, suppose that G is semi-simple and L(G) is a normal subgroup of [Isom(G, g)]. Let $h \in H$. For any $y \in G$, there exists $x \in G$ such that $h \circ L_y \circ h^{-1} = L_x$. This is equivalent to, h(yz) = xh(y) for any $z \in G$. Actually, the converse of (b) is true if G is semi-simple. Indeed, suppose that G is semi-simple and L(G) is a normal subgroup of [Isom(G, g)]. Let $h \in H$. For any $y \in G$, there exists $x \in G$ such that $h \circ L_y \circ h^{-1} = L_x$. This is equivalent to, h(yz) = xh(y) for any $z \in G$. Thus x = h(y) and hence h is an automorphism of G. So $H \subset \text{Aut}(G)$. But G is semi-simple and hence $\text{Aut}_0(G) = \text{Inner}(G)$. Actually, the converse of (b) is true if G is semi-simple. Indeed, suppose that G is semi-simple and L(G) is a normal subgroup of [Isom(G,g)]. Let $h \in H$. For any $y \in G$, there exists $x \in G$ such that $h \circ L_y \circ h^{-1} = L_x$. This is equivalent to, h(yz) = xh(y) for any $z \in G$. Thus x = h(y) and hence h is an automorphism of G. So $H \subset \text{Aut}(G)$. But G is semi-simple and hence $\text{Aut}_0(G) = \text{Inner}(G)$.

Theorem.

Let (G, g) be a compact, connected semi-simple Lie group. Then [Isom(G, g)] is contained in L(G)R(G) if and only if L(G) is a normal subgroup of [Isom(G, g)].

Isom(G, g) is a compact connected Lie group.

- Isom(G, g) is a compact connected Lie group.
- O L(G) is a compact, connected simple Lie group contained in $[\mathrm{Isom}(G,\mathbf{g})]$.

- Isom(G, g) is a compact connected Lie group.
- **2** L(G) is a compact, connected simple Lie group contained in [Isom(G,g)].
- ^S [Isom(G,g)] = L(G)H and L(G) ∩ H = {e} with H closed.

- Isom(G, g) is a compact connected Lie group.
- **2** L(G) is a compact, connected simple Lie group contained in [Isom(G,g)].
- **③** [Isom(G,g)] = L(G)H and $L(G) ∩ H = \{e\}$ with H closed.
- *H* contains non normal subgroup of [Isom(G, g)] except $\{e\}$.

- Isom(G, g) is a compact connected Lie group.
- **2** L(G) is a compact, connected simple Lie group contained in [Isom(G,g)].
- ^S [Isom(G,g)] = L(G)H and L(G) ∩ H = {e} with H closed.
- *H* contains non normal subgroup of [Isom(G, g)] except $\{e\}$.
- [Isom(G, g)] is contained in L(G)R(G) if and only if L(G) is a normal subgroup of [Isom(G, g)].

To prove our main theorem it suffices to prove the following theorem.

Theorem.

Let K be a compact connected Lie group. Let G and H be closed connected subgroups of K such that (A) G is simple. (B) K = GH and $G \cap H = \{e\}$. (C) H contains non normal subgroup of K except $\{e\}$. Then G is a normal subgroup of K.

A fundamental Lemma

Lemma.

Let K be a compact connected Lie group. Let G and H be closed proper subgroups of K such that K = GH and $G \cap H = \{e\}$. Then

- (a) G and H are connected.
- (b) K is semi-simple if and only if both G and H are semi-simple.
- (c) If K, G and H are semi-simple then s(K) = s(G) + s(H).^a

 ${}^{a}s(G)$ is the number of proper ideals contained in the Lie algebra \mathfrak{g} of G.

Proof.

From the assumption it follows that G and H and compact and K is diffeomorphic to $G \times H$. Hence G and H are connected and

 $\pi_i(K) = \pi_i(G) + \pi_i(H), \quad i = 1, \dots$

Proof.

From the assumption it follows that G and H and compact and K is diffeomorphic to $G \times H$. Hence G and H are connected and

$$\pi_i(K) = \pi_i(G) + \pi_i(H), \quad i = 1, \dots$$

Then $\pi_1(K)$ is finite if and only if $\pi_1(G)$ and $\pi_1(H)$ are finite, which implies (b).

Proof.

From the assumption it follows that G and H and compact and K is diffeomorphic to $G \times H$. Hence G and H are connected and

$$\pi_i(K) = \pi_i(G) + \pi_i(H), \quad i = 1, \dots$$

Then $\pi_1(K)$ is finite if and only if $\pi_1(G)$ and $\pi_1(H)$ are finite, which implies (b). Now if K, G and H are semi-simple then

$$\mathbb{Z}^{s(K)} = \pi_3(K) = \pi_3(G) + \pi_3(H) = \mathbb{Z}^{s(G)} + \mathbb{Z}^{s(H)}$$

and hence s(K) = s(G) + s(K) and (c) follows.

Corollary.

If a real Lie algebra $\Re = \mathfrak{g} \oplus \mathfrak{h}$ where \mathfrak{g} and \mathfrak{h} are compact semi-simple then \Re is compact semi-simple and $s(\Re) = s(\mathfrak{g}) + s(\mathfrak{h}).$

Corollary.

If a real Lie algebra $\mathfrak{K} = \mathfrak{g} \oplus \mathfrak{h}$ where \mathfrak{g} and \mathfrak{h} are compact semi-simple then \mathfrak{K} is compact semi-simple and $s(\mathfrak{K}) = s(\mathfrak{g}) + s(\mathfrak{h}).$

Proof.

Let K be the simply connected Lie group of Lie algebra \mathfrak{K} , G and H the connected subgroups of K whose Lie algebras are \mathfrak{g} and \mathfrak{h} . Then G and H are compact and semi-simple. We have also $G \cap H = \{e\}$ and K = GH and the corollary follows from the lemma. Denote by $\mathfrak{K}, \mathfrak{g}$ and \mathfrak{h} , respectively, the Lie algebras of K, G and H. We have

- \mathfrak{g} is simple,
- $2 \ \mathfrak{K} = \mathfrak{g} \oplus \mathfrak{h},$
- **(3)** \mathfrak{h} contains no proper ideal of \mathfrak{K} except $\{0\}$.

• $\mathfrak{K} = Z(\mathfrak{K}) \oplus \mathfrak{a}_1 \oplus \ldots \oplus \mathfrak{a}_s$, where \mathfrak{a}_i is simple compact. To show the theorem, it suffices to show that \mathfrak{g} is an ideal of \mathfrak{K} . Denote by $\mathfrak{K}, \mathfrak{g}$ and \mathfrak{h} , respectively, the Lie algebras of K, G and H. We have

• \mathfrak{g} is simple,

 $2 \ \mathfrak{K} = \mathfrak{g} \oplus \mathfrak{h},$

(3) \mathfrak{h} contains no proper ideal of \mathfrak{K} except $\{0\}$.

• $\mathfrak{K} = Z(\mathfrak{K}) \oplus \mathfrak{a}_1 \oplus \ldots \oplus \mathfrak{a}_s$, where \mathfrak{a}_i is simple compact. To show the theorem, it suffices to show that \mathfrak{g} is an ideal of \mathfrak{K} .

To do so, we first prove the following: If there exists *i* such that $\mathfrak{g} \subset \mathfrak{a}_i$ then \mathfrak{g} is an ideal of \mathfrak{K} .

Suppose that $\mathfrak{g} \subset \mathfrak{a}$ and \mathfrak{a} is a simple ideal of \mathfrak{K} .

Suppose that $\mathfrak{g} \subset \mathfrak{a}$ and \mathfrak{a} is a simple ideal of \mathfrak{K} . The connected Lie subgroup A of K corresponding to \mathfrak{a} is **compact** and simple.

Suppose that $\mathfrak{g} \subset \mathfrak{a}$ and \mathfrak{a} is a simple ideal of \mathfrak{K} . The connected Lie subgroup A of K corresponding to \mathfrak{a} is **compact** and simple. G is closed subgroup of A and $H' = A \cap H$ is compact. From the assumption, we have $A = GH', G \cap H' = \{e\}.$

Suppose that $\mathfrak{g} \subset \mathfrak{a}$ and \mathfrak{a} is a simple ideal of \mathfrak{K} . The connected Lie subgroup A of K corresponding to \mathfrak{a} is **compact** and simple. G is closed subgroup of A and $H' = A \cap H$ is compact. From the assumption, we have $A = GH', G \cap H' = \{e\}$. Suppose that G is proper subgroup of A. Then H' is also proper subgroup of A. Then from the fundamental lemma we have s(A) = s(G) + s(H'). Or s(G) = S(A) = 1 and hence s(H') = 0, which is a contradiction, so A = G.

To complete the proof, we suppose that for any i = 1, ..., s \mathfrak{g} is not contained in \mathfrak{a}_i and deduce a contradiction. To complete the proof, we suppose that for any $i = 1, \ldots, s$ \mathfrak{g} is not contained in \mathfrak{a}_i and deduce a contradiction. Denote by $p_i : \mathfrak{K} \longrightarrow \mathfrak{a}_i$ the projection with respect to the splitting

$$\mathfrak{K} = Z(\mathfrak{K}) \oplus \mathfrak{a}_1 \oplus \ldots \oplus \mathfrak{a}_s, \quad Z(\mathfrak{K}) = \mathfrak{a}_0.$$

To complete the proof, we suppose that for any $i = 1, \ldots, s$ \mathfrak{g} is not contained in \mathfrak{a}_i and deduce a contradiction. Denote by $p_i : \mathfrak{K} \longrightarrow \mathfrak{a}_i$ the projection with respect to the splitting

$$\mathfrak{K} = Z(\mathfrak{K}) \oplus \mathfrak{a}_1 \oplus \ldots \oplus \mathfrak{a}_s, \quad Z(\mathfrak{K}) = \mathfrak{a}_0.$$

For any i = 0, ..., s, p_i is a Lie algebra homomorphism and hence $\mathfrak{g} \cap \ker p_i$ is an ideal in \mathfrak{g} and hence $\mathfrak{g} \cap \ker p_i = \{0\}$ or $\mathfrak{g} \cap \ker p_i = \mathfrak{g}$. Since $\mathfrak{g} \neq \{0\}$ then there exist i_0 such that $\mathfrak{g} \cap \ker p_{i_0} \neq \mathfrak{g}$ and hence $\mathfrak{g} \cap \ker p_{i_0} = \{0\}$. Suppose that $i_0 = 0$. Then $p_0(\mathfrak{g})$ is abelian and isomorphic to \mathfrak{g} which is impossible. So $i_0 \neq 0$. Put $i_0 = 1$. We have $\mathfrak{g} \cap \ker p_1 = \{0\}$. Moreover, $\mathfrak{g} \cap \mathfrak{a}_1$ is an ideal in \mathfrak{g} and since \mathfrak{g} is not contained in \mathfrak{a}_1 then $\mathfrak{g} \cap \mathfrak{a}_1 = \{0\}$. This implies

$$\mathfrak{g} \cap p_1(\mathfrak{g}) = \{0\}.$$
(2)