Topological methods in division algebras: Hopf's Theorem and (1, 2, 4, 8) Theorem

Mohamed Boucetta m.boucetta@uca.ac.ma

Cadi-Ayyad University Faculty of Sciences and Technology Marrakesh Morocco

Seminar Algebra, Geometry, Topology and Applications 20 Mai 2017

Topological consequences of the existence of a division algebra structure on \mathbb{R}^n

Definition.

A division algebra structure on \mathbb{R}^n is a bilinear product $\mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$, $(x, y) \mapsto x.y$ such that

 $x.y = 0 \iff x = 0 \text{ or } y = 0.$

Topological consequences of the existence of a division algebra structure on \mathbb{R}^n

Definition.

A division algebra structure on \mathbb{R}^n is a bilinear product $\mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$, $(x, y) \mapsto x.y$ such that

$$x.y = 0 \iff x = 0 \text{ or } y = 0.$$

This is equivalent to: for any $x \neq 0$,

$$L_x : \mathbb{R}^n \longrightarrow \mathbb{R}^n, \ y \mapsto L_x y := x.y$$

and

$$\mathbf{R}_x: \mathbb{R}^n \longrightarrow \mathbb{R}^n, \ y \mapsto \mathbf{R}_x y := y \cdot x$$

are isomorphisms.

There are four classical examples:

• In dimension 1: \mathbb{R} endowed with its canonical product: commutative associative.

There are four classical examples:

- In dimension 1: \mathbb{R} endowed with its canonical product: commutative associative.
- In dimension 2: C endowed with its canonical product: commutative associative.

There are four classical examples:

- In dimension 1: \mathbb{R} endowed with its canonical product: commutative associative.
- ② In dimension 2: ℂ endowed with its canonical product: commutative associative.

6

In dimension 4: ℍ endowed with its canonical product:non commutative associative.

There are four classical examples:

- In dimension 1: \mathbb{R} endowed with its canonical product: commutative associative.
- ② In dimension 2: ℂ endowed with its canonical product: commutative associative.
- In dimension 4: ℍ endowed with its canonical product:non commutative associative.

Hopf's mapping

Suppose that \mathbb{R}^n carries a division algebra structure.

Suppose that \mathbb{R}^n carries a division algebra structure. The Hopf's mapping is the map

$$h: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}, \quad (x,y) \mapsto h(x,y) = \frac{x \cdot y}{||x \cdot y||}.$$

9

Suppose that \mathbb{R}^n carries a division algebra structure. The Hopf's mapping is the map

$$h: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}, \quad (x,y) \mapsto h(x,y) = \frac{x \cdot y}{||x \cdot y||}.$$

Hop's map is odd in the sense that

$$\forall x, y \in S^{n-1}, \quad h(-x, y) = h(x, -y) = -h(x, y).$$

11

 $G:\mathbb{P}^{n-1}\times\mathbb{P}^{n-1}\longrightarrow\mathbb{P}^{n-1}$

$$G: \mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}^{n-1}$$

 $G^*: H^*(\mathbb{P}^{n-1}, \mathbb{Z}_2) \longrightarrow H^*(\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}, \mathbb{Z}_2).$

$$G: \mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}^{n-1}$$

 $G^*: H^*(\mathbb{P}^{n-1}, \mathbb{Z}_2) \longrightarrow H^*(\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}, \mathbb{Z}_2).$

Note that

$$H^*(\mathbb{P}^{n-1},\mathbb{Z}_2) = \bigoplus_{k=0}^{n-1} H^k(\mathbb{P}^{n-1},\mathbb{Z}_2)$$

and

$$H^*(\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}, \mathbb{Z}_2) = \bigoplus_{k=0}^{2n-2} H^k(\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}, \mathbb{Z}_2).$$

14

Theorem (Hopf 1940)

If there exists a continuous odd mapping $h: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}$ then $n = 2^p$.

Theorem (Hopf 1940)

If there exists a continuous odd mapping $h: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}$ then $n = 2^p$.

Corollary.

If \mathbb{R}^n has a division algebra structure then $n = 2^p$.

Degree modulo 2 of a continuous map $f: M \longrightarrow M$

Let M be a compact connected topological space, $f: M \longrightarrow M$ be a continuous map. An element $y \in M$ is called regular value if for any $x \in f^{-1}(y)$, f is an homeomorphism from a neighborhood of x to a neighborhood of y. In this case $f^{-1}(y)$ is finite and its cardinal mod 2 doesn't depend on y. We call it $\deg_2(f) \in \mathbb{Z}_2$.

Degree modulo 2 of a continuous map $f: M \longrightarrow M$

Let M be a compact connected topological space, $f: M \longrightarrow M$ be a continuous map. An element $y \in M$ is called regular value if for any $x \in f^{-1}(y)$, f is an homeomorphism from a neighborhood of x to a neighborhood of y. In this case $f^{-1}(y)$ is finite and its cardinal mod 2 doesn't depend on y. We call it $\deg_2(f) \in \mathbb{Z}_2$. We have

f homotopic to $g \Rightarrow \deg_2(f) = \deg_2(g)$.

Any continuous function $f: M \longrightarrow M$ is homotopic to a function $g: M \longrightarrow M$ which is C^{∞} and according to Sard's theorem g has a regular value so we put

 $\deg_2(f) = \deg_2(g).$

Any continuous function $f: M \longrightarrow M$ is homotopic to a function $g: M \longrightarrow M$ which is C^{∞} and according to Sard's theorem g has a regular value so we put

 $\deg_2(f) = \deg_2(g).$

Let $F: S^{n-1} \longrightarrow \operatorname{GL}(n, \mathbb{R})$ a continuous map. For any $v \in \mathbb{R}^n \setminus \{0\}$, we denote by $F_v: S^{n-1} \longrightarrow S^{n-1}$, $x \mapsto \frac{F(x)(v)}{|F(x)(v)|}$.

Any continuous function $f: M \longrightarrow M$ is homotopic to a function $g: M \longrightarrow M$ which is C^{∞} and according to Sard's theorem g has a regular value so we put

 $\deg_2(f) = \deg_2(g).$

Let $F: S^{n-1} \longrightarrow \operatorname{GL}(n, \mathbb{R})$ a continuous map. For any $v \in \mathbb{R}^n \setminus \{0\}$, we denote by $F_v: S^{n-1} \longrightarrow S^{n-1}$, $x \mapsto \frac{F(x)(v)}{|F(x)(v)|}$. We define the mod 2 invariant of F by

 $\alpha(F) = \deg_2(F_v).$

Second topological consequence of the existence of a division algebra structure on \mathbb{R}^n

Suppose that \mathbb{R}^n carries a subdivision algebra structure. Then the map

 $F: S^{n-1} \longrightarrow \operatorname{GL}(n, \mathbb{R}), \ x \mapsto F(x) = \mathcal{L}_x$

is continuous and for any $v \in \mathbb{R}^n \setminus \{0\}$,

$$F_v: S^{n-1} \longrightarrow S^{n-1}, \ x \mapsto \frac{x.v}{||x.v||}$$

is an homeomorphism.

Second topological consequence of the existence of a division algebra structure on \mathbb{R}^n

Suppose that \mathbb{R}^n carries a subdivision algebra structure. Then the map

 $F: S^{n-1} \longrightarrow \operatorname{GL}(n, \mathbb{R}), \ x \mapsto F(x) = \mathcal{L}_x$

is continuous and for any $v \in \mathbb{R}^n \setminus \{0\}$,

$$F_v: S^{n-1} \longrightarrow S^{n-1}, \ x \mapsto \frac{x.v}{||x.v||}$$

is an homeomorphism. Thus

$$\alpha(F) = 1.$$

Theorem.

If \mathbb{R}^n carries a structure of division algebra then S^{n-1} and \mathbb{P}^{n-1} are parallelizable.

Theorem.

If \mathbb{R}^n carries a structure of division algebra then S^{n-1} and \mathbb{P}^{n-1} are parallelizable.

Proof.

For any $y \in S^{n-1}$, $(e_1.y, \ldots, e_n.y)$ are linearly independent and give by orthonormalisation a family of vectors $(X_1(y), \ldots, X_n(y))$ with

$$X_1(y) = \frac{e_1 \cdot y}{|e_1 \cdot y|} = F_{e_1}(y)$$
 and $\langle X_i(y), F_{e_1}(y) \rangle = 0, i = 2, .$

Thus, for i = 2, ..., n, $Y_i(y) = X_i(F_{e_1}^{-1}(y))$ define a family of n-1 vector fields on S^{n-1} which are linearly independent and hence S^{n-1} is parallelizable. Moreover, $Y_i(-y) = -Y_i(y)$ and hence \mathbb{P}^{n-1} is parallelizable.

Remark.

If S^n is parallelizable then there exists a continuous function $F: S^n \longrightarrow \operatorname{GL}(n+1, \mathbb{R})$ such that $\alpha(F) = 1$.

Remark.

If S^n is parallelizable then there exists a continuous function $F: S^n \longrightarrow \operatorname{GL}(n+1, \mathbb{R})$ such that $\alpha(F) = 1$. Indeed, If $X_i: S^n \longrightarrow \mathbb{R}^{n+1}$ parallelize S^n then

 $F: S^n \longrightarrow GL(n+1, \mathbb{R}), \ x \mapsto (x, X_1(x), \dots, X_n(x))$

satisfies $F_{e_1}(x) = x$ and hence $\alpha(F) = 1$.

Theorem. (Kervaire-Milnor 1958)

If there exists a continuous function $F: S^{n-1} \longrightarrow \operatorname{GL}(n, \mathbb{R})$ such that $\alpha(F) = 1$ then n = 1, 2, 4 or 8.

Theorem. (Kervaire-Milnor 1958)

If there exists a continuous function $F: S^{n-1} \longrightarrow \operatorname{GL}(n, \mathbb{R})$ such that $\alpha(F) = 1$ then n = 1, 2, 4 or 8.

Corollary.

 S^n is parallelizable if and only if n = 0, 1, 3 or 7.

Theorem. (Kervaire-Milnor 1958)

If there exists a continuous function $F: S^{n-1} \longrightarrow \operatorname{GL}(n, \mathbb{R})$ such that $\alpha(F) = 1$ then n = 1, 2, 4 or 8.

Corollary.

 S^n is parallelizable if and only if n = 0, 1, 3 or 7.

Corollary.

 \mathbb{R}^n has a division algebra structure if and only if n = 1, 2, 4 or 8.

Theorem (Hopf 1940)

If there exists a continuous odd mapping $h: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}$ then $n = 2^p$.

Homology and cohomology with coefficients in \mathbb{Z}_2

Denote by $\Delta^n = [0, 1, \dots, n]$ the convex hull of the origin with the canonical basis of \mathbb{R}^n ,

$$\Delta[0,1,\ldots,n] = \left\{ (t_1,\ldots,t_n) \in \mathbb{R}^n, t_i \ge 0, \sum t_i \le 1 \right\}.$$

Homology and cohomology with coefficients in \mathbb{Z}_2

Denote by $\Delta^n = [0, 1, ..., n]$ the convex hull of the origin with the canonical basis of \mathbb{R}^n ,

$$\Delta[0,1,\ldots,n] = \left\{ (t_1,\ldots,t_n) \in \mathbb{R}^n, t_i \ge 0, \sum t_i \le 1 \right\}.$$

We denote the face of Δ^n opposite to the *i*-th vertex by $\Delta < i >$, i.e.,

$$\Delta < i >= [0, \dots, i - 1, i + 1, \dots, n], \quad i = 0, \dots, n.$$

Homology and cohomology with coefficients in \mathbb{Z}_2

Denote by $\Delta^n = [0, 1, ..., n]$ the convex hull of the origin with the canonical basis of \mathbb{R}^n ,

$$\Delta[0,1,\ldots,n] = \left\{ (t_1,\ldots,t_n) \in \mathbb{R}^n, t_i \ge 0, \sum t_i \le 1 \right\}.$$

We denote the face of Δ^n opposite to the *i*-th vertex by $\Delta < i >$, i.e.,

 $\Delta < i >= [0, \dots, i - 1, i + 1, \dots, n], \quad i = 0, \dots, n.$

 $\Delta^0 = \{0\}, \, \Delta^1 = [0,1] \text{ and } \Delta^2 \text{ is the triangle } 0, e_1, e_2 \text{ etc..}$

Let X be a topological space.

Let X be a topological space. A singular *n*-simplex is a continuous map $\sigma : \Delta^n \longrightarrow X$.

A singular *n*-simplex is a continuous map $\sigma : \Delta^n \longrightarrow X$. The set of all singular *n*-simplices is denoted by Σ^n .

A singular *n*-simplex is a continuous map $\sigma : \Delta^n \longrightarrow X$. The set of all singular *n*-simplices is denoted by Σ^n . By a singular *n*-chain we mean any finite formal linear combination of singular n-simplices with coefficients from \mathbb{Z}_2 , and write

$$C_n(X) = \left\{ \sum_{i=1}^r n_i \sigma_i, n_i \in \mathbb{Z}_2, \sigma_i \in \Sigma^n \right\}.$$

A singular *n*-simplex is a continuous map $\sigma : \Delta^n \longrightarrow X$. The set of all singular *n*-simplices is denoted by Σ^n . By a singular *n*-chain we mean any finite formal linear combination of singular n-simplices with coefficients from \mathbb{Z}_2 , and write

$$C_n(X) = \left\{ \sum_{i=1}^r n_i \sigma_i, n_i \in \mathbb{Z}_2, \sigma_i \in \Sigma^n \right\}.$$

The set $C_n(X)$ has a natural \mathbb{Z}_2 -vector space structure.

A singular *n*-simplex is a continuous map $\sigma : \Delta^n \longrightarrow X$. The set of all singular *n*-simplices is denoted by Σ^n . By a singular *n*-chain we mean any finite formal linear combination of singular n-simplices with coefficients from \mathbb{Z}_2 , and write

$$C_n(X) = \left\{ \sum_{i=1}^r n_i \sigma_i, n_i \in \mathbb{Z}_2, \sigma_i \in \Sigma^n \right\}.$$

The set $C_n(X)$ has a natural \mathbb{Z}_2 -vector space structure.

$$C_0(X) = \left\{ \sum_{i=1}^r n_i P_i, n_i \in \mathbb{Z}_2, P_i \in X \right\}$$

Next we define the boundary operator $\delta_n: C_n(X) \longrightarrow C_{n-1}(X)$ on each simplex σ by setting

$$\delta_n(\sigma) = \sum_{q=0}^n (-1)^q \sigma_{|\Delta < q>},$$

with the convention $\delta_0 = 0$.

Next we define the boundary operator $\delta_n: C_n(X) \longrightarrow C_{n-1}(X)$ on each simplex σ by setting

$$\delta_n(\sigma) = \sum_{q=0}^n (-1)^q \sigma_{|\Delta < q>},$$

with the convention $\delta_0 = 0$.

Lemma. (Poincaré)

The boundary operator of singular chains satisfies

$$\delta_{n-1} \circ \delta_n = 0 \quad \forall n \ge 1,$$

so that the complex of singular chains is a differential complex.

The *n*-th homology space of X with coefficient in \mathbb{Z}_2 is the \mathbb{Z}_2 -vector space

$$H_n(X;\mathbb{Z}_2) := \frac{\ker \delta_n}{\operatorname{Im}\delta_{n+1}}.$$

The *n*-th homology space of X with coefficient in \mathbb{Z}_2 is the \mathbb{Z}_2 -vector space

$$H_n(X;\mathbb{Z}_2) := \frac{\ker \delta_n}{\operatorname{Im}\delta_{n+1}}.$$

The homology of X is the \mathbb{Z}_2 -vector space

$$H_*(X;\mathbb{Z}_2) = \bigoplus_{n \ge 0} H_n(X;\mathbb{Z}_2).$$

The *n*-th homology space of X with coefficient in \mathbb{Z}_2 is the \mathbb{Z}_2 -vector space

$$H_n(X;\mathbb{Z}_2) := \frac{\ker \delta_n}{\operatorname{Im}\delta_{n+1}}.$$

The homology of X is the \mathbb{Z}_2 -vector space

$$H_*(X;\mathbb{Z}_2) = \bigoplus_{n \ge 0} H_n(X;\mathbb{Z}_2).$$

Every continuous closed curve $c : [0, 1] \longrightarrow X$ defines an homology class $[c] \in H_1(X; \mathbb{Z}_2)$.

The *n*-th homology space of X with coefficient in \mathbb{Z}_2 is the \mathbb{Z}_2 -vector space

$$H_n(X;\mathbb{Z}_2) := \frac{\ker \delta_n}{\operatorname{Im}\delta_{n+1}}.$$

The homology of X is the \mathbb{Z}_2 -vector space

$$H_*(X;\mathbb{Z}_2) = \bigoplus_{n \ge 0} H_n(X;\mathbb{Z}_2).$$

Every continuous closed curve $c : [0, 1] \longrightarrow X$ defines an homology class $[c] \in H_1(X; \mathbb{Z}_2)$. If X is pathwise connected then $H_0(X; \mathbb{Z}_2) \simeq \mathbb{Z}_2$.

 $f_*: H_n(X; \mathbb{Z}_2) \longrightarrow H_n(Y; \mathbb{Z}_2), \quad n \in \mathbb{N}.$

 $f_*: H_n(X; \mathbb{Z}_2) \longrightarrow H_n(Y; \mathbb{Z}_2), \quad n \in \mathbb{N}.$

The n-th cohomology space of X is

 $H^n(M;\mathbb{Z}_2) := \operatorname{Hom}(H_n(X;\mathbb{Z}_2),\mathbb{Z}_2).$

 $f_*: H_n(X; \mathbb{Z}_2) \longrightarrow H_n(Y; \mathbb{Z}_2), \quad n \in \mathbb{N}.$

The n-th cohomology space of X is

 $H^n(M;\mathbb{Z}_2) := \operatorname{Hom}(H_n(X;\mathbb{Z}_2),\mathbb{Z}_2).$

The cohomology space of X is

$$H^*(M;\mathbb{Z}_2) := \bigoplus_{n \ge 0} H^n(M;\mathbb{Z}_2).$$

 $f_*: H_n(X; \mathbb{Z}_2) \longrightarrow H_n(Y; \mathbb{Z}_2), \quad n \in \mathbb{N}.$

The n-th cohomology space of X is

 $H^n(M;\mathbb{Z}_2) := \operatorname{Hom}(H_n(X;\mathbb{Z}_2),\mathbb{Z}_2).$

The cohomology space of X is

$$H^*(M;\mathbb{Z}_2) := \bigoplus_{n \ge 0} H^n(M;\mathbb{Z}_2).$$

There is a product on $H^*(M; \mathbb{Z}_2)$ which makes it into a graded algebra

 $\cup : H^n(X; \mathbb{Z}_2) \otimes H^m(X; \mathbb{Z}_2) \longrightarrow H^{n+m}(X; \mathbb{Z}_2), (\alpha, \beta) \mapsto \alpha \cup \beta.$

Poincaré Duality

Theorem. (Poincaré)

Let M be a closed manifold of dimension n. For any $p \in \mathbb{N}$ there exists a natural isomorphism

 $\pi: H_{n-p}(M; \mathbb{Z}_2) \longrightarrow H^p(M; \mathbb{Z}_2).$

Poincaré Duality

Theorem. (Poincaré)

Let M be a closed manifold of dimension n. For any $p \in \mathbb{N}$ there exists a natural isomorphism

$$\pi: H_{n-p}(M; \mathbb{Z}_2) \longrightarrow H^p(M; \mathbb{Z}_2).$$

Corollary.

Let M be a closed manifold of dimension n. Then for any $p \ge n+1$,

$$H_p(M;\mathbb{Z}_2) = 0$$
 and $H_n(M,\mathbb{Z}_2) \simeq (\mathbb{Z}_2)^m$,

where m is the number of connected components of M.

Let M be a compact connected manifold. Then the generator of $H_n(M; \mathbb{Z}_2)$ is called the fundamental class of M and denoted by |M|.

- Let M be a compact connected manifold. Then the generator of $H_n(M; \mathbb{Z}_2)$ is called the fundamental class of M and denoted by |M|.
- Any closed connected q-dimensional submanifold $Y \subset M$ defines an element $|Y| \in H_q(M; \mathbb{Z}_2)$ via the map $i_*: H_q(Y; \mathbb{Z}_2) \longrightarrow H_q(M; \mathbb{Z}_2)$

• For any
$$0 \le q \le n$$
, $H_q(\mathbb{P}^n; \mathbb{Z}_2) = \mathbb{Z}_2$.

- For any $0 \le q \le n$, $H_q(\mathbb{P}^n; \mathbb{Z}_2) = \mathbb{Z}_2$.
- ^② Every q + 1-subspace of \mathbb{R}^{n+1} defines an embedding $S^q \subset S^n$ and an embedding $\mathbb{P}^q \subset \mathbb{P}^n$ and $|\mathbb{P}^q|$ is the generator of $H_q(\mathbb{P}^n; \mathbb{Z}_2)$.

• For any
$$0 \le q \le n$$
, $H_q(\mathbb{P}^n; \mathbb{Z}_2) = \mathbb{Z}_2$.

- 2 Every q + 1-subspace of \mathbb{R}^{n+1} defines an embedding $S^q \subset S^n$ and an embedding $\mathbb{P}^q \subset \mathbb{P}^n$ and $|\mathbb{P}^q|$ is the generator of $H_q(\mathbb{P}^n; \mathbb{Z}_2)$.
- 3 Denote by $X = \pi(|\mathbb{P}^{n-1}|) \in H^1(\mathbb{P}^n; \mathbb{Z}_2)$. Then for any q, X^q is the generator of $H^q(\mathbb{P}^n; \mathbb{Z}_2)$ and hence

$$H^*(\mathbb{P}^n; \mathbb{Z}_2) = \left\{ \sum_{q=0}^n t_i X^i, t_i \in \mathbb{Z}_2, X^{n+1} = 0 \right\}.$$

• For any
$$0 \le q \le n$$
, $H_q(\mathbb{P}^n; \mathbb{Z}_2) = \mathbb{Z}_2$.

- 2 Every q + 1-subspace of \mathbb{R}^{n+1} defines an embedding $S^q \subset S^n$ and an embedding $\mathbb{P}^q \subset \mathbb{P}^n$ and $|\mathbb{P}^q|$ is the generator of $H_q(\mathbb{P}^n; \mathbb{Z}_2)$.
- 3 Denote by $X = \pi(|\mathbb{P}^{n-1}|) \in H^1(\mathbb{P}^n; \mathbb{Z}_2)$. Then for any q, X^q is the generator of $H^q(\mathbb{P}^n; \mathbb{Z}_2)$ and hence

$$H^*(\mathbb{P}^n; \mathbb{Z}_2) = \left\{ \sum_{q=0}^n t_i X^i, t_i \in \mathbb{Z}_2, X^{n+1} = 0 \right\}.$$

$$(X, |\mathbb{P}^1|) = 1.$$

• For $0 \le q \le 2n$,

 $H_q(\mathbb{P}^n \times \mathbb{P}^n; \mathbb{Z}_2) = \operatorname{Vect} \left\{ |\mathbb{P}^r \times \mathbb{P}^s|, r+s = q, 0 \le r, s \le n \right\}.$

• For
$$0 \le q \le 2n$$
,

 $H_q(\mathbb{P}^n \times \mathbb{P}^n; \mathbb{Z}_2) = \operatorname{Vect} \left\{ |\mathbb{P}^r \times \mathbb{P}^s|, r+s = q, 0 \le r, s \le n \right\}.$

Put
$$Y = \pi(|\mathbb{P}^{n-1} \times \mathbb{P}^n|) \in H^1(\mathbb{P}^n \times \mathbb{P}^n; \mathbb{Z}_2)$$
 and
 $Z = \pi(|\mathbb{P}^n \times \mathbb{P}^{n-1}|) \in H^1(\mathbb{P}^n \times \mathbb{P}^n; \mathbb{Z}_2)$. Then
 $H^*(\mathbb{P}^n \times \mathbb{P}^n; \mathbb{Z}_2) = \left\{ \sum_{0 \le r, s \le n} t_{ts} Y^s Z^r, Y^{n+1} = Z^{n+1} = 0 \right\}.$

61

• For
$$0 \le q \le 2n$$
,

 $H_q(\mathbb{P}^n \times \mathbb{P}^n; \mathbb{Z}_2) = \operatorname{Vect} \left\{ |\mathbb{P}^r \times \mathbb{P}^s|, r+s = q, 0 \le r, s \le n \right\}.$

Put
$$Y = \pi(|\mathbb{P}^{n-1} \times \mathbb{P}^n|) \in H^1(\mathbb{P}^n \times \mathbb{P}^n; \mathbb{Z}_2)$$
 and
 $Z = \pi(|\mathbb{P}^n \times \mathbb{P}^{n-1}|) \in H^1(\mathbb{P}^n \times \mathbb{P}^n; \mathbb{Z}_2)$. Then
 $H^*(\mathbb{P}^n \times \mathbb{P}^n; \mathbb{Z}_2) = \left\{ \sum_{0 \le r, s \le n} t_{ts} Y^s Z^r, Y^{n+1} = Z^{n+1} = 0 \right\}.$

62

• For
$$0 \le q \le 2n$$
,

 $H_q(\mathbb{P}^n \times \mathbb{P}^n; \mathbb{Z}_2) = \operatorname{Vect} \left\{ |\mathbb{P}^r \times \mathbb{P}^s|, r+s = q, 0 \le r, s \le n \right\}.$

Put
$$Y = \pi(|\mathbb{P}^{n-1} \times \mathbb{P}^n|) \in H^1(\mathbb{P}^n \times \mathbb{P}^n; \mathbb{Z}_2)$$
 and
 $Z = \pi(|\mathbb{P}^n \times \mathbb{P}^{n-1}|) \in H^1(\mathbb{P}^n \times \mathbb{P}^n; \mathbb{Z}_2)$. Then
 $H^*(\mathbb{P}^n \times \mathbb{P}^n; \mathbb{Z}_2) = \left\{ \sum_{0 \le r, s \le n} t_{ts} Y^s Z^r, Y^{n+1} = Z^{n+1} = 0 \right\}$

◊Y, |P¹ × {*}|⟩ = 1 and ⟨Y, |{*} × P¹|⟩ = 0
⟨Z, |P¹ × {*}|⟩ = 0. and ⟨Z, |{*} × P¹|⟩ = 1.

Suppose that there exist a continuous odd map $g: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}$ and denote by $G: \mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}^{n-1}$ the corresponding map.

64

Suppose that there exist a continuous odd map $g: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}$ and denote by $G: \mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}^{n-1}$ the corresponding map. The crucial step is that

 $G_*(|\mathbb{P}^1 \times \{*\}|) = G_*(|\{*\} \times \mathbb{P}^1|) = |\mathbb{P}^1|.$

Suppose that there exist a continuous odd map $g: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}$ and denote by $G: \mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}^{n-1}$ the corresponding map. The crucial step is that

 $G_*(|\mathbb{P}^1 \times \{*\}|) = G_*(|\{*\} \times \mathbb{P}^1|) = |\mathbb{P}^1|.$

This is the consequence of that fact if $\omega : [0, 1] \longrightarrow S^{n-1}$ such that c(0) = -c(1) then $\gamma = g \circ (c \times \{*\}) : [0, 1] \longrightarrow S^{n-1}$ satisfies $\gamma(0) = -\gamma(1)$ since g is odd.

Suppose that there exist a continuous odd map $g: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}$ and denote by $G: \mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}^{n-1}$ the corresponding map. The crucial step is that

 $G_*(|\mathbb{P}^1 \times \{*\}|) = G_*(|\{*\} \times \mathbb{P}^1|) = |\mathbb{P}^1|.$

This is the consequence of that fact if $\omega : [0,1] \longrightarrow S^{n-1}$ such that c(0) = -c(1) then $\gamma = g \circ (c \times \{*\}) : [0,1] \longrightarrow S^{n-1}$ satisfies $\gamma(0) = -\gamma(1)$ since g is odd. Now

67

 $G^*(X) = Y + Z.$

Now since $X^n = 0$ then

$$(Y+Z)^n = \sum_{q=0}^n \frac{n!}{q!(n-q)!} Y^q Z^{n-q} = \sum_{q=1}^{n-1} \frac{n!}{q!(n-q)!} Y^q Z^{n-q} = 0$$

Now since $X^n = 0$ then

$$(Y+Z)^{n} = \sum_{q=0}^{n} \frac{n!}{q!(n-q)!} Y^{q} Z^{n-q} = \sum_{q=1}^{n-1} \frac{n!}{q!(n-q)!} Y^{q} Z^{n-q} = 0$$

This implies that for any $1 \le q \le n-1$, $\frac{n!}{q!(n-q)!}$ is even and this implies that $n = 2^p$.

We give the needed material for a sketch of a proof of the following theorem.

Theorem.

 \mathbb{R}^n has a structure of division algebra if and only if n = 1, 2, 4 or 8.

Vector bundles over a topological space

Let X be a topological space. A vector bundle of rank n over X is a topological space E together with a surjective continuous map $\pi: E \longrightarrow X$ such that:

Vector bundles over a topological space

Let X be a topological space. A vector bundle of rank n over X is a topological space E together with a surjective continuous map $\pi: E \longrightarrow X$ such that:

• for any $x \in X$, $E_x = \pi^{-1}(x)$ has a structure of *n*-dimensional real vector space,

Vector bundles over a topological space

Let X be a topological space. A vector bundle of rank n over X is a topological space E together with a surjective continuous map $\pi: E \longrightarrow X$ such that:

• for any $x \in X$, $E_x = \pi^{-1}(x)$ has a structure of *n*-dimensional real vector space,

② for any $x \in X$, there exists *n* sections $s_1, \ldots, s_n : U \longrightarrow E$ such that, for any $y \in U$, $(s_1(y), \ldots, s_n(y))$ is a basis of E_y .

Vector bundles over a topological space

Let X be a topological space. A vector bundle of rank n over X is a topological space E together with a surjective continuous map $\pi: E \longrightarrow X$ such that:

- for any $x \in X$, $E_x = \pi^{-1}(x)$ has a structure of *n*-dimensional real vector space,
- for any $x \in X$, there exists *n* sections $s_1, \ldots, s_n : U \longrightarrow E$ such that, for any $y \in U$, $(s_1(y), \ldots, s_n(y))$ is a basis of E_y .

Example

1. $\pi: X \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a vector bundle called the trivial vector bundle of rank n over X. 2. The tangent space to a manifold is a vector bundle.

74

A *n*-vector bundle $\pi : E \longrightarrow X$ is called trivializable if it admits *n* linearly independent global sections.

A *n*-vector bundle $\pi: E \longrightarrow X$ is called trivializable if it admits *n* linearly independent global sections.

Theorem.

Every vector bundle over a contractile topological space is trivializable.

Vector bundles over S^n

Let $\pi: E \longrightarrow S^n$ be a *m*-vector bundle over S^n .

77

Let $\pi: E \longrightarrow S^n$ be a *m*-vector bundle over S^n . Denote by $H^+ = \{x_{n+1} \ge 0\}$ and $H^- = \{x_{n+1} \le 0\}$. We have $S^{n-1} = H^+ \cap H^-$. Let $\pi: E \longrightarrow S^n$ be a *m*-vector bundle over S^n . Denote by $H^+ = \{x_{n+1} \ge 0\}$ and $H^- = \{x_{n+1} \le 0\}$. We have $S^{n-1} = H^+ \cap H^-$. $E_{|H^{\pm}}$ is trivializable so there exists $s_i^{\pm}: H^{\pm} \longrightarrow E$, $i = 1, \ldots, m$ such that for any $y \in H^{\pm}$, $(s_i^{\pm}(y))_{i=1}^m$ is a basis of E_y . Let $\pi: E \longrightarrow S^n$ be a *m*-vector bundle over S^n . Denote by $H^+ = \{x_{n+1} \ge 0\}$ and $H^- = \{x_{n+1} \le 0\}$. We have $S^{n-1} = H^+ \cap H^-$. $E_{|H^{\pm}}$ is trivializable so there exists $s_i^{\pm}: H^{\pm} \longrightarrow E$, $i = 1, \ldots, m$ such that for any $y \in H^{\pm}$, $(s_i^{\pm}(y))_{i=1}^m$ is a basis of E_y .

We define a continuous $f_E: S^{n-1} \longrightarrow \operatorname{GL}(m)$ by

 $f_E = P((s_i^+(y))_{i=1}^m, (s_i^-(y))_{i=1}^m).$

Let $\pi: E \longrightarrow S^n$ be a *m*-vector bundle over S^n . Denote by $H^+ = \{x_{n+1} \ge 0\}$ and $H^- = \{x_{n+1} \le 0\}$. We have $S^{n-1} = H^+ \cap H^-$. $E_{|H^{\pm}}$ is trivializable so there exists $s_i^{\pm}: H^{\pm} \longrightarrow E$, $i = 1, \ldots, m$ such that for any $y \in H^{\pm}$, $(s_i^{\pm}(y))_{i=1}^m$ is a basis of E_y .

We define a continuous $f_E: S^{n-1} \longrightarrow \operatorname{GL}(m)$ by

 $f_E = P((s_i^+(y))_{i=1}^m, (s_i^-(y))_{i=1}^m).$

Conversely, any continuous map $f: S^{n-1} \longrightarrow \operatorname{GL}(m)$ defines a *m*-vector bundle E_f over S^n .

Hopf vector bundles

Suppose that \mathbb{R}^n carries a subdivision algebra structure. Then the map

 $F: S^{n-1} \longrightarrow \operatorname{GL}(n, \mathbb{R}), \ x \mapsto F(x) = \operatorname{L}_x$

is continuous and for any $v \in \mathbb{R}^n \setminus \{0\}$,

$$F_v: S^{n-1} \longrightarrow S^{n-1}, \ x \mapsto \frac{x.v}{||x.v||}$$

is an homeomorphism.

Hopf vector bundles

Suppose that \mathbb{R}^n carries a subdivision algebra structure. Then the map

 $F: S^{n-1} \longrightarrow \operatorname{GL}(n, \mathbb{R}), \ x \mapsto F(x) = \operatorname{L}_x$

is continuous and for any $v \in \mathbb{R}^n \setminus \{0\}$,

$$F_v: S^{n-1} \longrightarrow S^{n-1}, \ x \mapsto \frac{x.v}{||x.v||}$$

is an homeomorphism. Thus

 $\alpha(F) = 1.$

Hopf vector bundles

Suppose that \mathbb{R}^n carries a subdivision algebra structure. Then the map

 $F: S^{n-1} \longrightarrow \operatorname{GL}(n, \mathbb{R}), \ x \mapsto F(x) = \operatorname{L}_x$

is continuous and for any $v \in \mathbb{R}^n \setminus \{0\}$,

$$F_v: S^{n-1} \longrightarrow S^{n-1}, \ x \mapsto \frac{x.v}{||x.v||}$$

is an homeomorphism. Thus

 $\alpha(F) = 1.$

We denote by $E_F \longrightarrow S^n$ the associated vector bundle.

From the canonical division algebra structures on \mathbb{R}^n , \mathbb{C} , \mathbb{H} and \mathbb{O} we get four vector bundles

 $H_{\mathbb{R}} \longrightarrow S^1, \ H_{\mathbb{C}} \longrightarrow S^2, \ H_{\mathbb{H}} \longrightarrow S^4 \quad \text{and} \quad H_{\mathbb{O}} \longrightarrow S^8$

known as Hopf's vector bundles. Note that $H_{\mathbb{R}} \longrightarrow S^1$ is the Möbius strip.

Let X be a topological space and $E \longrightarrow X$ and $F \longrightarrow X$ two vector bundles of rank n and m.

Operations on vector bundles

Let X be a topological space and $E \longrightarrow X$ and $F \longrightarrow X$ two vector bundles of rank n and m.

• $E \oplus F := \bigcup_{x \in X} (E_x \oplus F_x) \longrightarrow X$ is a m + n-vector bundle.

Operations on vector bundles

Let X be a topological space and $E \longrightarrow X$ and $F \longrightarrow X$ two vector bundles of rank n and m.

- $E \oplus F := \bigcup_{x \in X} (E_x \oplus F_x) \longrightarrow X$ is a m + n-vector bundle.
- $E \otimes F := \bigcup_{x \in X} (E_x \otimes F_x) \longrightarrow X$ is a *mn*-vector bundle.

Operations on vector bundles

Let X be a topological space and $E \longrightarrow X$ and $F \longrightarrow X$ two vector bundles of rank n and m.

- $E \oplus F := \bigcup_{x \in X} (E_x \oplus F_x) \longrightarrow X$ is a m + n-vector bundle.
- $E \otimes F := \bigcup_{x \in X} (E_x \otimes F_x) \longrightarrow X$ is a *mn*-vector bundle.
- **③** Let $f: Y \longrightarrow X$ be continuous map. Then $f^*E \longrightarrow Y$ is a *n*-vector bundle (pull-back) where

 $f^*E=\{(y,v)\in Y\times E, f(y)=\pi(v)\}.$

The ring of vector bundles $\mathrm{KO}(X)$

Let X is a topological space. We denote by Vect(X) the set of classes of isomorphism of vector bundles over X.

The ring of vector bundles $\mathrm{KO}(X)$

Let X is a topological space. We denote by Vect(X) the set of classes of isomorphism of vector bundles over X.

Proposition.

- The direct sum \oplus induces an operation on $\operatorname{Vect}(X)$ which is commutative, associative and has a neutral element.
- The tensor product ⊗ induces an operation on Vect(X) which is commutative, associative and has a neutral element.
- **3** The operation \otimes is distributive with respect to \oplus .

We define on $\operatorname{Vect}(X) \times \operatorname{Vect}(X)$ the equivalence relation \simeq by

 $(E,F) \simeq (E',F') \iff \exists G, E \oplus F' \oplus G = F \oplus E' \oplus G.$

Put

 $\operatorname{KO}(X) = \operatorname{Vect}(X) \times \operatorname{Vect}(X) / \simeq$.

We define on $\operatorname{Vect}(X) \times \operatorname{Vect}(X)$ the equivalence relation \simeq by

 $(E,F) \simeq (E',F') \iff \exists G, E \oplus F' \oplus G = F \oplus E' \oplus G.$

Put

 $\operatorname{KO}(X) = \operatorname{Vect}(X) \times \operatorname{Vect}(X) / \simeq$.

Proposition. $(KO(X), \oplus, \otimes)$ is a ring and $\epsilon : KO(X) \longrightarrow \mathbb{Z}, [E, F] \longrightarrow rank(F) - rank(E)$ is an homomorphism. We denote by $\widetilde{KO}(X) = \ker \epsilon$. For any continuous function $f:X\longrightarrow Y$ the pull-back defines an homomorphism of ring

 $f^* : \mathrm{KO}(Y) \longrightarrow \mathrm{KO}(X).$

For any continuous function $f: X \longrightarrow Y$ the pull-back defines an homomorphism of ring

 $f^* : \mathrm{KO}(Y) \longrightarrow \mathrm{KO}(X).$

For any two vector bundles E and F, we have

-[E,F] = [F,E]

and

[E, F] = [E, 0] + [0, F] := F - E.

Axiom 1. To each vector bundle ξ corresponds a sequence of cohomology classes

 $w_i(\xi) \in H^i(B(\xi); \mathbb{Z}_2), \quad i = 0, 1 \dots,$

called the Stiefel-Whitney classes of ξ . The class $w_0(\xi)$ corresponds to the element $1 \in H^i(B(\xi); \mathbb{Z}_2)$ and $w_i(\xi) = 0$ for $i > \operatorname{rank}(\xi)$. **Axiom 1.** To each vector bundle ξ corresponds a sequence of cohomology classes

 $w_i(\xi) \in H^i(B(\xi); \mathbb{Z}_2), \quad i = 0, 1 \dots,$

called the Stiefel-Whitney classes of ξ . The class $w_0(\xi)$ corresponds to the element $1 \in H^i(B(\xi); \mathbb{Z}_2)$ and $w_i(\xi) = 0$ for $i > \operatorname{rank}(\xi)$.

Axiom 2. Naturality. If $f : B(\xi) \longrightarrow B(\eta)$ is covered by a bundle map from ξ to η then

97

 $w_i(\xi) = f^* w_i(\eta).$

$$w_k(\xi \oplus \eta) = \sum_{i=0}^k w_i(\xi) . w_{k-i}(\eta).$$

$$w_k(\xi \oplus \eta) = \sum_{i=0}^k w_i(\xi) . w_{k-i}(\eta).$$

Axiom 4. For the line bundle γ_1^1 (Möbius strip) over the circle \mathbb{P}^1 , $w_1(\gamma_1^1) \neq 0$.

$$w_k(\xi \oplus \eta) = \sum_{i=0}^k w_i(\xi) \cdot w_{k-i}(\eta).$$

Axiom 4. For the line bundle γ_1^1 (Möbius strip) over the circle \mathbb{P}^1 , $w_1(\gamma_1^1) \neq 0$.

The total Stiefel-Whitney class of ξ is given by

 $w(\xi) = 1 + w_1(\xi) + \ldots + w_n(\xi), \quad n = \operatorname{rank}(\xi).$

$$w_k(\xi \oplus \eta) = \sum_{i=0}^k w_i(\xi) \cdot w_{k-i}(\eta).$$

Axiom 4. For the line bundle γ_1^1 (Möbius strip) over the circle \mathbb{P}^1 , $w_1(\gamma_1^1) \neq 0$.

The total Stiefel-Whitney class of ξ is given by

 $w(\xi) = 1 + w_1(\xi) + \ldots + w_n(\xi), \quad n = \operatorname{rank}(\xi).$

The Whitney product theorem can be written

 $w(\xi \oplus \eta) = w(\xi).w(\eta).$

Proposition.

If ξ is isomorphic to η then $w_i(\xi) = w_i(\eta)$.

Proposition. If ξ is isomorphic to η then $w_i(\xi) = w_i(\eta)$.

Proposition.

If ξ is trivial then $w_i(\xi) = 0$ for i > 0.

Proposition. If ξ is isomorphic to η then $w_i(\xi) = w_i(\eta)$.

Proposition. If ξ is trivial then $w_i(\xi) = 0$ for i > 0.

Proposition. If ξ is trivial then $w_i(\xi \oplus \eta) = w_i(\eta)$.

Proposition. If ξ is isomorphic to η then $w_i(\xi) = w_i(\eta)$.

Proposition. If ξ is trivial then $w_i(\xi) = 0$ for i > 0.

Proposition.

If
$$\xi$$
 is trivial then $w_i(\xi \oplus \eta) = w_i(\eta)$.

Proposition.

If ξ is an n-vector bundle with an Euclidean product and k linearly independent sections then

$$w_n(\xi) = w_{n-1}(\xi) = \ldots = w_{n-k+1}(\xi) = 0.$$

105

Proposition.

Let $f: S^{n-1} \longrightarrow \operatorname{GL}(n)$ and ξ_f the associated vector bundle over S^n then

 $\mathbb{Z}_2 = H^n(S^n; \mathbb{Z}_2) \ni w_n(\xi_f) = \alpha(f) \in \mathbb{Z}_2.$

Proposition.

Let $f: S^{n-1} \longrightarrow \operatorname{GL}(n)$ and ξ_f the associated vector bundle over S^n then

$$\mathbb{Z}_2 = H^n(S^n; \mathbb{Z}_2) \ni w_n(\xi_f) = \alpha(f) \in \mathbb{Z}_2.$$

Theorem.

If there exists a vector bundle ξ over S^n with $w_n(\xi) \neq 0$ then n = 1, 2, 4 or 8.

Proposition.

Let $f: S^{n-1} \longrightarrow \operatorname{GL}(n)$ and ξ_f the associated vector bundle over S^n then

$$\mathbb{Z}_2 = H^n(S^n; \mathbb{Z}_2) \ni w_n(\xi_f) = \alpha(f) \in \mathbb{Z}_2.$$

Theorem.

If there exists a vector bundle ξ over S^n with $w_n(\xi) \neq 0$ then n = 1, 2, 4 or 8.

Corollary.

If there exists a division algebra structure on \mathbb{R}^n then n = 1, 2, 4 or 8.

Let X be a topological space. Put

 $G(X) = \{1 + a_1 + \dots + a_i + \dots; a_i \in H^i(X; \mathbb{Z}_2)\}.$

Let X be a topological space. Put

 $G(X) = \{1 + a_1 + \ldots + a_i + \ldots; a_i \in H^i(X; \mathbb{Z}_2)\}.$

Proposition.

G(X) endowed with the multiplication is an abelian group and $\Phi: \mathrm{KO}(X) \longrightarrow G(X), [E, F] \mapsto w(E).w(F)^{-1}$ is an homomorphism of groups from the additive group $\mathrm{KO}(X)$ to the multiplicative group G(X). Theorem. (Bott's periodicity Theorem) We have the following identifications as additive groups: $\widetilde{\mathrm{KO}}(S^1) = \widetilde{\mathrm{KO}}(S^2) = \mathbb{Z}_2, \ \widetilde{\mathrm{KO}}(S^3) = 0, \ \widetilde{\mathrm{KO}}(S^4) = \mathbb{Z}$ $\widetilde{\mathrm{KO}}(S^5) = \widetilde{\mathrm{KO}}(S^6) = \widetilde{\mathrm{KO}}(S^7) = 0, \ \widetilde{\mathrm{KO}}(S^8) = \mathbb{Z},$ $\widetilde{\mathrm{KO}}(S^{n+8}) = \widetilde{\mathrm{KO}}(S^n).$

The isomorphism between $\widetilde{\mathrm{KO}}(S^n)$ and $\widetilde{\mathrm{KO}}(S^{n+8})$

We consider the cartezian product $S^n \times S^m$, the projections $\pi_1 : S^n \times S^m \longrightarrow S^n, \pi_2 : S^n \times S^m \longrightarrow S^m$ and the axial cross $S^n \vee S^m = \{x_0\} \times S^m \cup S^n \times \{y_0\} \subset S^n \times S^m$. We collapse it to a point and $S^n \times S^m$ becomes S^{n+m} .

The isomorphism between $\widetilde{\mathrm{KO}}(S^n)$ and $\widetilde{\mathrm{KO}}(S^{n+8})$

We consider the cartezian product $S^n \times S^m$, the projections $\pi_1 : S^n \times S^m \longrightarrow S^n, \pi_2 : S^n \times S^m \longrightarrow S^m$ and the axial cross $S^n \vee S^m = \{x_0\} \times S^m \cup S^n \times \{y_0\} \subset S^n \times S^m$. We collapse it to a point and $S^n \times S^m$ becomes S^{n+m} . From

 $S^n \vee S^m \xrightarrow{i} S^n \times S^m \xrightarrow{p} S^{n+m}$

we get an exact sequence

 $0 \longrightarrow \widetilde{\mathrm{KO}}(S^{n+m}) \xrightarrow{p^*} \widetilde{\mathrm{KO}}(S^n \times S^m) \xrightarrow{i^*} \widetilde{\mathrm{KO}}(S^n \vee S^m) \longrightarrow 0.$

The isomorphism between $\widetilde{\mathrm{KO}}(S^n)$ and $\widetilde{\mathrm{KO}}(S^{n+8})$

We consider the cartezian product $S^n \times S^m$, the projections $\pi_1 : S^n \times S^m \longrightarrow S^n, \pi_2 : S^n \times S^m \longrightarrow S^m$ and the axial cross $S^n \vee S^m = \{x_0\} \times S^m \cup S^n \times \{y_0\} \subset S^n \times S^m$. We collapse it to a point and $S^n \times S^m$ becomes S^{n+m} . From

 $S^n \vee S^m \xrightarrow{i} S^n \times S^m \xrightarrow{p} S^{n+m}$

we get an exact sequence

 $0 \longrightarrow \widetilde{\mathrm{KO}}(S^{n+m}) \xrightarrow{p^*} \widetilde{\mathrm{KO}}(S^n {\times} S^m) \xrightarrow{i^*} \widetilde{\mathrm{KO}}(S^n {\vee} S^m) \longrightarrow 0.$

We have also

 $\widetilde{\mathrm{KO}}(S^n) \xrightarrow{\pi_1^*} \widetilde{\mathrm{KO}}(S^n \times S^m) \quad \text{and} \quad \widetilde{\mathrm{KO}}(S^m) \xrightarrow{\pi_2^*} \widetilde{\mathrm{KO}}(S^n \times S^m).$

Given $a \in \widetilde{\mathrm{KO}}(S^n)$ and $b \in \widetilde{\mathrm{KO}}(S^m)$ we form

 $a.b = \pi_1^*(a).\pi_2^*(b) \in \widetilde{\mathrm{KO}}(S^n \times S^m).$

Given $a \in \widetilde{\mathrm{KO}}(S^n)$ and $b \in \widetilde{\mathrm{KO}}(S^m)$ we form

 $a.b = \pi_1^*(a).\pi_2^*(b) \in \widetilde{\mathrm{KO}}(S^n \times S^m).$

Since $i^*(a.b) = 0$ there exists an unique element $a \circ b \in \widetilde{KO}(S^{n+m})$ such that $p^*(a \circ b) = a.b$. So we have defined a bilinear map

 $\widetilde{\mathrm{KO}}(S^n)\times \widetilde{\mathrm{KO}}(S^m) \longrightarrow \widetilde{\mathrm{KO}}(S^{n+m}), \; (a,b) \mapsto a \circ b.$

Given $a \in \widetilde{\mathrm{KO}}(S^n)$ and $b \in \widetilde{\mathrm{KO}}(S^m)$ we form

 $a.b = \pi_1^*(a).\pi_2^*(b) \in \widetilde{\mathrm{KO}}(S^n \times S^m).$

Since $i^*(a.b) = 0$ there exists an unique element $a \circ b \in \widetilde{KO}(S^{n+m})$ such that $p^*(a \circ b) = a.b$. So we have defined a bilinear map

 $\widetilde{\mathrm{KO}}(S^n)\times \widetilde{\mathrm{KO}}(S^m)\longrightarrow \widetilde{\mathrm{KO}}(S^{n+m}), \ (a,b)\mapsto a\circ b.$

So the isomorphism

 $\widetilde{\mathrm{KO}}(S^n) \longrightarrow \widetilde{\mathrm{KO}}(S^{n+8})$

is given by

 $a \mapsto a \circ (I_8, H_{\mathbb{O}}) = a \circ (H_{\mathbb{O}} - I_8).$

End of the proof of Kervaire-Milnor

Theorem.

If there exists a vector bundle ξ over S^n with $w_n(\xi) \neq 0$ then n = 1, 2, 4 or 8.

End of the proof of Kervaire-Milnor

Theorem.

If there exists a vector bundle ξ over S^n with $w_n(\xi) \neq 0$ then n = 1, 2, 4 or 8.

The end of the proof is based on the following

Proposition.

If
$$n \neq 1, 2, 4, 8$$
 then $w : \widetilde{KO}(S^n) \longrightarrow G(S^n)$ satisfies $w(a) = 1$ for any $a \in \widetilde{KO}(S^n)$.

If n = 3, 5, 6 or 7 it is a consequence of Bott's periodicity theorem.

If n = 3, 5, 6 or 7 it is a consequence of Bott's periodicity theorem.

If n = m + 8. For $a \in \widetilde{\mathrm{KO}}(S^n)$, we have

$$a = (E - F) \circ (H_{\mathbb{O}} - I_8)$$

= $E \circ H_{\mathbb{O}} - E \circ I_8 - F \circ H_{\mathbb{O}} + F \circ I_8,$

and the result follows from a formula of w applied to a tensor product.