Topological methods in division algebras: Hopf's Theorem and ($1,2,4,8$) Theorem

Mohamed Boucetta

m. boucetta@uca.ac.ma

Cadi-Ayyad University
Faculty of Sciences and Technology Marrakesh Morocco
Seminar Algebra, Geometry, Topology and Applications 20 Mai 2017

Topological consequences of the existence of a division algebra structure on \mathbb{R}^{n}

Definition.

A division algebra structure on \mathbb{R}^{n} is a bilinear product $\mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n},(x, y) \mapsto x . y$ such that

$$
x . y=0 \Longleftrightarrow x=0 \text { or } y=0
$$

Topological consequences of the existence of a division algebra structure on \mathbb{R}^{n}

Definition.

A division algebra structure on \mathbb{R}^{n} is a bilinear product $\mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n},(x, y) \mapsto x . y$ such that

$$
x . y=0 \Longleftrightarrow x=0 \text { or } y=0
$$

This is equivalent to: for any $x \neq 0$,

$$
\mathrm{L}_{x}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}, y \mapsto \mathrm{~L}_{x} y:=x . y
$$

and

$$
\mathrm{R}_{x}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}, y \mapsto \mathrm{R}_{x} y:=y \cdot x
$$

are isomorphisms.

Example.

There are four classical examples:
(1) In dimension 1: \mathbb{R} endowed with its canonical product: commutative associative.

Example.

There are four classical examples:
(1) In dimension 1: \mathbb{R} endowed with its canonical product: commutative associative.
(1) In dimension 2: \mathbb{C} endowed with its canonical product: commutative associative.

Example.

There are four classical examples:
(1) In dimension 1: \mathbb{R} endowed with its canonical product: commutative associative.
(2) In dimension 2: \mathbb{C} endowed with its canonical product: commutative associative.
(3) In dimension 4: \mathbb{H} endowed with its canonical product:non commutative associative.

Example.

There are four classical examples:
(1) In dimension 1: \mathbb{R} endowed with its canonical product: commutative associative.
(2) In dimension 2: \mathbb{C} endowed with its canonical product: commutative associative.
(3) In dimension 4: \mathbb{H} endowed with its canonical product:non commutative associative.
(4) In dimension 8: © endowed with its canonical product: non commutative non associative, alternative (see The Octonions, John C. Baez, arXiv:math/0105155v4 [math.RA] 23 Apr 2002).

Hopf's mapping

Suppose that \mathbb{R}^{n} carries a division algebra structure.

Hopf's mapping

Suppose that \mathbb{R}^{n} carries a division algebra structure. The Hopf's mapping is the map

$$
h: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}, \quad(x, y) \mapsto h(x, y)=\frac{x \cdot y}{\|x \cdot y\|}
$$

Hopf's mapping

Suppose that \mathbb{R}^{n} carries a division algebra structure.
The Hopf's mapping is the map

$$
h: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}, \quad(x, y) \mapsto h(x, y)=\frac{x \cdot y}{\|x \cdot y\|}
$$

Hop's map is odd in the sense that

$$
\forall x, y \in S^{n-1}, \quad h(-x, y)=h(x,-y)=-h(x, y)
$$

Hopf's map h defines two maps:

Hopf's map h defines two maps:

$$
G: \mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}^{n-1}
$$

Hopf's map h defines two maps:

$$
\begin{aligned}
& G: \mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}^{n-1} \\
& G^{*}: H^{*}\left(\mathbb{P}^{n-1}, \mathbb{Z}_{2}\right) \longrightarrow H^{*}\left(\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}, \mathbb{Z}_{2}\right)
\end{aligned}
$$

Hopf's map h defines two maps:

$$
\begin{aligned}
& G: \mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}^{n-1} \\
& G^{*}: H^{*}\left(\mathbb{P}^{n-1}, \mathbb{Z}_{2}\right) \longrightarrow H^{*}\left(\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}, \mathbb{Z}_{2}\right)
\end{aligned}
$$

Note that

$$
H^{*}\left(\mathbb{P}^{n-1}, \mathbb{Z}_{2}\right)=\bigoplus_{k=0}^{n-1} H^{k}\left(\mathbb{P}^{n-1}, \mathbb{Z}_{2}\right)
$$

and

$$
H^{*}\left(\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}, \mathbb{Z}_{2}\right)=\bigoplus_{k=0}^{2 n-2} H^{k}\left(\mathbb{P}^{n-1} \times \mathbb{P}^{n-1}, \mathbb{Z}_{2}\right)
$$

Hopf's Theorem

Theorem (Hopf 1940)

If there exists a continuous odd mapping
$h: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}$ then $n=2^{p}$.

Hopf's Theorem

Theorem (Hopf 1940)

If there exists a continuous odd mapping
$h: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}$ then $n=2^{p}$.

Corollary.

If \mathbb{R}^{n} has a division algebra structure then $n=2^{p}$.

Degree modulo 2 of a continuous map $f: M \longrightarrow M$

Let M be a compact connected topological space, $f: M \longrightarrow M$ be a continuous map. An element $y \in M$ is called regular value if for any $x \in f^{-1}(y), f$ is an homeomorphism from a neighborhood of x to a neighborhood of y. In this case $f^{-1}(y)$ is finite and its cardinal mod 2 doesn't depend on y. We call it $\operatorname{deg}_{2}(f) \in \mathbb{Z}_{2}$.

Degree modulo 2 of a continuous map $f: M \longrightarrow M$

Let M be a compact connected topological space, $f: M \longrightarrow M$ be a continuous map. An element $y \in M$ is called regular value if for any $x \in f^{-1}(y), f$ is an homeomorphism from a neighborhood of x to a neighborhood of y. In this case $f^{-1}(y)$ is finite and its cardinal mod 2 doesn't depend on y. We call it $\operatorname{deg}_{2}(f) \in \mathbb{Z}_{2}$.
We have

$$
f \text { homotopic to } g \Rightarrow \operatorname{deg}_{2}(f)=\operatorname{deg}_{2}(g)
$$

Any continuous function $f: M \longrightarrow M$ is homotopic to a function $g: M \longrightarrow M$ which is C^{∞} and according to Sard's theorem g has a regular value so we put

$$
\operatorname{deg}_{2}(f)=\operatorname{deg}_{2}(g)
$$

Any continuous function $f: M \longrightarrow M$ is homotopic to a function $g: M \longrightarrow M$ which is C^{∞} and according to Sard's theorem g has a regular value so we put

$$
\operatorname{deg}_{2}(f)=\operatorname{deg}_{2}(g)
$$

Let $F: S^{n-1} \longrightarrow \mathrm{GL}(n, \mathbb{R})$ a continuous map. For any $v \in \mathbb{R}^{n} \backslash\{0\}$, we denote by $F_{v}: S^{n-1} \longrightarrow S^{n-1}$, $x \mapsto \frac{F(x)(v)}{|F(x)(v)|}$.

Any continuous function $f: M \longrightarrow M$ is homotopic to a function $g: M \longrightarrow M$ which is C^{∞} and according to Sard's theorem g has a regular value so we put

$$
\operatorname{deg}_{2}(f)=\operatorname{deg}_{2}(g)
$$

Let $F: S^{n-1} \longrightarrow \mathrm{GL}(n, \mathbb{R})$ a continuous map. For any $v \in \mathbb{R}^{n} \backslash\{0\}$, we denote by $F_{v}: S^{n-1} \longrightarrow S^{n-1}$, $x \mapsto \frac{F(x)(v)}{|F(x)(v)|}$.
We define the mod 2 invariant of F by

$$
\alpha(F)=\operatorname{deg}_{2}\left(F_{v}\right)
$$

Second topological consequence of the existence of a division algebra structure on \mathbb{R}^{n}

Suppose that \mathbb{R}^{n} carries a subdivision algebra structure. Then the map

$$
F: S^{n-1} \longrightarrow \mathrm{GL}(n, \mathbb{R}), x \mapsto F(x)=\mathrm{L}_{x}
$$

is continuous and for any $v \in \mathbb{R}^{n} \backslash\{0\}$,

$$
F_{v}: S^{n-1} \longrightarrow S^{n-1}, x \mapsto \frac{x . v}{\|x . v\|}
$$

is an homeomorphism.

Second topological consequence of the existence of a division algebra structure on \mathbb{R}^{n}

Suppose that \mathbb{R}^{n} carries a subdivision algebra structure. Then the map

$$
F: S^{n-1} \longrightarrow \mathrm{GL}(n, \mathbb{R}), x \mapsto F(x)=\mathrm{L}_{x}
$$

is continuous and for any $v \in \mathbb{R}^{n} \backslash\{0\}$,

$$
F_{v}: S^{n-1} \longrightarrow S^{n-1}, x \mapsto \frac{x \cdot v}{\|x \cdot v\|}
$$

is an homeomorphism.
Thus

$$
\alpha(F)=1 .
$$

Theorem.

If \mathbb{R}^{n} carries a structure of division algebra then S^{n-1} and \mathbb{P}^{n-1} are parallelizable.

Theorem.

If \mathbb{R}^{n} carries a structure of division algebra then S^{n-1} and \mathbb{P}^{n-1} are parallelizable.

Proof.

For any $y \in S^{n-1},\left(e_{1} \cdot y, \ldots, e_{n} \cdot y\right)$ are linearly independent and give by orthonormalisation a family of vectors $\left(X_{1}(y), \ldots, X_{n}(y)\right)$ with

$$
X_{1}(y)=\frac{e_{1} \cdot y}{\left|e_{1} \cdot y\right|}=F_{e_{1}}(y) \quad \text { and } \quad\left\langle X_{i}(y), F_{e_{1}}(y)\right\rangle=0, i=2, \ldots
$$

Thus, for $i=2, \ldots, n, Y_{i}(y)=X_{i}\left(F_{e_{1}}^{-1}(y)\right)$ define a family of $n-1$ vector fields on S^{n-1} which are linearly independent and hence S^{n-1} is parallelizable. Moreover, $Y_{i}(-y)=-Y_{i}(y)$ and hence \mathbb{P}^{n-1} is parallelizable.

Remark.

If S^{n} is parallelizable then there exists a continuous function $F: S^{n} \longrightarrow \mathrm{GL}(n+1, \mathbb{R})$ such that $\alpha(F)=1$.

Remark.
If S^{n} is parallelizable then there exists a continuous function $F: S^{n} \longrightarrow \mathrm{GL}(n+1, \mathbb{R})$ such that $\alpha(F)=1$. Indeed, If $X_{i}: S^{n} \longrightarrow \mathbb{R}^{n+1}$ parallelize S^{n} then

$$
F: S^{n} \longrightarrow \mathrm{GL}(n+1, \mathbb{R}), x \mapsto\left(x, X_{1}(x), \ldots, X_{n}(x)\right)
$$

satisfies $F_{e_{1}}(x)=x$ and hence $\alpha(F)=1$.

Theorem $(1,2,4,8)$

Theorem. (Kervaire-Milnor 1958)
If there exists a continuous function $F: S^{n-1} \longrightarrow \mathrm{GL}(n, \mathbb{R})$ such that $\alpha(F)=1$ then $n=1,2,4$ or 8 .

Theorem $(1,2,4,8)$

Theorem. (Kervaire-Milnor 1958)
 If there exists a continuous function $F: S^{n-1} \longrightarrow \mathrm{GL}(n, \mathbb{R})$ such that $\alpha(F)=1$ then $n=1,2,4$ or 8 .

Corollary.
 S^{n} is parallelizable if and only if $n=0,1,3$ or 7 .

Theorem $(1,2,4,8)$

Theorem. (Kervaire-Milnor 1958)

If there exists a continuous function $F: S^{n-1} \longrightarrow \mathrm{GL}(n, \mathbb{R})$ such that $\alpha(F)=1$ then $n=1,2,4$ or 8 .

Corollary.
 S^{n} is parallelizable if and only if $n=0,1,3$ or 7 .

Corollary.

\mathbb{R}^{n} has a division algebra structure if and only if $n=1,2,4$ or 8 .

Back to Hopf's Theorem

[^0]
Homology and cohomology with coefficients in \mathbb{Z}_{2}

Denote by $\Delta^{n}=[0,1, \ldots, n]$ the convex hull of the origin with the canonical basis of \mathbb{R}^{n},

$$
\Delta[0,1, \ldots, n]=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}, t_{i} \geq 0, \sum t_{i} \leq 1\right\}
$$

Homology and cohomology with coefficients in \mathbb{Z}_{2}

Denote by $\Delta^{n}=[0,1, \ldots, n]$ the convex hull of the origin with the canonical basis of \mathbb{R}^{n},

$$
\Delta[0,1, \ldots, n]=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}, t_{i} \geq 0, \sum t_{i} \leq 1\right\} .
$$

We denote the face of Δ^{n} opposite to the i-th vertex by $\Delta\langle i\rangle$, i.e.,

$$
\Delta<i>=[0, \ldots, i-1, i+1, \ldots, n], \quad i=0, \ldots, n .
$$

Homology and cohomology with coefficients in \mathbb{Z}_{2}

Denote by $\Delta^{n}=[0,1, \ldots, n]$ the convex hull of the origin with the canonical basis of \mathbb{R}^{n},

$$
\Delta[0,1, \ldots, n]=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}, t_{i} \geq 0, \sum t_{i} \leq 1\right\}
$$

We denote the face of Δ^{n} opposite to the i-th vertex by $\Delta<i\rangle$, i.e.,

$$
\Delta<i>=[0, \ldots, i-1, i+1, \ldots, n], \quad i=0, \ldots, n .
$$

$\Delta^{0}=\{0\}, \Delta^{1}=[0,1]$ and Δ^{2} is the triangle $0, e_{1}, e_{2}$ etc..

Let X be a topological space.

Let X be a topological space.
A singular n-simplex is a continuous map $\sigma: \Delta^{n} \longrightarrow X$.

Let X be a topological space.
A singular n-simplex is a continuous map $\sigma: \Delta^{n} \longrightarrow X$. The set of all singular n-simplices is denoted by Σ^{n}.

Let X be a topological space.
A singular n-simplex is a continuous map $\sigma: \Delta^{n} \longrightarrow X$.
The set of all singular n-simplices is denoted by Σ^{n}.
By a singular n-chain we mean any finite formal linear combination of singular n-simplices with coefficients from \mathbb{Z}_{2}, and write

$$
C_{n}(X)=\left\{\sum_{i=1}^{r} n_{i} \sigma_{i}, n_{i} \in \mathbb{Z}_{2}, \sigma_{i} \in \Sigma^{n}\right\}
$$

Let X be a topological space.
A singular n-simplex is a continuous map $\sigma: \Delta^{n} \longrightarrow X$.
The set of all singular n-simplices is denoted by Σ^{n}.
By a singular n-chain we mean any finite formal linear combination of singular n-simplices with coefficients from \mathbb{Z}_{2}, and write

$$
C_{n}(X)=\left\{\sum_{i=1}^{r} n_{i} \sigma_{i}, n_{i} \in \mathbb{Z}_{2}, \sigma_{i} \in \Sigma^{n}\right\}
$$

The set $C_{n}(X)$ has a natural \mathbb{Z}_{2}-vector space structure.

Let X be a topological space.

A singular n-simplex is a continuous map $\sigma: \Delta^{n} \longrightarrow X$.
The set of all singular n-simplices is denoted by Σ^{n}.
By a singular n-chain we mean any finite formal linear combination of singular n-simplices with coefficients from \mathbb{Z}_{2}, and write

$$
C_{n}(X)=\left\{\sum_{i=1}^{r} n_{i} \sigma_{i}, n_{i} \in \mathbb{Z}_{2}, \sigma_{i} \in \Sigma^{n}\right\}
$$

The set $C_{n}(X)$ has a natural \mathbb{Z}_{2}-vector space structure.

$$
C_{0}(X)=\left\{\sum_{i=1}^{r} n_{i} P_{i}, n_{i} \in \mathbb{Z}_{2}, P_{i} \in X\right\}
$$

Next we define the boundary operator $\delta_{n}: C_{n}(X) \longrightarrow C_{n-1}(X)$ on each simplex σ by setting

$$
\delta_{n}(\sigma)=\sum_{q=0}^{n}(-1)^{q} \sigma_{\mid \Delta<q>},
$$

with the convention $\delta_{0}=0$.

Next we define the boundary operator
$\delta_{n}: C_{n}(X) \longrightarrow C_{n-1}(X)$ on each simplex σ by setting

$$
\delta_{n}(\sigma)=\sum_{q=0}^{n}(-1)^{q} \sigma_{\mid \Delta<q>},
$$

with the convention $\delta_{0}=0$.

Lemma. (Poincaré)

The boundary operator of singular chains satisfies

$$
\delta_{n-1} \circ \delta_{n}=0 \quad \forall n \geq 1
$$

so that the complex of singular chains is a differential complex.

The elements of ker δ_{n} are called cycles and the elements of $\operatorname{Im} \delta_{n+1}$ are called boundaries.

The elements of ker δ_{n} are called cycles and the elements of $\operatorname{Im} \delta_{n+1}$ are called boundaries.
The n-th homology space of X with coefficient in \mathbb{Z}_{2} is the \mathbb{Z}_{2}-vector space

$$
H_{n}\left(X ; \mathbb{Z}_{2}\right):=\frac{\operatorname{ker} \delta_{n}}{\operatorname{Im} \delta_{n+1}}
$$

The elements of $\operatorname{ker} \delta_{n}$ are called cycles and the elements of $\operatorname{Im} \delta_{n+1}$ are called boundaries.
The n-th homology space of X with coefficient in \mathbb{Z}_{2} is the \mathbb{Z}_{2}-vector space

$$
H_{n}\left(X ; \mathbb{Z}_{2}\right):=\frac{\operatorname{ker} \delta_{n}}{\operatorname{Im} \delta_{n+1}}
$$

The homology of X is the \mathbb{Z}_{2}-vector space

$$
H_{*}\left(X ; \mathbb{Z}_{2}\right)=\bigoplus_{n \geq 0} H_{n}\left(X ; \mathbb{Z}_{2}\right)
$$

The elements of $\operatorname{ker} \delta_{n}$ are called cycles and the elements of $\operatorname{Im} \delta_{n+1}$ are called boundaries.
The n-th homology space of X with coefficient in \mathbb{Z}_{2} is the \mathbb{Z}_{2}-vector space

$$
H_{n}\left(X ; \mathbb{Z}_{2}\right):=\frac{\operatorname{ker} \delta_{n}}{\operatorname{Im} \delta_{n+1}}
$$

The homology of X is the \mathbb{Z}_{2}-vector space

$$
H_{*}\left(X ; \mathbb{Z}_{2}\right)=\bigoplus H_{n}\left(X ; \mathbb{Z}_{2}\right)
$$

Every continuous closed curve $c:[0,1] \longrightarrow X$ defines an homology class $[c] \in H_{1}\left(X ; \mathbb{Z}_{2}\right)$.

The elements of $\operatorname{ker} \delta_{n}$ are called cycles and the elements of $\operatorname{Im} \delta_{n+1}$ are called boundaries.
The n-th homology space of X with coefficient in \mathbb{Z}_{2} is the \mathbb{Z}_{2}-vector space

$$
H_{n}\left(X ; \mathbb{Z}_{2}\right):=\frac{\operatorname{ker} \delta_{n}}{\operatorname{Im} \delta_{n+1}}
$$

The homology of X is the \mathbb{Z}_{2}-vector space

$$
H_{*}\left(X ; \mathbb{Z}_{2}\right)=\bigoplus H_{n}\left(X ; \mathbb{Z}_{2}\right)
$$

Every continuous closed curve $c:[0,1] \longrightarrow X$ defines an homology class $[c] \in H_{1}\left(X ; \mathbb{Z}_{2}\right)$. If X is pathwise connected then $H_{0}\left(X ; \mathbb{Z}_{2}\right) \simeq \mathbb{Z}_{2}$.

For every continuous map $f: X \longrightarrow Y$ there is a natural homomorphism

$$
f_{*}: H_{n}\left(X ; \mathbb{Z}_{2}\right) \longrightarrow H_{n}\left(Y ; \mathbb{Z}_{2}\right), \quad n \in \mathbb{N}
$$

For every continuous map $f: X \longrightarrow Y$ there is a natural homomorphism

$$
f_{*}: H_{n}\left(X ; \mathbb{Z}_{2}\right) \longrightarrow H_{n}\left(Y ; \mathbb{Z}_{2}\right), \quad n \in \mathbb{N}
$$

The n-th cohomology space of X is

$$
H^{n}\left(M ; \mathbb{Z}_{2}\right):=\operatorname{Hom}\left(H_{n}\left(X ; \mathbb{Z}_{2}\right), \mathbb{Z}_{2}\right)
$$

For every continuous map $f: X \longrightarrow Y$ there is a natural homomorphism

$$
f_{*}: H_{n}\left(X ; \mathbb{Z}_{2}\right) \longrightarrow H_{n}\left(Y ; \mathbb{Z}_{2}\right), \quad n \in \mathbb{N}
$$

The n-th cohomology space of X is

$$
H^{n}\left(M ; \mathbb{Z}_{2}\right):=\operatorname{Hom}\left(H_{n}\left(X ; \mathbb{Z}_{2}\right), \mathbb{Z}_{2}\right)
$$

The cohomology space of X is

$$
H^{*}\left(M ; \mathbb{Z}_{2}\right):=\bigoplus_{n \geq 0} H^{n}\left(M ; \mathbb{Z}_{2}\right)
$$

For every continuous map $f: X \longrightarrow Y$ there is a natural homomorphism

$$
f_{*}: H_{n}\left(X ; \mathbb{Z}_{2}\right) \longrightarrow H_{n}\left(Y ; \mathbb{Z}_{2}\right), \quad n \in \mathbb{N} .
$$

The n-th cohomology space of X is

$$
H^{n}\left(M ; \mathbb{Z}_{2}\right):=\operatorname{Hom}\left(H_{n}\left(X ; \mathbb{Z}_{2}\right), \mathbb{Z}_{2}\right)
$$

The cohomology space of X is

$$
H^{*}\left(M ; \mathbb{Z}_{2}\right):=\bigoplus_{n \geq 0} H^{n}\left(M ; \mathbb{Z}_{2}\right) .
$$

There is a product on $H^{*}\left(M ; \mathbb{Z}_{2}\right)$ which makes it into a graded algebra

$$
\cup: H^{n}\left(X ; \mathbb{Z}_{2}\right) \otimes H^{m}\left(X ; \mathbb{Z}_{2}\right) \longrightarrow H^{n+m}\left(X ; \mathbb{Z}_{2}\right),(\alpha, \beta) \mapsto \alpha \cup \beta .
$$

Poincaré Duality

Theorem. (Poincaré)

Let M be a closed manifold of dimension n. For any $p \in \mathbb{N}$ there exists a natural isomorphism

$$
\pi: H_{n-p}\left(M ; \mathbb{Z}_{2}\right) \longrightarrow H^{p}\left(M ; \mathbb{Z}_{2}\right)
$$

Poincaré Duality

Theorem. (Poincaré)

Let M be a closed manifold of dimension n. For any $p \in \mathbb{N}$ there exists a natural isomorphism

$$
\pi: H_{n-p}\left(M ; \mathbb{Z}_{2}\right) \longrightarrow H^{p}\left(M ; \mathbb{Z}_{2}\right)
$$

Corollary.

Let M be a closed manifold of dimension n. Then for any $p \geq n+1$,

$$
H_{p}\left(M ; \mathbb{Z}_{2}\right)=0 \quad \text { and } \quad H_{n}\left(M, \mathbb{Z}_{2}\right) \simeq\left(\mathbb{Z}_{2}\right)^{m}
$$

where m is the number of connected components of M.

Fundamental class

Let M be a compact connected manifold. Then the generator of $H_{n}\left(M ; \mathbb{Z}_{2}\right)$ is called the fundamental class of M and denoted by $|M|$.

Fundamental class

Let M be a compact connected manifold. Then the generator of $H_{n}\left(M ; \mathbb{Z}_{2}\right)$ is called the fundamental class of M and denoted by $|M|$.
Any closed connected q-dimensional submanifold $Y \subset M$ defines an element $|Y| \in H_{q}\left(M ; \mathbb{Z}_{2}\right)$ via the map $i_{*}: H_{q}\left(Y ; \mathbb{Z}_{2}\right) \longrightarrow H_{q}\left(M ; \mathbb{Z}_{2}\right)$

Cohomology and homology of \mathbb{P}^{n}

(1) For any $0 \leq q \leq n, H_{q}\left(\mathbb{P}^{n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$.

Cohomology and homology of \mathbb{P}^{n}

(1) For any $0 \leq q \leq n, H_{q}\left(\mathbb{P}^{n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$.
(2) Every $q+1$-subspace of \mathbb{R}^{n+1} defines an embedding $S^{q} \subset S^{n}$ and an embedding $\mathbb{P}^{q} \subset \mathbb{P}^{n}$ and $\left|\mathbb{P}^{q}\right|$ is the generator of $H_{q}\left(\mathbb{P}^{n} ; \mathbb{Z}_{2}\right)$.

Cohomology and homology of \mathbb{P}^{n}

(1) For any $0 \leq q \leq n, H_{q}\left(\mathbb{P}^{n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$.
(2) Every $q+1$-subspace of \mathbb{R}^{n+1} defines an embedding $S^{q} \subset S^{n}$ and an embedding $\mathbb{P}^{q} \subset \mathbb{P}^{n}$ and $\left|\mathbb{P}^{q}\right|$ is the generator of $H_{q}\left(\mathbb{P}^{n} ; \mathbb{Z}_{2}\right)$.
(3) Denote by $X=\pi\left(\left|\mathbb{P}^{n-1}\right|\right) \in H^{1}\left(\mathbb{P}^{n} ; \mathbb{Z}_{2}\right)$. Then for any q, X^{q} is the generator of $H^{q}\left(\mathbb{P}^{n} ; \mathbb{Z}_{2}\right)$ and hence

$$
H^{*}\left(\mathbb{P}^{n} ; \mathbb{Z}_{2}\right)=\left\{\sum_{q=0}^{n} t_{i} X^{i}, t_{i} \in \mathbb{Z}_{2}, X^{n+1}=0\right\}
$$

Cohomology and homology of \mathbb{P}^{n}

(1) For any $0 \leq q \leq n, H_{q}\left(\mathbb{P}^{n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$.
(2) Every $q+1$-subspace of \mathbb{R}^{n+1} defines an embedding $S^{q} \subset S^{n}$ and an embedding $\mathbb{P}^{q} \subset \mathbb{P}^{n}$ and $\left|\mathbb{P}^{q}\right|$ is the generator of $H_{q}\left(\mathbb{P}^{n} ; \mathbb{Z}_{2}\right)$.
(3) Denote by $X=\pi\left(\left|\mathbb{P}^{n-1}\right|\right) \in H^{1}\left(\mathbb{P}^{n} ; \mathbb{Z}_{2}\right)$. Then for any q, X^{q} is the generator of $H^{q}\left(\mathbb{P}^{n} ; \mathbb{Z}_{2}\right)$ and hence

$$
H^{*}\left(\mathbb{P}^{n} ; \mathbb{Z}_{2}\right)=\left\{\sum_{q=0}^{n} t_{i} X^{i}, t_{i} \in \mathbb{Z}_{2}, X^{n+1}=0\right\}
$$

(a) $\langle X,| \mathbb{P}^{1}| \rangle=1$.

Cohomology and homology of $\mathbb{P}^{n} \times \mathbb{P}^{n}$

(1) For $0 \leq q \leq 2 n$,

$$
H_{q}\left(\mathbb{P}^{n} \times \mathbb{P}^{n} ; \mathbb{Z}_{2}\right)=\operatorname{Vect}\left\{\left|\mathbb{P}^{r} \times \mathbb{P}^{s}\right|, r+s=q, 0 \leq r, s \leq n\right\}
$$

Cohomology and homology of $\mathbb{P}^{n} \times \mathbb{P}^{n}$

(1) For $0 \leq q \leq 2 n$,

$$
H_{q}\left(\mathbb{P}^{n} \times \mathbb{P}^{n} ; \mathbb{Z}_{2}\right)=\operatorname{Vect}\left\{\left|\mathbb{P}^{r} \times \mathbb{P}^{s}\right|, r+s=q, 0 \leq r, s \leq n\right\}
$$

(2) Put $Y=\pi\left(\left|\mathbb{P}^{n-1} \times \mathbb{P}^{n}\right|\right) \in H^{1}\left(\mathbb{P}^{n} \times \mathbb{P}^{n} ; \mathbb{Z}_{2}\right)$ and $Z=\pi\left(\left|\mathbb{P}^{n} \times \mathbb{P}^{n-1}\right|\right) \in H^{1}\left(\mathbb{P}^{n} \times \mathbb{P}^{n} ; \mathbb{Z}_{2}\right)$. Then

$$
H^{*}\left(\mathbb{P}^{n} \times \mathbb{P}^{n} ; \mathbb{Z}_{2}\right)=\left\{\sum_{0 \leq r, s \leq n} t_{t s} Y^{s} Z^{r}, Y^{n+1}=Z^{n+1}=0\right\}
$$

Cohomology and homology of $\mathbb{P}^{n} \times \mathbb{P}^{n}$

(1) For $0 \leq q \leq 2 n$,

$$
H_{q}\left(\mathbb{P}^{n} \times \mathbb{P}^{n} ; \mathbb{Z}_{2}\right)=\operatorname{Vect}\left\{\left|\mathbb{P}^{r} \times \mathbb{P}^{s}\right|, r+s=q, 0 \leq r, s \leq n\right\}
$$

(2) Put $Y=\pi\left(\left|\mathbb{P}^{n-1} \times \mathbb{P}^{n}\right|\right) \in H^{1}\left(\mathbb{P}^{n} \times \mathbb{P}^{n} ; \mathbb{Z}_{2}\right)$ and $Z=\pi\left(\left|\mathbb{P}^{n} \times \mathbb{P}^{n-1}\right|\right) \in H^{1}\left(\mathbb{P}^{n} \times \mathbb{P}^{n} ; \mathbb{Z}_{2}\right)$. Then

$$
H^{*}\left(\mathbb{P}^{n} \times \mathbb{P}^{n} ; \mathbb{Z}_{2}\right)=\left\{\sum_{0 \leq r, s \leq n} t_{t s} Y^{s} Z^{r}, Y^{n+1}=Z^{n+1}=0\right\}
$$

(3) $\langle Y,| \mathbb{P}^{1} \times\{*\}| \rangle=1$ and $\langle Y|,\{*\} \times \mathbb{P}^{1}| \rangle=0$

Cohomology and homology of $\mathbb{P}^{n} \times \mathbb{P}^{n}$

(1) For $0 \leq q \leq 2 n$,

$$
H_{q}\left(\mathbb{P}^{n} \times \mathbb{P}^{n} ; \mathbb{Z}_{2}\right)=\operatorname{Vect}\left\{\left|\mathbb{P}^{r} \times \mathbb{P}^{s}\right|, r+s=q, 0 \leq r, s \leq n\right\}
$$

(2) Put $Y=\pi\left(\left|\mathbb{P}^{n-1} \times \mathbb{P}^{n}\right|\right) \in H^{1}\left(\mathbb{P}^{n} \times \mathbb{P}^{n} ; \mathbb{Z}_{2}\right)$ and $Z=\pi\left(\left|\mathbb{P}^{n} \times \mathbb{P}^{n-1}\right|\right) \in H^{1}\left(\mathbb{P}^{n} \times \mathbb{P}^{n} ; \mathbb{Z}_{2}\right)$. Then

$$
H^{*}\left(\mathbb{P}^{n} \times \mathbb{P}^{n} ; \mathbb{Z}_{2}\right)=\left\{\sum_{0 \leq r, s \leq n} t_{t s} Y^{s} Z^{r}, Y^{n+1}=Z^{n+1}=0\right\}
$$

(3) $\langle Y,| \mathbb{P}^{1} \times\{*\}| \rangle=1$ and $\langle Y|,\{*\} \times \mathbb{P}^{1}| \rangle=0$
(4) $\langle Z,| \mathbb{P}^{1} \times\{*\}| \rangle=0$. and $\langle Z|,\{*\} \times \mathbb{P}^{1}| \rangle=1$.

Proof of Hopf's Theorem

Suppose that there exist a continuous odd map $g: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}$ and denote by $G: \mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}^{n-1}$ the corresponding map.

Proof of Hopf's Theorem

Suppose that there exist a continuous odd map
$g: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}$ and denote by
$G: \mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}^{n-1}$ the corresponding map.
The crucial step is that

$$
G_{*}\left(\left|\mathbb{P}^{1} \times\{*\}\right|\right)=G_{*}\left(\left|\{*\} \times \mathbb{P}^{1}\right|\right)=\left|\mathbb{P}^{1}\right|
$$

Proof of Hopf's Theorem

Suppose that there exist a continuous odd map
$g: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}$ and denote by
$G: \mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}^{n-1}$ the corresponding map.
The crucial step is that

$$
G_{*}\left(\left|\mathbb{P}^{1} \times\{*\}\right|\right)=G_{*}\left(\left|\{*\} \times \mathbb{P}^{1}\right|\right)=\left|\mathbb{P}^{1}\right|
$$

This is the consequence of that fact if $\omega:[0,1] \longrightarrow S^{n-1}$ such that $c(0)=-c(1)$ then
$\gamma=g \circ(c \times\{*\}):[0,1] \longrightarrow S^{n-1}$ satisfies $\gamma(0)=-\gamma(1)$ since g is odd.

Proof of Hopf's Theorem

Suppose that there exist a continuous odd map
$g: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}$ and denote by
$G: \mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \longrightarrow \mathbb{P}^{n-1}$ the corresponding map.
The crucial step is that

$$
G_{*}\left(\left|\mathbb{P}^{1} \times\{*\}\right|\right)=G_{*}\left(\left|\{*\} \times \mathbb{P}^{1}\right|\right)=\left|\mathbb{P}^{1}\right|
$$

This is the consequence of that fact if $\omega:[0,1] \longrightarrow S^{n-1}$ such that $c(0)=-c(1)$ then
$\gamma=g \circ(c \times\{*\}):[0,1] \longrightarrow S^{n-1}$ satisfies $\gamma(0)=-\gamma(1)$ since g is odd.
Now

$$
G^{*}(X)=Y+Z
$$

Now since $X^{n}=0$ then

$$
(Y+Z)^{n}=\sum_{q=0}^{n} \frac{n!}{q!(n-q)!} Y^{q} Z^{n-q}=\sum_{q=1}^{n-1} \frac{n!}{q!(n-q)!} Y^{q} Z^{n-q}=
$$

Now since $X^{n}=0$ then

$$
(Y+Z)^{n}=\sum_{q=0}^{n} \frac{n!}{q!(n-q)!} Y^{q} Z^{n-q}=\sum_{q=1}^{n-1} \frac{n!}{q!(n-q)!} Y^{q} Z^{n-q}=
$$

This implies that for any $1 \leq q \leq n-1, \frac{n!}{q!(n-q)!}$ is even and this implies that $n=2^{p}$.

Kervaire-Milnor Theorem

We give the needed material for a sketch of a proof of the following theorem.

Theorem.

\mathbb{R}^{n} has a structure of division algebra if and only if
$n=1,2,4$ or 8 .

Vector bundles over a topological space

Let X be a topological space. A vector bundle of rank n over X is a topological space E together with a surjective continuous map $\pi: E \longrightarrow X$ such that:

Vector bundles over a topological space

Let X be a topological space. A vector bundle of rank n over X is a topological space E together with a surjective continuous map $\pi: E \longrightarrow X$ such that:
(1) for any $x \in X, E_{x}=\pi^{-1}(x)$ has a structure of n-dimensional real vector space,

Vector bundles over a topological space

Let X be a topological space. A vector bundle of rank n over X is a topological space E together with a surjective continuous map $\pi: E \longrightarrow X$ such that:
(1) for any $x \in X, E_{x}=\pi^{-1}(x)$ has a structure of n-dimensional real vector space,
(2) for any $x \in X$, there exists n sections $s_{1}, \ldots, s_{n}: U \longrightarrow E$ such that, for any $y \in U$, $\left(s_{1}(y), \ldots, s_{n}(y)\right)$ is a basis of E_{y}.

Vector bundles over a topological space

Let X be a topological space. A vector bundle of rank n over X is a topological space E together with a surjective continuous map $\pi: E \longrightarrow X$ such that:
(1) for any $x \in X, E_{x}=\pi^{-1}(x)$ has a structure of n-dimensional real vector space,
(2) for any $x \in X$, there exists n sections
$s_{1}, \ldots, s_{n}: U \longrightarrow E$ such that, for any $y \in U$, $\left(s_{1}(y), \ldots, s_{n}(y)\right)$ is a basis of E_{y}.

Example

1. $\pi: X \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is a vector bundle called the trivial vector bundle of rank n over X.
2. The tangent space to a manifold is a vector bundle.

A n-vector bundle $\pi: E \longrightarrow X$ is called trivializable if it admits n linearly independent global sections.

A n-vector bundle $\pi: E \longrightarrow X$ is called trivializable if it admits n linearly independent global sections.

Theorem.

Every vector bundle over a contractile topological space is trivializable.

Vector bundles over S^{n}

Let $\pi: E \longrightarrow S^{n}$ be a m-vector bundle over S^{n}.

Vector bundles over S^{n}

Let $\pi: E \longrightarrow S^{n}$ be a m-vector bundle over S^{n}.
Denote by $H^{+}=\left\{x_{n+1} \geq 0\right\}$ and $H^{-}=\left\{x_{n+1} \leq 0\right\}$. We have $S^{n-1}=H^{+} \cap H^{-}$.

Vector bundles over S^{n}

Let $\pi: E \longrightarrow S^{n}$ be a m-vector bundle over S^{n}.
Denote by $H^{+}=\left\{x_{n+1} \geq 0\right\}$ and $H^{-}=\left\{x_{n+1} \leq 0\right\}$. We have $S^{n-1}=H^{+} \cap H^{-}$.
$E_{\mid H^{ \pm}}$is trivializable so there exists $s_{i}^{ \pm}: H^{ \pm} \longrightarrow E$, $i=1, \ldots, m$ such that for any $y \in H^{ \pm},\left(s_{i}^{ \pm}(y)\right)_{i=1}^{m}$ is a basis of E_{y}.

Vector bundles over S^{n}

Let $\pi: E \longrightarrow S^{n}$ be a m-vector bundle over S^{n}.
Denote by $H^{+}=\left\{x_{n+1} \geq 0\right\}$ and $H^{-}=\left\{x_{n+1} \leq 0\right\}$. We have $S^{n-1}=H^{+} \cap H^{-}$.
$E_{\mid H^{ \pm}}$is trivializable so there exists $s_{i}^{ \pm}: H^{ \pm} \longrightarrow E$,
$i=1, \ldots, m$ such that for any $y \in H^{ \pm},\left(s_{i}^{ \pm}(y)\right)_{i=1}^{m}$ is a basis of E_{y}.
We define a continuous $f_{E}: S^{n-1} \longrightarrow \mathrm{GL}(m)$ by

$$
f_{E}=P\left(\left(s_{i}^{+}(y)\right)_{i=1}^{m},\left(s_{i}^{-}(y)\right)_{i=1}^{m}\right)
$$

Vector bundles over S^{n}

Let $\pi: E \longrightarrow S^{n}$ be a m-vector bundle over S^{n}.
Denote by $H^{+}=\left\{x_{n+1} \geq 0\right\}$ and $H^{-}=\left\{x_{n+1} \leq 0\right\}$. We have $S^{n-1}=H^{+} \cap H^{-}$.
$E_{\mid H^{ \pm}}$is trivializable so there exists $s_{i}^{ \pm}: H^{ \pm} \longrightarrow E$,
$i=1, \ldots, m$ such that for any $y \in H^{ \pm},\left(s_{i}^{ \pm}(y)\right)_{i=1}^{m}$ is a basis of E_{y}.
We define a continuous $f_{E}: S^{n-1} \longrightarrow \mathrm{GL}(m)$ by

$$
f_{E}=P\left(\left(s_{i}^{+}(y)\right)_{i=1}^{m},\left(s_{i}^{-}(y)\right)_{i=1}^{m}\right)
$$

Conversely, any continuous map $f: S^{n-1} \longrightarrow \mathrm{GL}(m)$ defines a m-vector bundle E_{f} over S^{n}.

Hopf vector bundles

Suppose that \mathbb{R}^{n} carries a subdivision algebra structure. Then the map

$$
F: S^{n-1} \longrightarrow \mathrm{GL}(n, \mathbb{R}), x \mapsto F(x)=\mathrm{L}_{x}
$$

is continuous and for any $v \in \mathbb{R}^{n} \backslash\{0\}$,

$$
F_{v}: S^{n-1} \longrightarrow S^{n-1}, x \mapsto \frac{x . v}{\|x . v\|}
$$

is an homeomorphism.

Hopf vector bundles

Suppose that \mathbb{R}^{n} carries a subdivision algebra structure. Then the map

$$
F: S^{n-1} \longrightarrow \mathrm{GL}(n, \mathbb{R}), x \mapsto F(x)=\mathrm{L}_{x}
$$

is continuous and for any $v \in \mathbb{R}^{n} \backslash\{0\}$,

$$
F_{v}: S^{n-1} \longrightarrow S^{n-1}, x \mapsto \frac{x . v}{\|x . v\|}
$$

is an homeomorphism.
Thus

$$
\alpha(F)=1
$$

Hopf vector bundles

Suppose that \mathbb{R}^{n} carries a subdivision algebra structure. Then the map

$$
F: S^{n-1} \longrightarrow \mathrm{GL}(n, \mathbb{R}), x \mapsto F(x)=\mathrm{L}_{x}
$$

is continuous and for any $v \in \mathbb{R}^{n} \backslash\{0\}$,

$$
F_{v}: S^{n-1} \longrightarrow S^{n-1}, x \mapsto \frac{x . v}{\|x . v\|}
$$

is an homeomorphism.
Thus

$$
\alpha(F)=1
$$

We denote by $E_{F} \longrightarrow S^{n}$ the associated vector bundle. 84

From the canonical division algebra structures on $\mathbb{R}^{n}, \mathbb{C}, \mathbb{H}$ and \mathbb{O} we get four vector bundles

$$
H_{\mathbb{R}} \longrightarrow S^{1}, H_{\mathbb{C}} \longrightarrow S^{2}, H_{\mathbb{H}} \longrightarrow S^{4} \quad \text { and } \quad H_{\mathbb{O}} \longrightarrow S^{8}
$$

known as Hopf's vector bundles.
Note that $H_{\mathbb{R}} \longrightarrow S^{1}$ is the Möbius strip.

Operations on vector bundles

Let X be a topological space and $E \longrightarrow X$ and $F \longrightarrow X$ two vector bundles of rank n and m.

Operations on vector bundles

Let X be a topological space and $E \longrightarrow X$ and $F \longrightarrow X$ two vector bundles of rank n and m.
(1) $E \oplus F:=\bigcup_{x \in X}\left(E_{x} \oplus F_{x}\right) \longrightarrow X$ is a $m+n$-vector bundle.

Operations on vector bundles

Let X be a topological space and $E \longrightarrow X$ and $F \longrightarrow X$ two vector bundles of rank n and m.
(1) $E \oplus F:=\bigcup_{x \in X}\left(E_{x} \oplus F_{x}\right) \longrightarrow X$ is a $m+n$-vector bundle.
(2) $E \otimes F:=\bigcup_{x \in X}\left(E_{x} \otimes F_{x}\right) \longrightarrow X$ is a $m n$-vector bundle.

Operations on vector bundles

Let X be a topological space and $E \longrightarrow X$ and $F \longrightarrow X$ two vector bundles of rank n and m.
(1) $E \oplus F:=\bigcup_{x \in X}\left(E_{x} \oplus F_{x}\right) \longrightarrow X$ is a $m+n$-vector bundle.
(2) $E \otimes F:=\bigcup_{x \in X}\left(E_{x} \otimes F_{x}\right) \longrightarrow X$ is a $m n$-vector bundle.
(3) Let $f: Y \longrightarrow X$ be continuous map. Then $f^{*} E \longrightarrow Y$ is a n-vector bundle (pull-back) where

$$
f^{*} E=\{(y, v) \in Y \times E, f(y)=\pi(v)\}
$$

The ring of vector bundles $\mathrm{KO}(X)$

Let X is a topological space. We denote by $\operatorname{Vect}(X)$ the set of classes of isomorphism of vector bundles over X.

The ring of vector bundles $\mathrm{KO}(X)$

Let X is a topological space. We denote by $\operatorname{Vect}(X)$ the set of classes of isomorphism of vector bundles over X.

Proposition.

(1) The direct sum \oplus induces an operation on $\operatorname{Vect}(X)$ which is commutative, associative and has a neutral element.
(2) The tensor product \otimes induces an operation on $\operatorname{Vect}(X)$ which is commutative, associative and has a neutral element.
(3) The operation \otimes is distributive with respect to \oplus.

We define on $\operatorname{Vect}(X) \times \operatorname{Vect}(X)$ the equivalence relation \simeq by

$$
(E, F) \simeq\left(E^{\prime}, F^{\prime}\right) \Longleftrightarrow \exists G, E \oplus F^{\prime} \oplus G=F \oplus E^{\prime} \oplus G .
$$

Put

$$
\mathrm{KO}(X)=\operatorname{Vect}(X) \times \operatorname{Vect}(X) / \simeq
$$

We define on $\operatorname{Vect}(X) \times \operatorname{Vect}(X)$ the equivalence relation \simeq by

$$
(E, F) \simeq\left(E^{\prime}, F^{\prime}\right) \Longleftrightarrow \exists G, E \oplus F^{\prime} \oplus G=F \oplus E^{\prime} \oplus G .
$$

Put

$$
\mathrm{KO}(X)=\operatorname{Vect}(X) \times \operatorname{Vect}(X) / \simeq
$$

Proposition.
$(\mathrm{KO}(X), \oplus, \otimes)$ is a ring and
$\epsilon: \mathrm{KO}(X) \longrightarrow \mathbb{Z},[E, F] \longrightarrow \operatorname{rank}(F)-\operatorname{rank}(E)$
is an homomorphism. We denote by $\widetilde{\mathrm{KO}}(X)=\operatorname{ker} \epsilon$.

For any continuous function $f: X \longrightarrow Y$ the pull-back defines an homomorphism of ring

$$
f^{*}: \mathrm{KO}(Y) \longrightarrow \mathrm{KO}(X)
$$

For any continuous function $f: X \longrightarrow Y$ the pull-back defines an homomorphism of ring

$$
f^{*}: \mathrm{KO}(Y) \longrightarrow \mathrm{KO}(X)
$$

For any two vector bundles E and F, we have

$$
-[E, F]=[F, E]
$$

and

$$
[E, F]=[E, 0]+[0, F]:=F-E
$$

Stiefel-Whitney classes

Axiom 1. To each vector bundle ξ corresponds a sequence of cohomology classes

$$
w_{i}(\xi) \in H^{i}\left(B(\xi) ; \mathbb{Z}_{2}\right), \quad i=0,1 \ldots
$$

called the Stiefel-Whitney classes of ξ. The class $w_{0}(\xi)$ corresponds to the element $1 \in H^{i}\left(B(\xi) ; \mathbb{Z}_{2}\right)$ and $w_{i}(\xi)=0$ for $i>\operatorname{rank}(\xi)$.

Stiefel-Whitney classes

Axiom 1. To each vector bundle ξ corresponds a sequence of cohomology classes

$$
w_{i}(\xi) \in H^{i}\left(B(\xi) ; \mathbb{Z}_{2}\right), \quad i=0,1 \ldots
$$

called the Stiefel-Whitney classes of ξ. The class $w_{0}(\xi)$ corresponds to the element $1 \in H^{i}\left(B(\xi) ; \mathbb{Z}_{2}\right)$ and $w_{i}(\xi)=0$ for $i>\operatorname{rank}(\xi)$.
Axiom 2. Naturality. If $f: B(\xi) \longrightarrow B(\eta)$ is covered by a bundle map from ξ to η then

$$
w_{i}(\xi)=f^{*} w_{i}(\eta)
$$

Axiom 3. The Whitney product theorem. If ξ and η are two vector bundles over the same basis then

$$
w_{k}(\xi \oplus \eta)=\sum_{i=0}^{k} w_{i}(\xi) \cdot w_{k-i}(\eta)
$$

Axiom 3. The Whitney product theorem. If ξ and η are two vector bundles over the same basis then

$$
w_{k}(\xi \oplus \eta)=\sum_{i=0}^{k} w_{i}(\xi) \cdot w_{k-i}(\eta)
$$

Axiom 4. For the line bundle γ_{1}^{1} (Möbius strip) over the circle $\mathbb{P}^{1}, w_{1}\left(\gamma_{1}^{1}\right) \neq 0$.

Axiom 3. The Whitney product theorem. If ξ and η are two vector bundles over the same basis then

$$
w_{k}(\xi \oplus \eta)=\sum_{i=0}^{k} w_{i}(\xi) \cdot w_{k-i}(\eta)
$$

Axiom 4. For the line bundle γ_{1}^{1} (Möbius strip) over the circle $\mathbb{P}^{1}, w_{1}\left(\gamma_{1}^{1}\right) \neq 0$.

The total Stiefel-Whitney class of ξ is given by

$$
w(\xi)=1+w_{1}(\xi)+\ldots+w_{n}(\xi), \quad n=\operatorname{rank}(\xi)
$$

Axiom 3. The Whitney product theorem. If ξ and η are two vector bundles over the same basis then

$$
w_{k}(\xi \oplus \eta)=\sum_{i=0}^{k} w_{i}(\xi) \cdot w_{k-i}(\eta)
$$

Axiom 4. For the line bundle γ_{1}^{1} (Möbius strip) over the circle $\mathbb{P}^{1}, w_{1}\left(\gamma_{1}^{1}\right) \neq 0$.

The total Stiefel-Whitney class of ξ is given by

$$
w(\xi)=1+w_{1}(\xi)+\ldots+w_{n}(\xi), \quad n=\operatorname{rank}(\xi)
$$

The Whitney product theorem can be written

$$
w(\xi \oplus \eta)=w(\xi) \cdot w(\eta)
$$

Consequences of the four axioms.

Proposition.
 If ξ is isomorphic to η then $w_{i}(\xi)=w_{i}(\eta)$.

Consequences of the four axioms.

Proposition.
 If ξ is isomorphic to η then $w_{i}(\xi)=w_{i}(\eta)$.

Proposition.
 If ξ is trivial then $w_{i}(\xi)=0$ for $i>0$.

Consequences of the four axioms.

Proposition.
 If ξ is isomorphic to η then $w_{i}(\xi)=w_{i}(\eta)$.

Proposition.
 If ξ is trivial then $w_{i}(\xi)=0$ for $i>0$.

Proposition.
If ξ is trivial then $w_{i}(\xi \oplus \eta)=w_{i}(\eta)$.

Consequences of the four axioms.

Proposition.

If ξ is isomorphic to η then $w_{i}(\xi)=w_{i}(\eta)$.

Proposition.
 If ξ is trivial then $w_{i}(\xi)=0$ for $i>0$.

Proposition.
If ξ is trivial then $w_{i}(\xi \oplus \eta)=w_{i}(\eta)$.

Proposition.

If ξ is an n-vector bundle with an Euclidean product and k linearly independent sections then

$$
w_{n}(\xi)=w_{n-1}(\xi)=\ldots=w_{n-k+1}(\xi)=0
$$

Proposition.
Let $f: S^{n-1} \longrightarrow \mathrm{GL}(n)$ and ξ_{f} the associated vector bundle over S^{n} then

$$
\mathbb{Z}_{2}=H^{n}\left(S^{n} ; \mathbb{Z}_{2}\right) \ni w_{n}\left(\xi_{f}\right)=\alpha(f) \in \mathbb{Z}_{2}
$$

Proposition.

Let $f: S^{n-1} \longrightarrow \mathrm{GL}(n)$ and ξ_{f} the associated vector bundle over S^{n} then

$$
\mathbb{Z}_{2}=H^{n}\left(S^{n} ; \mathbb{Z}_{2}\right) \ni w_{n}\left(\xi_{f}\right)=\alpha(f) \in \mathbb{Z}_{2} .
$$

Theorem.

If there exists a vector bundle ξ over S^{n} with $w_{n}(\xi) \neq 0$ then $n=1,2,4$ or 8 .

Proposition.

Let $f: S^{n-1} \longrightarrow \mathrm{GL}(n)$ and ξ_{f} the associated vector bundle over S^{n} then

$$
\mathbb{Z}_{2}=H^{n}\left(S^{n} ; \mathbb{Z}_{2}\right) \ni w_{n}\left(\xi_{f}\right)=\alpha(f) \in \mathbb{Z}_{2} .
$$

Theorem.

If there exists a vector bundle ξ over S^{n} with $w_{n}(\xi) \neq 0$ then $n=1,2,4$ or 8 .

Corollary.

If there exists a division algebra structure on \mathbb{R}^{n} then $n=1,2,4$ or 8 .

Let X be a topological space. Put

$$
G(X)=\left\{1+a_{1}+\ldots+a_{i}+\ldots ; a_{i} \in H^{i}\left(X ; \mathbb{Z}_{2}\right)\right\}
$$

Let X be a topological space. Put

$$
G(X)=\left\{1+a_{1}+\ldots+a_{i}+\ldots ; a_{i} \in H^{i}\left(X ; \mathbb{Z}_{2}\right)\right\}
$$

Proposition.

$G(X)$ endowed with the multiplication is an abelian group and $\Phi: \mathrm{KO}(X) \longrightarrow G(X),[E, F] \mapsto w(E) \cdot w(F)^{-1}$ is an homomorphism of groups from the additive group $\mathrm{KO}(X)$ to the multiplicative group $G(X)$.

Theorem. (Bott's periodicity Theorem)

We have the following identifications as additive groups:

$$
\begin{aligned}
& \widetilde{\mathrm{KO}}\left(S^{1}\right)=\widetilde{\mathrm{KO}}\left(S^{2}\right)=\mathbb{Z}, \widetilde{\mathrm{KO}}\left(S^{3}\right)=0, \widetilde{\mathrm{KO}}\left(S^{4}\right)=\mathbb{Z} \\
& \widetilde{\mathrm{KO}}\left(S^{5}\right)=\widetilde{\mathrm{KO}}\left(S^{6}\right)=\widetilde{\mathrm{KO}}\left(S^{7}\right)=0, \widetilde{\mathrm{KO}}\left(S^{8}\right)=\mathbb{Z}, \\
& \widetilde{\mathrm{KO}}\left(S^{n+8}\right)=\widetilde{\mathrm{KO}}\left(S^{n}\right) .
\end{aligned}
$$

The isomorphism between $\widetilde{\mathrm{KO}}\left(S^{n}\right)$ and $\widetilde{\mathrm{KO}}\left(S^{n+8}\right)$

We consider the cartezian product $S^{n} \times S^{m}$, the projections $\pi_{1}: S^{n} \times S^{m} \longrightarrow S^{n}, \pi_{2}: S^{n} \times S^{m} \longrightarrow S^{m}$ and the axial cross $S^{n} \vee S^{m}=\left\{x_{0}\right\} \times S^{m} \cup S^{n} \times\left\{y_{0}\right\} \subset S^{n} \times S^{m}$. We collapse it to a point and $S^{n} \times S^{m}$ becomes S^{n+m}.

The isomorphism between $\widetilde{\mathrm{KO}}\left(S^{n}\right)$ and $\widetilde{\mathrm{KO}}\left(S^{n+8}\right)$

We consider the cartezian product $S^{n} \times S^{m}$, the projections $\pi_{1}: S^{n} \times S^{m} \longrightarrow S^{n}, \pi_{2}: S^{n} \times S^{m} \longrightarrow S^{m}$ and the axial $\operatorname{cross} S^{n} \vee S^{m}=\left\{x_{0}\right\} \times S^{m} \cup S^{n} \times\left\{y_{0}\right\} \subset S^{n} \times S^{m}$. We collapse it to a point and $S^{n} \times S^{m}$ becomes S^{n+m}.
From

$$
S^{n} \vee S^{m} \xrightarrow{i} S^{n} \times S^{m} \xrightarrow{p} S^{n+m}
$$

we get an exact sequence

$$
0 \longrightarrow \widetilde{\mathrm{KO}}\left(S^{n+m}\right) \xrightarrow{p^{*}} \widetilde{\mathrm{KO}}\left(S^{n} \times S^{m}\right) \xrightarrow{i^{*}} \widetilde{\mathrm{KO}}\left(S^{n} \vee S^{m}\right) \longrightarrow 0 .
$$

The isomorphism between $\widetilde{\mathrm{KO}}\left(S^{n}\right)$ and $\widetilde{\mathrm{KO}}\left(S^{n+8}\right)$

We consider the cartezian product $S^{n} \times S^{m}$, the projections $\pi_{1}: S^{n} \times S^{m} \longrightarrow S^{n}, \pi_{2}: S^{n} \times S^{m} \longrightarrow S^{m}$ and the axial $\operatorname{cross} S^{n} \vee S^{m}=\left\{x_{0}\right\} \times S^{m} \cup S^{n} \times\left\{y_{0}\right\} \subset S^{n} \times S^{m}$. We collapse it to a point and $S^{n} \times S^{m}$ becomes S^{n+m}.
From

$$
S^{n} \vee S^{m} \xrightarrow{i} S^{n} \times S^{m} \xrightarrow{p} S^{n+m}
$$

we get an exact sequence

$$
0 \longrightarrow \widetilde{\mathrm{KO}}\left(S^{n+m}\right) \xrightarrow{p^{*}} \widetilde{\mathrm{KO}}\left(S^{n} \times S^{m}\right) \xrightarrow{i^{*}} \widetilde{\mathrm{KO}}\left(S^{n} \vee S^{m}\right) \longrightarrow 0
$$

We have also

$$
\widetilde{\mathrm{KO}}\left(S^{n}\right) \xrightarrow{\pi_{1}^{*}} \widetilde{\mathrm{KO}}\left(S^{n} \times S^{m}\right) \quad \text { and } \widetilde{\mathrm{KO}}\left(S^{m}\right) \xrightarrow{\pi_{2}^{*}} \widetilde{\mathrm{KO}}\left(S^{n} \times S^{m}\right) .
$$

Given $a \in \widetilde{\mathrm{KO}}\left(S^{n}\right)$ and $b \in \widetilde{\mathrm{KO}}\left(S^{m}\right)$ we form

$$
a \cdot b=\pi_{1}^{*}(a) \cdot \pi_{2}^{*}(b) \in \widetilde{\mathrm{KO}}\left(S^{n} \times S^{m}\right) .
$$

Given $a \in \widetilde{\mathrm{KO}}\left(S^{n}\right)$ and $b \in \widetilde{\mathrm{KO}}\left(S^{m}\right)$ we form

$$
a \cdot b=\pi_{1}^{*}(a) \cdot \pi_{2}^{*}(b) \in \widetilde{\mathrm{KO}}\left(S^{n} \times S^{m}\right) .
$$

Since $i^{*}(a . b)=0$ there exists an unique element $a \circ b \in \widetilde{\mathrm{KO}}\left(S^{n+m}\right)$ such that $p^{*}(a \circ b)=a . b$. So we have defined a bilinear map

$$
\widetilde{\mathrm{KO}}\left(S^{n}\right) \times \widetilde{\mathrm{KO}}\left(S^{m}\right) \longrightarrow \widetilde{\mathrm{KO}}\left(S^{n+m}\right),(a, b) \mapsto a \circ b .
$$

Given $a \in \widetilde{\mathrm{KO}}\left(S^{n}\right)$ and $b \in \widetilde{\mathrm{KO}}\left(S^{m}\right)$ we form

$$
a \cdot b=\pi_{1}^{*}(a) \cdot \pi_{2}^{*}(b) \in \widetilde{\mathrm{KO}}\left(S^{n} \times S^{m}\right) .
$$

Since $i^{*}(a . b)=0$ there exists an unique element $a \circ b \in \widetilde{\mathrm{KO}}\left(S^{n+m}\right)$ such that $p^{*}(a \circ b)=a . b$. So we have defined a bilinear map

$$
\widetilde{\mathrm{KO}}\left(S^{n}\right) \times \widetilde{\mathrm{KO}}\left(S^{m}\right) \longrightarrow \widetilde{\mathrm{KO}}\left(S^{n+m}\right),(a, b) \mapsto a \circ b .
$$

So the isomorphism

$$
\widetilde{\mathrm{KO}}\left(S^{n}\right) \longrightarrow \widetilde{\mathrm{KO}}\left(S^{n+8}\right)
$$

is given by

$$
a \mapsto a \circ\left(I_{8}, H_{\mathscr{O}}\right)=a \circ\left(H_{\mathbb{O}}-I_{8}\right) .
$$

End of the proof of Kervaire-Milnor

Theorem.

If there exists a vector bundle ξ over S^{n} with $w_{n}(\xi) \neq 0$ then $n=1,2,4$ or 8 .

End of the proof of Kervaire-Milnor

```
Theorem.
If there exists a vector bundle }\xi\mathrm{ over }\mp@subsup{S}{}{n}\mathrm{ with }\mp@subsup{w}{n}{}(\xi)\not=
then n = 1, 2,4 or 8.
```

The end of the proof is based on the following

```
Proposition.
If n}\not=1,2,4,8\mathrm{ then w: }\widetilde{\textrm{KO}}(\mp@subsup{S}{}{n})\longrightarrowG(\mp@subsup{S}{}{n})\mathrm{ satisfies
w ( a ) = 1 ~ f o r ~ a n y ~ a ~ \in \widetilde { \mathrm { KO } } ( S ^ { n } ) .
```


Proof of the proposition

If $n=3,5,6$ or 7 it is a consequence of Bott's periodicity theorem.

Proof of the proposition

If $n=3,5,6$ or 7 it is a consequence of Bott's periodicity theorem.
If $n=m+8$. For $a \in \operatorname{KO}\left(S^{n}\right)$, we have

$$
\begin{aligned}
a & =(E-F) \circ\left(H_{\mathbb{O}}-I_{8}\right) \\
& =E \circ H_{\mathbb{O}}-E \circ I_{8}-F \circ H_{\mathbb{O}}+F \circ I_{8}
\end{aligned}
$$

and the result follows from a formula of w applied to a tensor product.

[^0]: Theorem (Hopf 1940)
 If there exists a continuous odd mapping $h: S^{n-1} \times S^{n-1} \longrightarrow S^{n-1}$ then $n=2^{p}$.

