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Topological consequences of the existence of a
division algebra structure on Rn

Definition.
A division algebra structure on Rn is a bilinear product
Rn × Rn −→ Rn, (x, y) 7→ x.y such that

x.y = 0 ⇐⇒ x = 0 or y = 0.

This is equivalent to: for any x 6= 0,

Lx : Rn −→ Rn, y 7→ Lxy := x.y

and

Rx : Rn −→ Rn, y 7→ Rxy := y.x

are isomorphisms.
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Example.
There are four classical examples:

1 In dimension 1: R endowed with its canonical product:
commutative associative.

2 In dimension 2: C endowed with its canonical product:
commutative associative.

3 In dimension 4: H endowed with its canonical
product:non commutative associative.

4 In dimension 8: O endowed with its canonical product:
non commutative non associative, alternative (see The
Octonions, John C. Baez, arXiv:math/0105155v4
[math.RA] 23 Apr 2002 ).
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Hopf’s mapping

Suppose that Rn carries a division algebra structure.

The Hopf’s mapping is the map

h : Sn−1 × Sn−1 −→ Sn−1, (x, y) 7→ h(x, y) =
x.y

||x.y||
.

Hop’s map is odd in the sense that

∀x, y ∈ Sn−1, h(−x, y) = h(x,−y) = −h(x, y).
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Hopf’s map h defines two maps:

G : Pn−1 × Pn−1 −→ Pn−1

G∗ : H∗(Pn−1,Z2) −→ H∗(Pn−1 × Pn−1,Z2).

Note that

H∗(Pn−1,Z2) =
n−1⊕
k=0

Hk(Pn−1,Z2)

and

H∗(Pn−1 × Pn−1,Z2) =
2n−2⊕
k=0

Hk(Pn−1 × Pn−1,Z2).
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Hopf’s Theorem

Theorem (Hopf 1940)
If there exists a continuous odd mapping
h : Sn−1 × Sn−1 −→ Sn−1 then n = 2p.

Corollary.
If Rn has a division algebra structure then n = 2p.
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Degree modulo 2 of a continuous map
f :M −→M

Let M be a compact connected topological space,
f : M −→M be a continuous map. An element y ∈M is
called regular value if for any x ∈ f−1(y), f is an
homeomorphism from a neighborhood of x to a
neighborhood of y. In this case f−1(y) is finite and its
cardinal mod 2 doesn’t depend on y. We call it
deg2(f) ∈ Z2.

We have

f homotopic to g ⇒ deg2(f) = deg2(g).
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Any continuous function f : M −→M is homotopic to a
function g : M −→M which is C∞ and according to Sard’s
theorem g has a regular value so we put

deg2(f) = deg2(g).

Let F : Sn−1 −→ GL(n,R) a continuous map. For any
v ∈ Rn \ {0}, we denote by Fv : Sn−1 −→ Sn−1,
x 7→ F (x)(v)

|F (x)(v)| .
We define the mod 2 invariant of F by

α(F ) = deg2(Fv).
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Second topological consequence of the existence
of a division algebra structure on Rn

Suppose that Rn carries a subdivision algebra structure.
Then the map

F : Sn−1 −→ GL(n,R), x 7→ F (x) = Lx

is continuous and for any v ∈ Rn \ {0},

Fv : Sn−1 −→ Sn−1, x 7→ x.v

||x.v||

is an homeomorphism.

Thus

α(F ) = 1.
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Theorem.
If Rn carries a structure of division algebra then Sn−1 and
Pn−1 are parallelizable.

Proof.
For any y ∈ Sn−1, (e1.y, . . . , en.y) are linearly independent
and give by orthonormalisation a family of vectors
(X1(y), . . . , Xn(y)) with

X1(y) =
e1.y

|e1.y|
= Fe1(y) and 〈Xi(y), Fe1(y)〉 = 0, i = 2, . . . , n.

Thus, for i = 2, . . . , n, Yi(y) = Xi(F
−1
e1

(y)) define a family
of n− 1 vector fields on Sn−1 which are linearly
independent and hence Sn−1 is parallelizable. Moreover,
Yi(−y) = −Yi(y) and hence Pn−1 is parallelizable.
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Remark.
If Sn is parallelizable then there exists a continuous
function F : Sn −→ GL(n+ 1,R) such that α(F ) = 1.

Indeed, If Xi : Sn −→ Rn+1 parallelize Sn then

F : Sn −→ GL(n+ 1,R), x 7→ (x,X1(x), . . . , Xn(x))

satisfies Fe1(x) = x and hence α(F ) = 1.
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Theorem (1, 2, 4, 8)

Theorem. (Kervaire-Milnor 1958)

If there exists a continuous function F : Sn−1 −→ GL(n,R)
such that α(F ) = 1 then n = 1, 2, 4 or 8.

Corollary.
Sn is parallelizable if and only if n = 0, 1, 3 or 7.

Corollary.
Rn has a division algebra structure if and only if n = 1, 2, 4
or 8.
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Back to Hopf’s Theorem

Theorem (Hopf 1940)
If there exists a continuous odd mapping
h : Sn−1 × Sn−1 −→ Sn−1 then n = 2p.

31



Homology and cohomology with coefficients in
Z2

Denote by ∆n = [0, 1, . . . , n] the convex hull of the origin
with the canonical basis of Rn,

∆[0, 1, . . . , n] =
{

(t1, . . . , tn) ∈ Rn, ti ≥ 0,
∑

ti ≤ 1
}
.

We denote the face of ∆n opposite to the i-th vertex by
∆ < i >, i.e.,

∆ < i >= [0, . . . , i− 1, i+ 1, . . . , n], i = 0, . . . , n.

∆0 = {0}, ∆1 = [0, 1] and ∆2 is the triangle 0, e1, e2 etc..
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Let X be a topological space.

A singular n-simplex is a continuous map σ : ∆n −→ X.
The set of all singular n-simplices is denoted by Σn.
By a singular n-chain we mean any finite formal linear
combination of singular n-simplices with coefficients from
Z2, and write

Cn(X) =

{
r∑
i=1

niσi, ni ∈ Z2, σi ∈ Σn

}
.

The set Cn(X) has a natural Z2-vector space structure.

C0(X) =

{
r∑
i=1

niPi, ni ∈ Z2, Pi ∈ X

}
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Next we define the boundary operator
δn : Cn(X) −→ Cn−1(X) on each simplex σ by setting

δn(σ) =
n∑
q=0

(−1)qσ|∆<q>,

with the convention δ0 = 0.

Lemma. (Poincaré)
The boundary operator of singular chains satisfies

δn−1 ◦ δn = 0 ∀n ≥ 1,

so that the complex of singular chains is a differential
complex.
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The elements of ker δn are called cycles and the elements of
Imδn+1 are called boundaries.

The n-th homology space of X with coefficient in Z2 is the
Z2-vector space

Hn(X;Z2) :=
ker δn

Imδn+1

.

The homology of X is the Z2-vector space

H∗(X;Z2) =
⊕
n≥0

Hn(X;Z2).

Every continuous closed curve c : [0, 1] −→ X defines an
homology class [c] ∈ H1(X;Z2). If X is pathwise
connected then H0(X;Z2) ' Z2.

43



The elements of ker δn are called cycles and the elements of
Imδn+1 are called boundaries.
The n-th homology space of X with coefficient in Z2 is the
Z2-vector space

Hn(X;Z2) :=
ker δn

Imδn+1

.

The homology of X is the Z2-vector space

H∗(X;Z2) =
⊕
n≥0

Hn(X;Z2).

Every continuous closed curve c : [0, 1] −→ X defines an
homology class [c] ∈ H1(X;Z2). If X is pathwise
connected then H0(X;Z2) ' Z2.

44



The elements of ker δn are called cycles and the elements of
Imδn+1 are called boundaries.
The n-th homology space of X with coefficient in Z2 is the
Z2-vector space

Hn(X;Z2) :=
ker δn

Imδn+1

.

The homology of X is the Z2-vector space

H∗(X;Z2) =
⊕
n≥0

Hn(X;Z2).

Every continuous closed curve c : [0, 1] −→ X defines an
homology class [c] ∈ H1(X;Z2). If X is pathwise
connected then H0(X;Z2) ' Z2.

45



The elements of ker δn are called cycles and the elements of
Imδn+1 are called boundaries.
The n-th homology space of X with coefficient in Z2 is the
Z2-vector space

Hn(X;Z2) :=
ker δn

Imδn+1

.

The homology of X is the Z2-vector space

H∗(X;Z2) =
⊕
n≥0

Hn(X;Z2).

Every continuous closed curve c : [0, 1] −→ X defines an
homology class [c] ∈ H1(X;Z2).

If X is pathwise
connected then H0(X;Z2) ' Z2.

46



The elements of ker δn are called cycles and the elements of
Imδn+1 are called boundaries.
The n-th homology space of X with coefficient in Z2 is the
Z2-vector space

Hn(X;Z2) :=
ker δn

Imδn+1

.

The homology of X is the Z2-vector space

H∗(X;Z2) =
⊕
n≥0

Hn(X;Z2).

Every continuous closed curve c : [0, 1] −→ X defines an
homology class [c] ∈ H1(X;Z2). If X is pathwise
connected then H0(X;Z2) ' Z2.

47



For every continuous map f : X −→ Y there is a natural
homomorphism

f∗ : Hn(X;Z2) −→ Hn(Y ;Z2), n ∈ N.

The n-th cohomology space of X is

Hn(M ;Z2) := Hom(Hn(X;Z2),Z2).

The cohomology space of X is

H∗(M ;Z2) :=
⊕
n≥0

Hn(M ;Z2).

There is a product on H∗(M ;Z2) which makes it into a
graded algebra

∪ : Hn(X;Z2)⊗Hm(X;Z2) −→ Hn+m(X;Z2), (α, β) 7→ α∪β.
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Poincaré Duality

Theorem. (Poincaré)
Let M be a closed manifold of dimension n. For any p ∈ N
there exists a natural isomorphism

π : Hn−p(M ;Z2) −→ Hp(M ;Z2).

Corollary.
Let M be a closed manifold of dimension n. Then for any
p ≥ n+ 1,

Hp(M ;Z2) = 0 and Hn(M,Z2) ' (Z2)m,

where m is the number of connected components of M .
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Fundamental class

Let M be a compact connected manifold. Then the
generator of Hn(M ;Z2) is called the fundamental class of
M and denoted by |M |.

Any closed connected q-dimensional submanifold Y ⊂M
defines an element |Y | ∈ Hq(M ;Z2) via the map
i∗ : Hq(Y ;Z2) −→ Hq(M ;Z2)
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Cohomology and homology of Pn

1 For any 0 ≤ q ≤ n, Hq(Pn;Z2) = Z2.

2 Every q + 1-subspace of Rn+1 defines an embedding
Sq ⊂ Sn and an embedding Pq ⊂ Pn and |Pq| is the
generator of Hq(Pn;Z2).

3 Denote by X = π(|Pn−1|) ∈ H1(Pn;Z2). Then for any
q, Xq is the generator of Hq(Pn;Z2) and hence

H∗(Pn;Z2) =

{
n∑
q=0

tiX
i, ti ∈ Z2, X

n+1 = 0

}
.

4 〈X, |P1|〉 = 1.
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Cohomology and homology of Pn × Pn

1 For 0 ≤ q ≤ 2n,

Hq(Pn×Pn;Z2) = Vect {|Pr × Ps|, r + s = q, 0 ≤ r, s ≤ n} .

2 Put Y = π(|Pn−1 × Pn|) ∈ H1(Pn × Pn;Z2) and
Z = π(|Pn × Pn−1|) ∈ H1(Pn × Pn;Z2). Then

H∗(Pn×Pn;Z2) =

{ ∑
0≤r,s≤n

ttsY
sZr, Y n+1 = Zn+1 = 0

}
.

3 〈Y, |P1 × {∗}|〉 = 1 and 〈Y, |{∗} × P1|〉 = 0

4 〈Z, |P1 × {∗}|〉 = 0. and 〈Z, |{∗} × P1|〉 = 1.
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Proof of Hopf’s Theorem
Suppose that there exist a continuous odd map
g : Sn−1 × Sn−1 −→ Sn−1 and denote by
G : Pn−1 × Pn−1 −→ Pn−1 the corresponding map.

The crucial step is that

G∗(|P1 × {∗}|) = G∗(|{∗} × P1|) = |P1|.

This is the consequence of that fact if ω : [0, 1] −→ Sn−1

such that c(0) = −c(1) then
γ = g ◦ (c× {∗}) : [0, 1] −→ Sn−1 satisfies γ(0) = −γ(1)
since g is odd.
Now

G∗(X) = Y + Z.
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Now since Xn = 0 then

(Y+Z)n =
n∑
q=0

n!

q!(n− q)!
Y qZn−q =

n−1∑
q=1

n!

q!(n− q)!
Y qZn−q = 0.

This implies that for any 1 ≤ q ≤ n− 1, n!
q!(n−q)! is even and

this implies that n = 2p. �
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Kervaire-Milnor Theorem

We give the needed material for a sketch of a proof of the
following theorem.

Theorem.
Rn has a structure of division algebra if and only if
n = 1, 2, 4 or 8.
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Vector bundles over a topological space

Let X be a topological space. A vector bundle of rank n
over X is a topological space E together with a surjective
continuous map π : E −→ X such that:

1 for any x ∈ X, Ex = π−1(x) has a structure of
n-dimensional real vector space,

2 for any x ∈ X, there exists n sections
s1, . . . , sn : U −→ E such that, for any y ∈ U ,
(s1(y), . . . , sn(y)) is a basis of Ey.

Example
1. π : X × Rn −→ Rn is a vector bundle called the trivial
vector bundle of rank n over X .
2. The tangent space to a manifold is a vector bundle.
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A n-vector bundle π : E −→ X is called trivializable if it
admits n linearly independent global sections.

Theorem.
Every vector bundle over a contractile topological space is
trivializable.
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Vector bundles over Sn

Let π : E −→ Sn be a m-vector bundle over Sn.

Denote by H+ = {xn+1 ≥ 0} and H− = {xn+1 ≤ 0}. We
have Sn−1 = H+ ∩H−.
E|H± is trivializable so there exists s±i : H± −→ E,
i = 1, . . . ,m such that for any y ∈ H±, (s±i (y))mi=1 is a basis
of Ey.
We define a continuous fE : Sn−1 −→ GL(m) by

fE = P ((s+
i (y))mi=1, (s

−
i (y))mi=1).

Conversely, any continuous map f : Sn−1 −→ GL(m)
defines a m-vector bundle Ef over Sn.
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Hopf vector bundles
Suppose that Rn carries a subdivision algebra structure.
Then the map

F : Sn−1 −→ GL(n,R), x 7→ F (x) = Lx

is continuous and for any v ∈ Rn \ {0},

Fv : Sn−1 −→ Sn−1, x 7→ x.v

||x.v||

is an homeomorphism.

Thus

α(F ) = 1.

We denote by EF −→ Sn the associated vector bundle.
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From the canonical division algebra structures on Rn, C, H
and O we get four vector bundles

HR −→ S1, HC −→ S2, HH −→ S4 and HO −→ S8

known as Hopf’s vector bundles.
Note that HR −→ S1 is the Möbius strip.
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Operations on vector bundles

Let X be a topological space and E −→ X and F −→ X
two vector bundles of rank n and m.

1 E ⊕ F :=
⋃
x∈X(Ex ⊕ Fx) −→ X is a m+ n-vector

bundle.
2 E⊗F :=

⋃
x∈X(Ex⊗Fx) −→ X is a mn-vector bundle.

3 Let f : Y −→ X be continuous map. Then f ∗E −→ Y
is a n-vector bundle (pull-back) where

f ∗E = {(y, v) ∈ Y × E, f(y) = π(v)}.
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The ring of vector bundles KO(X)

Let X is a topological space. We denote by Vect(X) the set
of classes of isomorphism of vector bundles over X.

Proposition.
1 The direct sum ⊕ induces an operation on Vect(X)

which is commutative, associative and has a neutral
element.

2 The tensor product ⊗ induces an operation on Vect(X)
which is commutative, associative and has a neutral
element.

3 The operation ⊗ is distributive with respect to ⊕.
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We define on Vect(X)×Vect(X) the equivalence relation '
by

(E,F ) ' (E ′, F ′)⇐⇒ ∃G,E ⊕ F ′ ⊕G = F ⊕ E ′ ⊕G.

Put

KO(X) = Vect(X)× Vect(X)/ ' .

Proposition.
(KO(X),⊕,⊗) is a ring and

ε : KO(X) −→ Z, [E,F ] −→ rank(F )− rank(E)

is an homomorphism. We denote by K̃O(X) = ker ε.
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For any continuous function f : X −→ Y the pull-back
defines an homomorphism of ring

f ∗ : KO(Y ) −→ KO(X).

For any two vector bundles E and F , we have

−[E,F ] = [F,E]

and

[E,F ] = [E, 0] + [0, F ] := F − E.
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Stiefel-Whitney classes

Axiom 1. To each vector bundle ξ corresponds a sequence
of cohomology classes

wi(ξ) ∈ H i(B(ξ);Z2), i = 0, 1 . . . ,

called the Stiefel-Whitney classes of ξ. The class w0(ξ)
corresponds to the element 1 ∈ H i(B(ξ);Z2) and wi(ξ) = 0
for i > rank(ξ).

Axiom 2. Naturality. If f : B(ξ) −→ B(η) is covered by
a bundle map from ξ to η then

wi(ξ) = f ∗wi(η).
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Axiom 3. The Whitney product theorem. If ξ and η
are two vector bundles over the same basis then

wk(ξ ⊕ η) =
k∑
i=0

wi(ξ).wk−i(η).

Axiom 4. For the line bundle γ1
1 (Möbius strip) over the

circle P1, w1(γ1
1) 6= 0.

The total Stiefel-Whitney class of ξ is given by

w(ξ) = 1 + w1(ξ) + . . .+ wn(ξ), n = rank(ξ).

The Whitney product theorem can be written

w(ξ ⊕ η) = w(ξ).w(η).
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Consequences of the four axioms.

Proposition.
If ξ is isomorphic to η then wi(ξ) = wi(η).

Proposition.
If ξ is trivial then wi(ξ) = 0 for i > 0.

Proposition.
If ξ is trivial then wi(ξ ⊕ η) = wi(η).

Proposition.
If ξ is an n-vector bundle with an Euclidean product and k
linearly independent sections then

wn(ξ) = wn−1(ξ) = . . . = wn−k+1(ξ) = 0.
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Proposition.
Let f : Sn−1 −→ GL(n) and ξf the associated vector bundle
over Sn then

Z2 = Hn(Sn;Z2) 3 wn(ξf ) = α(f) ∈ Z2.

Theorem.
If there exists a vector bundle ξ over Sn with wn(ξ) 6= 0
then n = 1, 2, 4 or 8.

Corollary.
If there exists a division algebra structure on Rn then
n = 1, 2, 4 or 8.
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Let X be a topological space. Put

G(X) = {1 + a1 + . . .+ ai + . . . ; ai ∈ H i(X;Z2)}.

Proposition.
G(X) endowed with the multiplication is an abelian group
and Φ : KO(X) −→ G(X), [E,F ] 7→ w(E).w(F )−1 is an
homomorphism of groups from the additive group KO(X) to
the multiplicative group G(X).
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Theorem. ( Bott’s periodicity Theorem)
We have the following identifications as additive groups:

K̃O(S1) = K̃O(S2) = Z2, K̃O(S3) = 0, K̃O(S4) = Z
K̃O(S5) = K̃O(S6) = K̃O(S7) = 0, K̃O(S8) = Z,
K̃O(Sn+8) = K̃O(Sn).
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The isomorphism between K̃O(Sn) and
K̃O(Sn+8)

We consider the cartezian product Sn × Sm, the projections
π1 : Sn × Sm −→ Sn, π2 : Sn × Sm −→ Sm and the axial
cross Sn ∨ Sm = {x0} × Sm ∪ Sn × {y0} ⊂ Sn × Sm. We
collapse it to a point and Sn × Sm becomes Sn+m.

From

Sn ∨ Sm i−→ Sn × Sm p−→ Sn+m

we get an exact sequence

0 −→ K̃O(Sn+m)
p∗−→ K̃O(Sn×Sm)

i∗−→ K̃O(Sn∨Sm) −→ 0.

We have also

K̃O(Sn)
π∗
1−→ K̃O(Sn×Sm) and K̃O(Sm)

π∗
2−→ K̃O(Sn×Sm).
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Given a ∈ K̃O(Sn) and b ∈ K̃O(Sm) we form

a.b = π∗1(a).π∗2(b) ∈ K̃O(Sn × Sm).

Since i∗(a.b) = 0 there exists an unique element
a ◦ b ∈ K̃O(Sn+m) such that p∗(a ◦ b) = a.b. So we have
defined a bilinear map

K̃O(Sn)× K̃O(Sm) −→ K̃O(Sn+m), (a, b) 7→ a ◦ b.

So the isomorphism

K̃O(Sn) −→ K̃O(Sn+8)

is given by

a 7→ a ◦ (I8, HO) = a ◦ (HO − I8).
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End of the proof of Kervaire-Milnor

Theorem.
If there exists a vector bundle ξ over Sn with wn(ξ) 6= 0
then n = 1, 2, 4 or 8.

The end of the proof is based on the following

Proposition.

If n 6= 1, 2, 4, 8 then w : K̃O(Sn) −→ G(Sn) satisfies
w(a) = 1 for any a ∈ K̃O(Sn).
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Proof of the proposition

If n = 3, 5, 6 or 7 it is a consequence of Bott’s periodicity
theorem.

If n = m+ 8. For a ∈ K̃O(Sn), we have

a = (E − F ) ◦ (HO − I8)

= E ◦HO − E ◦ I8 − F ◦HO + F ◦ I8,

and the result follows from a formula of w applied to a
tensor product.
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