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An anchored vector bundle is a triple (A,M, ρ) where :

1 p : A −→ M is a vector bundle,

2 ρ : A −→ TM is a bundle homomorphism called anchor.

Let (A,M, ρ) be an anchored vector bundle.
A bracket on Γ(A) is a skew-symmetric R-bilinear map
[ , ]A : Γ(A)× Γ(A) −→ Γ(A).
It is called anchored if for any a, b ∈ Γ(A) and for every smooth
function f ∈ C∞(M),

[a, fb]A = f [a, b]A + ρ(a)(f )b. (1)

[ , ]A is local:

a|U = 0 =⇒ (∀b ∈ Γ(A), [a, b]A = 0 on U.)
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The torsion of [ , ]A is the map Θ[ , ]A : Γ(A)× Γ(A) −→ X (M)
given by

Θ[ , ]A(a, b) = ρ([a, b]A)− [ρ(a), ρ(b)]. (2)

Θ[ , ]A is R-bilinear, skew-symmetric and, for any f ∈ C∞(M),

Θ[ , ]A(fa, b) = Θ[ , ]A(a, fb) = f Θ[ , ]A(a, b).

So Θ[ , ]A ∈ Γ(∧2A∗ ⊗ TM).
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The Jacobiator of [ , ]A as J[ , ]A : Γ(A)× Γ(A)× Γ(A) −→ Γ(A)
given by

J[ , ]A(a, b, c) = [[a, b]A, c]A + [[b, c]A, a]A + [[c , a]A, b]A.

J is R-trilinear and skew-symmetric. Thus [ , ]A is a Lie bracket if
and only if J[ , ]A = 0.
For any a, b, c ∈ Γ(A) and any f ∈ C∞(M),

J[ , ]A(a, b, fc) = fJ[ , ]A(a, b, c) + Θ[ , ]A(a, b)(f )c . (3)
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This relation shows that:

1 J[ , ]A is local:

a|U = 0 =⇒ JA(a, ., .)|U = 0,

2 if Θ[ , ]A vanishes then J[ , ]A becomes a tensor, namely,
J[ , ]A ∈ Γ(∧3A∗ ⊗ TM),

3

J[ , ]A ≡ 0 =⇒ Θ[ , ]A ≡ 0.
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Proposition

Let (A,M, ρ) be an anchored bundle and [ , ]A an anchored
bracket on Γ(A). Then the following assertions are equivalent:

(i) (Γ(A), [ , ]A) is a Lie algebra, i.e., JA vanishes identically.

(ii) For any x ∈ M there exists an open set U of M containing x
and a basis of sections (a1, . . . , ar ) over U such that

J[ , ]A(ai , aj , ak) = 0 and Θ(ai , aj) = 0, 1 ≤ i < j < k ≤ r .

Definition
A Lie algebroid is an anchored vector bundle (A,M, ρ) together
with an anchored bracket [ , ]A satisfying (i) or (ii) of Proposition
1.3.
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There are some well-known properties of a Lie algebroid
(A,M, ρ, [ , ]A).

(a) The smooth distribution Imρ is integrable in the sense of
Sussmann and, for any leaf L of Imρ, (A|L, L, ρ, [ , ]A) is a
transitive Lie algebroid.

(b) For any x ∈ M, there is an induced Lie bracket say [ , ]x on
gx = ker(ρx) ⊂ Ax which makes it into a finite dimensional
Lie algebra.
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(c) The map dA : Γ(∧A∗) −→ Γ(∧A∗) by

dAQ(a1, . . . , ap) =

p∑
i=1

(−1)i+1ρ(ai ).Q(a1, . . . , âi , . . . , ap)

−
∑

1≤i<j≤p
(−1)i+j+1Q([ai , aj ]A, a1, . . . , âi , . . . , âj , . . . , ap),

is a differential, i.e., d2
A = 0. In particular, for any a, b ∈ Γ(A),

f ∈ C∞(M) and Q ∈ Γ(∧A∗),

dAf (a) = ρ(a)(f )

dAQ(a, b) = ρ(a).Q(b)− ρ(b).Q(a)− Q([a, b]A).

These two relations show that there is a correspondence
between Lie algebroids structure on (A,M) and differentials
on Γ(∧A∗).
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Theorem (Local splitting))
Let x0 ∈ M be a point where #x0 has rank q. There exists a
system of coordinates (x1, . . . , xq, y1, . . . , yn−q) valid in a
neighborhood U of x0 and a basis of sections {a1, . . . , ar} of A
over U, such that

#(ai ) = ∂xi (i = 1, . . . , q),

#(ai ) =
∑
j

bij∂yj (i = q + 1, . . . , r),

where bij ∈ C∞(U) are smooth functions depending only on the
y ′s and vanishing at x0: bij = bij(y s), bij(x0) = 0. Moreover, for
any i , j = 1, . . . , r ,

[ai , aj ] =
∑
u

C u
ij au,

where Cu
ij ∈ C∞(U) vanish if u ≤ q and satisfy

∑
u>q

∂Cu
ij

∂xs
but = 0.
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Some examples of Lie algebroids

(a) The basic example of a Lie algebroid over M is the tangent
bundle itself, with the identity mapping as anchor.

(b) Every finite dimensional Lie algebra is a Lie algebroid over a
one point space.

(c) Let (M, π) be a Poisson manifold. The bivector field π defines
a bundle homomorphism π# : T ∗M −→ TM and a bracket on
Ω1(M) by

[α, β]π = Lπ#(α)β − Lπ#(β)α− dπ(α, β)

such that (T ∗M,M, π#, [ , ]π) is a Lie algebroid.
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(d) Let g
τ−→ X (M) be an action of a finite-dimensional real Lie

algebra g on a smooth manifold M, i.e., a morphism of Lie
algebras from g to the Lie algebra of vector fields on M.
Consider (A,M, ρ, [ , ]A), where A = M × g as a trivial bundle
and

ρ((m, ξ)) = τ(ξ)(m) and [ξ, η]A = Lρ(ξ)η−Lρ(η)ξ+[ξ, η]g,

η, ξ ∈ Γ(A) = C∞(M, g).
By using (ii) of Proposition 1.3, it is easy to check that
(A,M, ρ, [ , ]A) is a Lie algebroid.

Mohamed Boucetta Riemannian Lie algebroids



Connections on Lie algebroids
Riemannian metrics on Lie algebroids

Geodesic flow of a Riemannian Lie algebroid
First and second variation formula

O’Neill’s formulas for curvature
Integrability of Riemannian Lie algebroids

Parallel transport
Linear A-connections, geodesics and compatibility with the Lie algebroid structure
Variations of A-paths, homotopy and curvature of A-connections
Homotopy of A-paths

(d) Let g
τ−→ X (M) be an action of a finite-dimensional real Lie

algebra g on a smooth manifold M, i.e., a morphism of Lie
algebras from g to the Lie algebra of vector fields on M.
Consider (A,M, ρ, [ , ]A), where A = M × g as a trivial bundle
and

ρ((m, ξ)) = τ(ξ)(m) and [ξ, η]A = Lρ(ξ)η−Lρ(η)ξ+[ξ, η]g,

η, ξ ∈ Γ(A) = C∞(M, g).
By using (ii) of Proposition 1.3, it is easy to check that
(A,M, ρ, [ , ]A) is a Lie algebroid.
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Let p : A −→ M be a Lie algebroid with anchor map #. An
A-connection on a vector bundle E −→ M is an operator
∇ : Γ(A)× Γ(E ) −→ Γ(E ) satisfying:

1 ∇a+bs = ∇as +∇bs for any a, b ∈ Γ(A) and s ∈ Γ(E );

2 ∇a(s1 + s2) = ∇as1 +∇as2 for any a ∈ Γ(A) and
s1, s2 ∈ Γ(E );

3 ∇fas = f∇as for any a ∈ Γ(A), s ∈ Γ(E ) and f ∈ C∞(M);

4 ∇a(fs) = f∇as + #(a)(f )s for any a ∈ Γ(A), s ∈ Γ(E ) and
f ∈ C∞(M).

Mohamed Boucetta Riemannian Lie algebroids



Connections on Lie algebroids
Riemannian metrics on Lie algebroids

Geodesic flow of a Riemannian Lie algebroid
First and second variation formula

O’Neill’s formulas for curvature
Integrability of Riemannian Lie algebroids

Parallel transport
Linear A-connections, geodesics and compatibility with the Lie algebroid structure
Variations of A-paths, homotopy and curvature of A-connections
Homotopy of A-paths

Definition
Let p : A −→ M be a Lie algebroid with anchor #.

1 An A-path is a smooth path α : [t0, t1] −→ A such that

#(α(t)) =
d

dt
p(α(t)), t ∈ [t0, t1].

We call the curve γ : [t0, t1] −→ M given by γ(t) = p(α(t))
the base path of α.

2 An A-path α is called vertical if #(α(t)) = 0 for any
t ∈ [t0, t1].

Remark
When A = TM, a A-path is just the derivative ċ : [t0, t1] −→ TM
of a curve c : [t0, t1] −→ M.
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Definition
Let p : A −→ M be a Lie algebroid with anchor #.

1 An A-path is a smooth path α : [t0, t1] −→ A such that

#(α(t)) =
d

dt
p(α(t)), t ∈ [t0, t1].

We call the curve γ : [t0, t1] −→ M given by γ(t) = p(α(t))
the base path of α.

2 An A-path α is called vertical if #(α(t)) = 0 for any
t ∈ [t0, t1].

Remark
When A = TM, a A-path is just the derivative ċ : [t0, t1] −→ TM
of a curve c : [t0, t1] −→ M.
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Let p : A −→ M be a Lie algebroid, π : E −→ M a vector bundle
and ∇ an A-connection on E . Fix an A-path α : [t0, t1] −→ A.

An α-section of E is a smooth map s : [t0, t1] −→ E such that
the projections on M of α and s define the same base path, i.e.,

p(α) = π(s).

We denote by Γ(E )α the space of α-sections of E .
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Then there is exists an unique map

∇α : Γ(E )α −→ Γ(E )α

satisfying:

1 ∇α(c1s1 + c2s2) = c1∇αs1 + c2∇αs2, c1, c2 ∈ R;

2 ∇αfs = f ′s + f∇αs where f : [t0, t1] −→ R is a smooth
function;

3 if s̃ is a local section of E which extends s then

∇αs(t) = ∇α(t)s̃;
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Let (x1, . . . , xn) be a local system of coordinates on an open set U,
(a1, . . . , ar ) is local frame of A and (e1, . . . , eq) is a local frame of
E over U and

#ak =
n∑

i=1

bki∂xi (k = 1, . . . , r).

Then

α(t) =
r∑

i=1

αi (t)ai and s(t) =

q∑
i=1

si (t)ei .

We have

p(α(t)) = π(s(t)) = (x1(t), . . . , xn(t)) and #(α(t)) =
n∑

i=1

x ′i (t)∂xi .
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∇αs =

q∑
i=1

s ′i (t)ei +

q∑
i=1

si (t)∇αei

=

q∑
i=1

s ′i (t)ei +

q∑
i=1

si (t)∇α(t)ei

=

q∑
i=1

s ′i (t)ei +

q∑
i=1

r∑
j=1

si (t)αj(t)∇aj ei

=

q∑
k=1

s ′k(t) +

q∑
i=1

r∑
j=1

si (t)αj(t)Γk
ji (x(t))

 ek .

∇aj ei =

q∑
k=1

Γk
jiek .

Mohamed Boucetta Riemannian Lie algebroids



Connections on Lie algebroids
Riemannian metrics on Lie algebroids

Geodesic flow of a Riemannian Lie algebroid
First and second variation formula

O’Neill’s formulas for curvature
Integrability of Riemannian Lie algebroids

Parallel transport
Linear A-connections, geodesics and compatibility with the Lie algebroid structure
Variations of A-paths, homotopy and curvature of A-connections
Homotopy of A-paths

An α-section s is called parallel along α if ∇αs = 0,i.e.,

s ′k(t) +

q∑
i=1

r∑
j=1

si (t)αj(t)Γk
ji (x(t)) = 0, k = 1, . . . , q.

One has then the notion of parallel transport along α, denoted by

τ tα : Eγ(t0) −→ Eγ(t),

and τ tα(s0) = s(t) where s is the unique parallel α-section
satisfying s(0) = s0.
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If α0 ∈ Ax and s is a section of E in a neighborhood of x , one can
check easily that

∇α0s =
d

dt |t=0
(τ tα)−1(s(γ(t))), (4)

where α is any A-path satisfying α(0) = α0.
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Let p : A −→ M be a Lie algebroid with anchor #. We shall call
A-connections on the vector bundle A −→ M linear A-connections.
Let D be a linear A-connection. An A-path α : [t0, t1] −→ A is a
geodesic of D if

Dαα = 0.
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Let (x1, . . . , xn) be a local system of coordinates on an open set U
and (a1, . . . , ar ) a basis of local sections over U. The structure
functions bsi ,Cu

st ∈ C∞(U) are given by

#as =
n∑

i=1

bsi∂xi (s = 1, . . . , r),

We define the Christoffel symbols of D according to (a1, . . . , ar ) as
usually by

Dasat =
r∑

u=1

Γu
stau.
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The A-path α is a geodesic if, for i = 1, . . . , n and j = 1, . . . , r ,
ẋi (t) =

r∑
j=1

αj(t)bji (x1(t), . . . , xn(t)),

α̇j(t) = −
r∑

s,u=1

αs(t)αu(t)Γj
su(x1(t), . . . , xn(t)),

(5)

where α(t) =
∑r

i=1 αi (t)ai is the local expression of α and
p(α(t)) = (x1(t), . . . , xn(t)) is the local expression of its base path.
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Exactly as in the classical case, one has existence and uniqueness
of geodesics with given initial base point x ∈ M and ”initial speed”
a0 ∈ Ax . Actually, there exists a vector field G on A such that the
geodesics of D are the integral curves of G . We call G the
geodesic vector field associated to D and D is called complete if G
is complete.

Remark
The notions of connection, parallel transport and geodesic can be
defined in any anchored vector bundle.
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We introduce now two natural notions of compatibility between
linear A-connections and the structures of Lie algebroids.

Definition

1 A linear A-connection D is strongly compatible with the Lie
algebroid structure if, for any A-path α , the parallel transport
τα preserves ker#.

2 A linear A-connection D is weakly compatible with the Lie
algebroid structure if, for any vertical A-path α, the parallel
transport τα preserves ker#.
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The following proposition gives an useful characterization of the
these notions of compatibility.

Proposition

1 A linear A-connection D is strongly compatible with the Lie
algebroid structure if and only if, for any leaf L and for any
sections α ∈ Γ(AL) and β ∈ Γ(gL), Dαβ ∈ Γ(gL).

2 A linear A-connection D is weakly compatible with the Lie
algebroid structure if and only if, for any leaf L and for any
sections α ∈ Γ(gL) and β ∈ Γ(gL), Dαβ ∈ Γ(gL).
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Example

Let p : A −→ M be a Lie algebroid and ∇ be a TM-connection on
A. Associated with ∇ there is an obvious linear A-connection

D0
ab = ∇#(a)b

which is clearly weakly compatible with the Lie algebroid structure.

A bit more subtle is the following linear A-connection

D1
ab = ∇#(b)a + [a, b]A

which is strongly compatible with the Lie algebroid structure.
These connections play a fundamental role in the theory of
characteristic classes.
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We give an interpretation of the torsion and the curvature of an
A-connection which leads naturally to the notion of homotopy of
A-paths. This notion plays a crucial role in the integrability of Lie
algebroids.
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Let p : A −→ M be a Lie algebroid with anchor # and E −→ M a
vector bundle. The curvature of an A-connection ∇ on E is
formally identical to the usual definition

R(a, b)s = ∇a∇bs −∇b∇as −∇[a,b]As,

where a, b ∈ Γ(A) and s ∈ Γ(E ). The connection ∇ is called flat
if R vanishes identically.
If D is a linear A-connection the torsion of D is given by

TD(a, b) = Dab −Dba− [a, b]A.
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In the classical case (A = TM), the curvature and the torsion can
be interpreted by using variations of paths. We will show now that
we have a similar interpretation in the general case. First, let us
recall the notion of variation of paths in the classical case in order
to find the appropriate generalization.
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Let M be a manifold and ∇ a connection on TM.

A variation of curves is a smooth map Γ = (−ε, ε)× [a, b] −→ M.
Any variation of curves defines two collections of curves: the main
curves Γs(t) = Γ(s, t) defined on [a, b] by setting s = constant
and the transverse curves Γ(t)(s) = Γ(s, t) defined on (−ε, ε) by
setting t = constant.
The tangent vectors to these two families of curves are examples of
vector fields along Γ, we denote them by

T (s, t) = ∂tΓ(s, t) =
d

dt
Γs(t), S(s, t) = ∂sΓ(s, t) =

d

ds
Γ(t)(s).
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If V is a vector field along Γ, we can compute the covariant
derivative of V either along the main curves or along the
transverse curves, the resulting vector fields along Γ are denoted by
DtV and DsV . The following lemma is classical.

Lemma
With the notation above, we have

DsT − DtS = T∇(S ,T ). (6)

and
DsDtY − DtDsY = −R∇(S ,T )Y . (7)

Mohamed Boucetta Riemannian Lie algebroids



Connections on Lie algebroids
Riemannian metrics on Lie algebroids

Geodesic flow of a Riemannian Lie algebroid
First and second variation formula

O’Neill’s formulas for curvature
Integrability of Riemannian Lie algebroids

Parallel transport
Linear A-connections, geodesics and compatibility with the Lie algebroid structure
Variations of A-paths, homotopy and curvature of A-connections
Homotopy of A-paths

Let (A,M, ρ) a Lie algebroid. Let α : [0, 1]× [0, 1] −→ A and
Γ : [0, 1]× [0, 1] −→ M it projection.
We call α variation of A-paths if

1 for any s ∈ [0, 1], the map t 7→ α(s, t) is an A-path, i.e.,

#(α(s, t)) =
∂Γ

∂t
(s, t),

2 the base variation Γ(s, t) = p(α(s, t)) lies entirely in a fixed
leaf L of the characteristic foliation.
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Let α be a variation of A-paths and Γ its projection.
A transverse variation to α is a smooth map
β : [0, 1]× [0, 1] −→ A such that p(β) = Γ and

#(β(s, t)) =
∂Γ

∂s
(s, t).

It is clear that if # is injective, there is an unique transverse
variation to a given variation of A-paths. However, if # is not
injective, a given variation of A-paths admits many transverse
variations to it. There is a way which permit the control of
transverse variations to a fixed variation of A-path. Let us explain
this important fact which is at the origin of the notion of
homotopy of A-paths.
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First, let us fix some notations. Let α and β be, respectively, a
variation of A-paths and a transverse variation and let
Γ = p(α) = p(β) denote the commune base path.

Let ∇ be an A-connection on a vector bundle π : E −→ M and let
s : [0, 1]× [0, 1] −→ E be a section over Γ.

For any ε ∈ [0, 1], t 7→ α(ε, t) is an A-path and ∇ts denotes the
derivative of t 7→ s(ε, t) along this A-path.

On the other hand, for any t ∈ [0, 1], ε 7→ β(ε, t) is an A-path and
∇εs denotes the derivative of ε 7→ s(ε, t) along this A-path.
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Proposition

With the notation above the following assertions hold.

1 For any linear A-connection D, the variation

∆(α, β) = Dtβ −Dεα− TD(α, β)

does not depend on D and satisfies #(∆(α, β)) = 0.

2 for any A-connection ∇ on E and for any section s of E over Γ

∇t∇εs −∇ε∇ts = R(α, β)s +∇∆(α,β)s.
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Proof.

Fix (ε0, t0) ∈ [0, 1]× [0, 1] and choose a local coordinates
(x1, . . . , xq, y1, . . . , yn−q) near x0 = Γ(ε0, t0) and a basis of
sections (a1, . . . , ar ), (q = rank#x0), such that

#(ai ) = ∂xi (i = 1, . . . , q),

#(ai ) =
∑
j

bij∂yj (i = q + 1, . . . , r),

where bij ∈ C∞(U) are smooth functions depending only on the
y ′s and vanishing at x0: bij = bij(y s), bij(x0) = 0. Moreover, for
any i , j = 1, . . . , r ,

[ai , aj ] =
∑
u

Cu
ij au,

where Cu
ij ∈ C∞(U) vanish if u ≤ q and satisfy

∑
u>q

∂Cu
ij

∂xs
but = 0.

Mohamed Boucetta Riemannian Lie algebroids



Connections on Lie algebroids
Riemannian metrics on Lie algebroids

Geodesic flow of a Riemannian Lie algebroid
First and second variation formula

O’Neill’s formulas for curvature
Integrability of Riemannian Lie algebroids

Parallel transport
Linear A-connections, geodesics and compatibility with the Lie algebroid structure
Variations of A-paths, homotopy and curvature of A-connections
Homotopy of A-paths

In these coordinates, we have

α(ε, t) =
r∑

i=1

αi (ε, t)ai ,

β(ε, t) =
r∑

i=1

βi (ε, t)ai ,

Γ(ε, t) = (x1(ε, t), . . . , xq(ε, t), c1, . . . , cn−q),

∂Γ

∂t
=

q∑
j=1

∂xj
∂t

∂xj =

q∑
i=1

αj(ε, t)∂xj ,

∂Γ

∂ε
=

q∑
j=1

∂xj
∂ε

∂xj =

q∑
i=1

βj(ε, t)∂xj ,

(8)

where c1, . . . , cn−q are constant.
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Now

Dtβ =
r∑

i=1

∂βi

∂t
ai +

r∑
i ,j=1

αjβiDajai

Dεα =
r∑

i=1

∂αi

∂ε
ai +

r∑
i ,j=1

αiβjDajai .

Hence

Dtβ −Dεα =
r∑

i=1

(
∂βi

∂t
− ∂αi

∂ε

)
ai + TD(α, β) +

r∑
i ,j=1

αiβj [ai , aj ].
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Now, form (8), we have
∂βi

∂t
=
∂αi

∂ε
for any i = 1, . . . , q, so

Dtβ −Dεα− TD(α, β) =
r∑

i=q+1

(
∂βi

∂t
− ∂αi

∂ε

)
ai +

r∑
i ,j=1

αiβj [ai , aj ].

(9)

One can see that the right hand of this equality lies in ker# and
does not depend on D.
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We choose a local trivialization
(x1, . . . , xq, y1, . . . , yn−q, a1, . . . , ar ) as above, we trivialize E near
x0 by a local basis of sections (e1, . . . , eµ) and put

s(ε, t) =

µ∑
j=1

s j(ε, t)ej .

∇ts =

µ∑
j=1

∂s j

∂t
ej +

∑
i ,j

αi s j∇ai ej .
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∇ε∇ts =

µ∑
j=1

∂2s j

∂ε∂t
ej +

∑
i ,j

(
βi
∂s j

∂t
+
∂αi

∂ε
s j + αi ∂s

j

∂ε

)
∇ai ej

+
∑
i ,j ,k

βkαi s j∇ak∇ai ej .

∇t∇εs =

µ∑
j=1

∂2s j

∂t∂ε
ej +

∑
i ,j

(
αi ∂s

j

∂ε
+
∂βi

∂t
s j + βi

∂s j

∂t

)
∇ai ej

+
∑
i ,j ,k

αkβi s j∇ak∇ai ej .

∇t∇εs − ∇ε∇ts − R(α, β)s =
∑
i ,j

(
∂βi

∂t
− ∂αi

∂ε

)
s j∇ai ej

+
∑
i ,j ,k

αkβi s j∇[ak ,ai ]ej .

The above computation and (9) give the desired formula.
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From the expression of ∆(α, β) given by (9) and from (8), we have

∆(α, β) = 0⇔


∂αi

∂ε
− ∂βi

∂t
=

r∑
l ,k=1

αlβkC i
lk i = q + 1, . . . , r ,

αj =
∂xj
∂t

, βj =
∂xj
∂ε

j = 1, . . . , q.

(10)
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Now by using the standard results about linear differential systems
one can deduce easily the following useful proposition.

Proposition

Let p : A −→ M be a Lie algebroid. Then, for a given variation of
A-paths α and for given β0 : [0, 1] −→ A such that

#(β0)(ε) =
∂p ◦ α
∂ε

(ε, 0)

there exists an unique transverse variation β to α such that

∆(α, β) = 0 and β(ε, 0) = β0(ε) for any ε ∈ [0, 1].
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We can now define the homotopy of A-paths with fixed end-points.

Definition
Let α0 and α1 be two A-paths on a Lie algebroid p : A −→ M such
that p(α0(0)) = p(α1(0)) and p(α0(1)) = p(α1(1)).

An A-homotopy with fixed end-points from α0 to α1 is a variation
of A-paths α such that:

1 p(α(ε, 0)) = p(α(0, 0)) and p(α(ε, 1)) = p(α(0, 1)) for any
ε ∈ [0, 1], α(0, .) = α0 and α(1, .) = α1,

2 the unique transverse variation β to α satisfying ∆(α, β) = 0
and β(ε, 0) = 0 satisfies also β(ε, 1) = 0.
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The following Lemma will be useful latter.

Lemma
Let α0 : [0, 1] −→ A be an A-path and β0 : [0, 1] −→ A an
α0-section such that β0(0) = β0(1) = 0. Then there exists an
A-homotopy α with fixed end-points such that α(0, .) = α0 and
the corresponding transverse variation β satisfies β(0, .) = β0.
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Proof.

Consider the base path γ0 : [0, 1] −→ M of α0 and choose an
homotopy γ : [0, 1]× [0, 1] −→ M with fixed end points such that
γ lies in the same leaf as γ0, γ(0, .) = γ0 and ∂γ

∂ε (0, t) = #(β0(t)).
We choose also β : [0, 1]× [0, 1] −→ A such that β(0, t) = β0(t)
for any t ∈ [0, 1], β(ε, 0) = β(ε, 1) = 0 for any ε ∈ [0, 1] and
∂γ
∂ε (ε, t) = #(β(ε, t)) for any (ε, t). From (10), one can deduce
that there exists an unique variation α : [0, 1]× [0, 1] −→ A such
that the base path of α is γ, ∂γ

∂t (ε, t) = #(α(ε, t)), α(0, .) = α0

and ∆(α, β) = 0. This variation is clearly an A-homotopy with
fixed end-points and satisfies the required properties.
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A Riemannian metric on a Lie algebroid p : A −→ M is the data,
for any x ∈ M, of a scalar product 〈 , 〉x on the fiber Ax such that,
for any local sections a, b ∈ Γ(A), the function 〈a, b〉 is smooth.
the formula

2〈Dab, c〉 = #(a).〈b, c〉+ #(b).〈a, c〉 −#(c).〈a, b〉
+〈[c , a], b〉+ 〈[c , b], a〉+ 〈[a, b], c〉

defines a linear A-connection which is characterized by the two
following properties:
(i) D is metric, i.e., #(a).〈b, c〉 = 〈Dab, c〉+ 〈b,Dac〉,
(ii) D is torsion free, i.e., Dab −Dba = [a, b].
We call D the Levi-Civita A-connection associated to the
Riemannian metric 〈 , 〉.
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In a system of coordinates (x1, . . . , xn) over a trivializing
neighborhood U of M where A admits a basis of local sections
(a1, . . . , ar ) the Levi-Civita A-connection is determined by the
Christoffel’s symbols defined by Dai aj =

∑
k Γk

ijak . A direct
computation gives

Γk
ij =

1

2

r∑
l=1

n∑
u=1

gkl
(
biu∂xu(gjl) + bju∂xu(gil)− blu∂xu(gij)

)
+

1

2

r∑
l=1

r∑
u=1

gkl
(
Cu
ij gul + Cu

li guj + Cu
lj gui

)
, (11)

where the structure functions bsi ,Cu
st ∈ C∞(U) are given by

#as =
n∑

i=1

bsi∂xi (s = 1, . . . , r),

[as , at ] =
r∑

u=1

Cu
stau (s, t = 1, . . . , r),

gij = 〈ai , aj〉 and (g ij) denotes the inverse matrix of (gij).
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Remark
There are two extremal cases:

1 The Lie algebroid A is the tangent bundle TM of a manifold
and we recover the classical notion of Riemannian manifold.

2 The Lie algebroid A is a Lie algebra g considered as a Lie
algebroid over a point. In this case a Riemannian metric on g
is a scalar product 〈 , 〉 and the Levi-Civita g-connection is
the product D : g× g −→ g given by

2〈Duv ,w〉 = 〈[u, v ],w〉+ 〈[w , u], v〉+ 〈[w , v ], u〉.

Actually D is the infinitesimal data associated to the
Levi-Civita connection of the left invariant metric associated
to 〈 , 〉 on any Lie group with g as a Lie algebra.
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Let 〈 , 〉 be a Riemannian metric on a Lie algebroid p : A −→ M
with anchor #. For any leaf L of the characteristic foliation and for
any x ∈ L,

Ax = gx ⊕ g⊥x ,

where g⊥x is the orthogonal to gx with respect 〈 , 〉x . The
restriction of the anchor # to g⊥x is an isomorphism into TxL and
hence induces a scalar product on TxL

〈u, v〉L = 〈a, b〉,

where a, b ∈ g⊥x and #(a) = u and #(b) = v . Thus 〈 , 〉 induces a
Riemannian metric 〈 , 〉L on L. We call it the induced Riemannian
metric on L. On the other hand, the scalar product 〈 , 〉x induces a
scalar product on gx and we denote by D̂ the Levi-Civita
gx -connection associated with (gx , 〈 , 〉x).
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Let us precise more this situation. Fix a leaf L and consider
pL : AL −→ L. We have

AL = gL ⊕ g⊥L .

We call the elements of Γ(gL) vertical sections and the elements
of Γ(g⊥L ) horizontal sections. For any section a, we denote by av

and ah, respectively, its horizontal and vertical component. Note
that the bracket of a vertical section with every section is a vertical
section. Thus, in the Riemannian point of view, the short exact
sequence

0 −→ gL −→ AL −→ TL

is formally identical to a Riemannian submersion. So we can
introduce the O’Neill tensors.
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We denote by T and H the elements of Γ(A∗ ⊗ A∗ ⊗ A) whose
values on sections a, b are given by

Tab = (Davb
v )h + (Davb

h)v and Hab = (Dahb
v )h + (Dahb

h)v .

The following properties of T and H follow immediately from the
definition: for any a, b ∈ Γ(A),

Hahb
h =

1

2
[ah, bh]v , (12)

Davb
h = Tavb

h + (Davb
h)h, (13)

Dahb
v = (Dahb

v )v + Hahb
v , (14)

Dahb
h = Hahb

h + (Dahb
h)h. (15)

Mohamed Boucetta Riemannian Lie algebroids



Connections on Lie algebroids
Riemannian metrics on Lie algebroids

Geodesic flow of a Riemannian Lie algebroid
First and second variation formula

O’Neill’s formulas for curvature
Integrability of Riemannian Lie algebroids

Moreover, for any u, v ∈ gx ,

Duv = D̂uv + Tuv . (16)

The following proposition is an immediate consequence of (15).

Proposition

Let γ : [t0, t1] −→ L be a smooth path and let γh : [t0, t1] −→ g⊥L
be the unique A-path with the base path γ. Then γ is a geodesic
with respect to the induced Riemannian metric on L if and only if
γh is a geodesic of the Levi-Civita A-connexion.
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The following proposition gives an interpretation of the tensors T
and H.

Proposition

1 The Levi-Civita A-connection is strongly compatible with the
Lie algebroid structure if and only if T = H = 0.

2 The Levi-Civita A-connection is weakly compatible with the
Lie algebroid structure if and only if T = 0.
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Let p : A −→ M be a Lie algebroid and 〈 , 〉 a Riemannian metric
on A. The Riemannian metric defines a bundle isomorphism
between A and A∗ which transport the Lie-Poisson structure on A∗

into a Poisson structure say π〈 , 〉 in A. Let E : A −→ R be the

energy function given by E (a) = 1
2〈a, a〉 and let XE denote the

Hamiltonian vector field associated to E with respect to π〈 , 〉. The
following result is a generalization of a well-known result in
Riemannian geometry.

Theorem
The geodesics of the Levi-Civita A-connection associated to 〈 , 〉
are the integral curves of the Hamiltonian vector field XE .
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The flow of the Hamiltonian vector field XE is called the geodesic
flow of 〈 , 〉.
Remark
Let p : A −→ M be a Riemannian Lie algebroid. Then:

1 For any leaf L, the geodesic vector field XE is tangent to AL

and to gx for any x ∈ L.

2 From Proposition 2.1, one can deduce that, for any leaf L, the
geodesic vector field XE is tangent to g⊥L .

Corollary

Let p : A −→ M be Riemannian Lie algebroid. Then

1 If L is a compact leaf then the geodesic flow is complete in
restriction to AL.

2 If M is compact then the geodesic flow is complete and for
any leaf L the induced Riemannian metric 〈 , 〉L is complete.
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Sasaki Metric of a Riemannian Lie algebroid

Let p : A −→ M be a Riemannian Lie algebroid with anchor #. Fix
a leaf L, consider pL : AL −→ L and put VAL = KerdpL.
For any a ∈ AL, we consider the subspace h⊥AL of TaAL consisting
of the tangent vectors Va such that there exists an horizontal
A-path α : [0, 1] −→ g⊥L satisfying p(α(0)) = p(a) and

Va =
d

dt |t=0
τ tα(a), where τα is the parallel transport along α. We

have
TAL = VAL ⊕ h⊥AL. (17)
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Indeed, we define K : TAL −→ AL as follows. Fix a ∈ AL and
Z ∈ TaAL and choose β : [0, 1] −→ AL such that β(0) = a and
β̇(0) = Z . There exists an unique horizontal A-path
α : [0, 1] −→ g⊥L with the base path p ◦ β(t). Put

K (Z ) = (Dαβ)(0).

It is easy to check that K is well-defined, KerK = h⊥AL and, for
any Z ∈ VAL, K (Z ) = Z . Then the relation (17) follows.
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Let (x1, . . . , xl) be a system of local coordinates on an open set U
in L and (a1, . . . , ar ) is a basis of local sections (over U) of AL.
This defines a system of coordinates (x1, . . . , xl , µ1, . . . , µr ) on AL

and if Z =
∑

j bj∂xj +
∑

j Z
j∂µj then

K (Z ) =
∑
l

Z l +
∑
i ,j

αiµjΓ
l
ij

 al , (18)

where dpL(Z ) = #(
∑

i αiai ) and
∑

i αiai ∈ g⊥L .

Remark
In general, the geodesic vector field does not lies in KerK . Indeed,
one can check easily that for any a ∈ AL

K (XE (a)) = −Dav a.
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We define the Sasaki metric on AL by

gL(Za,Za) = 〈dap(Za), dap(Za)〉L + 〈K (Za),K (Za)〉.

The projection pL : AL −→ L becomes a Riemannian submersion.
We consider now the Liouville vector field −→r on AL which is the
vector field generating the flow φt(a) = eta. By direct
computation one can get

[−→r ,XE ] = XE . (19)

From this relation, one deduce that XE preserves the Riemannian
volume on AL associated to gL if and only if XE preserves the
Riemannian volume of the restriction of gL to the spheres bundle
UAL = {a ∈ AL; 〈a, a〉 = 1}. Let us compute the divergence of the
geodesic vector field with respect to gL.
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Theorem
The divergence the geodesic vector field XE with respect to the
Sasaki metric gL is given by

div(XE )(a) = Tradav + 〈ah,N〉, (20)

where adav : gp(a) −→ gp(a), b −→ [av , b] and N =
∑

i Tbibi where
(b1, . . . , bs) is any orthonormal basis of gp(a) and T is the O’Neill
tensor.
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The following proposition gives an interesting interpretation of
divXE , namely divXE is a modular cocycle.

Proposition

Let p : A −→ M be a transitive Riemannian Lie algebroid such
that both A and TM are orientable. Denote by λ ∈ Γ(∧topA) and
ν ∈ Γ(∧topT ∗M), respectively, the Riemannian volume associated
to 〈 , 〉 and the Riemannian volume associated to 〈 , 〉M then

DA(λ⊗ ν) = div(XE )(λ⊗ ν),

where DA is the canonical representation of A. Thus div(XE ) is a
modular cocycle.
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Remark

1 If A = TM then div(XE ) = 0 and one recover the classical
Liouville Theorem.

2 If A is a Lie algebra then div(XE ) = 0 if and only if A is
unimodular.

3 If A is a transitive unimodular Lie algebroid then there exists a
Riemannian metric on A such that div(XE ) = 0.
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Let p : A −→ M be a Riemannian Lie algebroid with anchor #.
For any A-path α : [0, 1] −→ A, the energy and the length of α are
given, respectively, by

E(α) =
1

2

∫ 1

0
〈α(t), α(t)〉dt and L(α) =

∫ 1

0

√
〈α(t), α(t)〉dt.

For any m, q lying in the same leaf of the characteristic foliation,
we denote by Ωmq the set of A-path α such that p(α(0)) = m and
p(α(1)) = q.
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Proposition

(First variation formulas) Let p : A −→ M be a Riemannian Lie
algebroid. Then:

1 For any variation of A-paths α : [0, 1]× [0, 1] −→ A and for
any β a transverse variation to α, one has

d

dε
E(α) = 〈β(ε, 1), α(ε, 1)〉 − 〈β(ε, 0), α(ε, 0)〉 −

∫ 1

0
〈β,Dtα〉dt

−
∫ 1

0
〈∆(α, β), α〉dt.

2 The h-critical points of E : Ωmq −→ R, namely the A-paths
α0 such that

d

dε
E(α)|ε=0 = 0

for any A-homotopy α in Ωmq starting at α0, are geodesics.

3 For any variation of A-paths α such that α0 is parameterized
with arc-length,

d

dε
E(α)|ε=0 =

d

dε
L(α)|ε=0.

4 An A-path α0 ∈ Ωmq is h-critical for L, namely

d

dε
L(α)|ε=0 = 0

for any A-homotopy in Ωmq starting at α0, if and only if there
exists a change of parameter µ such that the A-path
α̃0 = µ′α0(µ) is a geodesic.
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Proposition

(Second variation formulas) Let p : A −→ M be a Riemannian
Lie algebroid. Then the following assertions hold. For any variation
of A-paths α such that α0 is a geodesic and for any β a transverse
variation to α such that ∆(α, β) = 0, one has

d2

dε2
E(α)|ε=0 = 〈Dεβ(0, 1), α(0, 1)〉 − 〈Dεβ(0, 0), α(0, 0)〉

+

∫ 1

0
〈Dtβ0,Dtβ0〉dt +

∫ 1

0
〈β0,R(α0, β0)α0〉dt.
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Proposition

Let α be an A-homotopy of A-paths such that α0 is a geodesic and
let β be the corresponding transverse variation. One has

d2

dε2
E(α)|ε=0 =

∫ 1

0
〈Dtβ0,Dtβ0〉dt +

∫ 1

0
〈β0,R(α0, β0)α0〉dt.
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Proposition

Let α be a variation of A-paths such that α0 is a geodesic
parameterized by arc length and let β a transverse variation to α
such that ∆(α, β) = 0. One has

d2

dε2
L(α)|ε=0 = 〈Dεβ(0, 1), a(0, 1)〉 − 〈Dεβ(0, 0), α(0, 0)〉

+

∫ 1

0
〈Dtβ0,Dtβ0〉dt +

∫ 1

0
〈β0,R(α0, β0)α0〉dt

−
∫ 1

0
〈α0,Dtβ0〉dt.
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Proposition

Let α be an A-homotopy of A-paths such that α0 is a geodesic
parameterized by arc length and let β be the corresponding
transverse variation. One has

d2

dε2
L(α)|ε=0 =

∫ 1

0
〈Dtβ0,Dtβ0〉dt +

∫ 1

0
〈β0,R(α0, β0)α0〉dt

−
∫ 1

0
〈α0,Dtβ0〉dt.
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As an application of Proposition 4.1 2., we give now a description
of the geodesics of a left invariant Riemannian metric on a Lie
group using the geodesics of its Lie algebra considered as a
Riemannian Lie algebroid.
Let G be a Lie group and g = TeG its Lie algebra. For any u ∈ g,
we denote by u+ the associated left invariant vector field on G .
Suppose that G is endowed with a left invariant Riemannian metric
g and put 〈 , 〉 = ge . If we think g as a Lie algebroid, (g, 〈 , 〉) is a
Riemannian Lie algebroid and we will explain how one can
construct the geodesics of (G , g) from the geodesics of (g, 〈 , 〉).
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Choose a basis (e1, . . . , en) of g and put gij = 〈 ei , ej〉 . Recall that
the geodesics of (g, 〈 , 〉) are the integral curves of the geodesic
vector field XE given in the linear coordinates (x1, . . . , xn)
associated to (e1, . . . , en) by

XE = −
∑
s,t,j

xsxtΓ
j
st∂xj ,

where Γj
st are given by

Γj
st =

1

2

∑
l ,u

g lj (gulC
u
st + gutC

u
ls + gusC

u
lt ) .

Here (g ij) is the inverse matrix of (gij) and C k
ij are given by

[ei , ej ] =
∑

u C
u
ij eu.
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Proposition

Let h ∈ G and v ∈ ThG . Then the geodesic γ : R −→ G of (G , g)
satisfying γ(0) = h and γ̇(0) = v is the integral curve passing
through h of the time-depending family of left invariant vector
fields (α+(t))t∈R where α : R −→ g is the geodesic of (g, 〈 , 〉)
satisfying α(0) = (Lh−1)∗ (v).

Remark
If the Riemannian metric g is bi-invariant then Γk

ij = 1
2C

k
ij and

hence XE vanishes identically. We deduce from Proposition 3.5
that the geodesic of (G , g) passing through h ∈ G and with initial
velocity v ∈ ThG is the integral curve (passing through h) of the
left invariant vector field (Lh−1∗(v))+.
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Proposition

Let h ∈ G and v ∈ ThG . Then the geodesic γ : R −→ G of (G , g)
satisfying γ(0) = h and γ̇(0) = v is the integral curve passing
through h of the time-depending family of left invariant vector
fields (α+(t))t∈R where α : R −→ g is the geodesic of (g, 〈 , 〉)
satisfying α(0) = (Lh−1)∗ (v).

Remark
If the Riemannian metric g is bi-invariant then Γk

ij = 1
2C

k
ij and

hence XE vanishes identically. We deduce from Proposition 3.5
that the geodesic of (G , g) passing through h ∈ G and with initial
velocity v ∈ ThG is the integral curve (passing through h) of the
left invariant vector field (Lh−1∗(v))+.
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Let p : A −→ M be a Riemannian Lie algebroid. The different
curvatures (sectional curvature, Ricci curvature and scalar
curvature) can be defined as the classical case (when A = TM).
For any leaf L, the short exact sequence

0 −→ gL −→ AL −→ TL

is formally identical to a Riemannian submersion and hence all
formulas on curvature given by O’Neill are valid in this context.
We denote by K , K̂ and K̃ respectively, the sectional curvature of
the Riemannian metrics 〈 , 〉, the restriction of 〈 , 〉 to gL and the
induced metric on L. The following proposition is a reformulation
of Corollary 9.29 pp. 241 in [?].
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Proposition

Let α, β, s1, s2 ∈ Γ(AL) such that α, β are vertical, s1, s2 are
horizontal and |α ∧ β| = 1, |s1| = |α| = 1, |s1 ∧ s2| = 1. Then

K (α, β) = K̂ (α, β) + |Tαβ|2 − 〈 Tαα,Tββ〉 ,
K (s1, α) = 〈 (Ds1T )αα, s1〉 − |Tαs1|+ |Hs1α|2,
K (s1, s2) = K̃ (s1, s2)− 3|Hs1s2|2.
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The last formula says that the leaves carry ”more curvature” than
the Lie algebroid and by applying Mayer theorem (see for instance
[?]) we get:

Proposition

Let A −→ M be a complete Riemannian algebroid and let L be a
leaf of the characteristic foliation such that for any linearly
independent horizontal sections s1, s2 over L, K (s1, s2) ≥ k . Then
diamL ≤ π√

k
and hence L is compact.
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There is another case when one can apply Mayer theorem.
Consider a Riemannian Lie algebroid p : A −→ M such that the
O’Neill tensor T vanishes and fix a leaf L and denote by r and r̃
respectively the Ricci curvature of the Riemannian metrics 〈 , 〉
and 〈 , 〉L. The formula 9.36c pp.244 in [?] applies in our context
and gives

r(s1, s2) = r̃(#(s1),#(s2))− 2
l∑

i=1

〈 Hs1ai ,Hs2ai 〉

where (a1, . . . , al) is any orthonormal basis of g⊥L .
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By applying Mayer theorem (see for instance [?]) we get:

Proposition

Let A −→ M be a complete Riemannian algebroid such that T = 0
and let L be a leaf of the characteristic foliation such that there
exists a constant k such that the restriction of r to g⊥L satisfies

r ≥ (n − 1)k−2〈 , 〉.

Then diamL ≤ π√
k

and hence L is compact.
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A groupoid is a small category C in which all the arrows are
invertible. We shall write M for the set of objects of C, while the
set of arrows of C will be denoted by C. We shall often identify M
with the subset of units of C. The structure maps of C will be
denoted as follows: s, t : C −→ M will stand for the source map,
respectively the target map, m : C2 = {(g , h); s(g) = t(h)} −→ C
the multiplication map (m(g , h) = gh), i : C −→ C1 (i(g) = g−1)
for the inverse map and u : M −→ C (u(x) = 1x) for the unit map.
Given g ∈ C, the right multiplication by g is only defined on the
s-fiber at t(g), and induces a bijection

Rg : s−1(t(g)) −→ s−1(s(g)).
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A Lie groupoid is a groupoid C, equipped with the structure of
smooth manifold both on the C and on the M such that all the
structure maps are smooth and s and t are submersions.
The construction of a Lie algebra of a given Lie group extends to
Lie groupoids. Explicitly, if C is a Lie groupoid, the vector bundle
T sC = Ker(ds) over C of s-vertical tangent vectors pulls back
along i : M −→ C to a vector bundle A over M. This vector bundle
has the structure of a Lie algebroid. Its anchor # : A −→ TM is
induced by the differential of the target map, dt : TC −→ TM.
The sections of A over M can be identified by the space of right
invariant s-vertical vector fields which induce a Lie bracket on the
space of sections of A.
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With this construction in mind, one can see that a Riemannian
structure on A is equivalent to the data of a Riemannian metric on
any s-fiber such that, for any g ∈ C, Rg : s−1(t(g)) −→ s−1(s(g))
is an isometry. In this case, for any x ∈ M, t : s−1(x) −→ Lx is a
Riemannian submersion where the leaf Lx is endowed with the
metric defined in 3.1.
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A Lie algebroid A is called integrable if it is isomorphic to the Lie
algebroid associated to a Lie groupoid. In [?], Crainic and
Fernandes give a final solution to the problem of integrability of Lie
algebroids. They show that the obstruction to integrability can be
controlled by two computable quantities.
The following proposition is a direct application of
Crainic-Fernandes results on integrability.

Proposition

Let p : A −→ M be a Riemannian Lie algebroid such that H = 0.
Then A is integrable.
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There is a large class of Lie algebroids for which one can apply this
result. Let (M, π) be a Poisson manifold. The cotangent bundle
T ∗M carries a structure of a Lie algebroid where the anchor is the
contraction by π, π# : T ∗M −→ TM and the Lie bracket is given
by the Koszul bracket

[α, β] = Lπ#(α)β − Lπ#(β)α− dπ(α, β)

where α, β ∈ Ω1(M). Let 〈 , 〉 be a Riemannian structure in T ∗M.
In [?], the author studied the triple (M, π, 〈 , 〉) such that π is
parallel with respect the Levi-Civita T ∗M-connection D. A triple
(M, π, 〈 , 〉) satisfying Dπ = 0 is called Riemann-Poisson manifold.
The condition Dπ = 0 implies that Kerπ# is invariant by parallel
transport and hence D is strongly compatible with the Lie
algebroid structure of T ∗M. By using Proposition 2.2, we deduce
that H = 0.
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So we get the following result.

Corollary

Let (M, π, 〈 , 〉) be a Riemann-Poisson manifold. Then the Lie
algebroid structure of T ∗M associated to π is integrable.
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