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A symplectic Lie algebra is a Lie algebra g endowed with ω ∈ ∧2g∗
such that:

1 ω is a nondegenerate, i.e., (ω(u, v) = 0, ∀v ∈ g) =⇒ u = 0.

2 ω is closed, i.e., for any u, v ,w ∈ g,

ω([u, v ],w) + ω([v ,w ], u) + ω([w , u], v) = 0.

An ideal J of g is called an isotropic ideal of (g, ω) if J is an
isotropic subspace for ω, i.e., ω(u, v) = 0 for any u, v ∈ J.
In this case J ⊂ J⊥ and dim J ≤ 1

2 dim g.
If the orthogonal J⊥ is an ideal in g we call J a normal isotropic
ideal. If J is a maximal isotropic subspace J is called a Lagrangian
ideal.
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Lemma
Let J be an ideal of (g, ω). Then

1 If J is isotropic then J is abelian.

2 J⊥ is a subalgebra of g.

3 J⊥ is an ideal in g if and only if [J⊥, J] = {0}.

Proof.
It is a consequence of the relation:

ω([u, v ],w) + ω([v ,w ], u) + ω([w , u], v) = 0.

Definition
Let (g, ω) be a symplectic Lie algebra. The symplectic rank of
(g, ω) is the maximal dimension of any isotropic ideal in (g, ω).Mohamed Boucetta Symplectic Lie algebras
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Let (g, ω) be a symplectic Lie algebra and J ⊂ g an isotropic ideal.
The orthogonal J⊥ is a subalgebra of g which contains J, and
therefore ω descends to a symplectic form ω on the quotient Lie
algebra

g = J⊥/J.

Definition
The symplectic Lie algebra (g, ω) is called the symplectic reduction
of (g, ω) with respect to the isotropic ideal J.
If J⊥ is an ideal we call the reduction normal.
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The reduction of (g, ω) with respect to J is called:

1 Lagrangian reduction if J is a Lagrangian ideal. In this case,
J = J⊥ and g = {0}.

2 Central reduction if J is central. In this case, J⊥ is an ideal in
g, which contains [g, g].

3 Codimension one normal reduction if J is one-dimensional and
[J, J⊥] = {0}.

Remark
Any one dimensional ideal in (g, ω) is isotropic.
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Let (g, ω) be symplectic Lie algebra, J an ideal such that J⊥ is an
ideal, i.e., [J, J⊥] = 0.
We have the exact sequences of Lie algebras

0 −→ J⊥ −→ g −→ g/J⊥ = h −→ 0.

We define ωh : h −→ J∗, ρ : h −→ End(J∗) and • : h× h −→ h by

ωh(u)(a) = ω(u, a) and ≺ ρ(u)(α), a �= − ≺ α, [u, a] �,

ωh(∇h
uv)(a) = −ω(v , [u, a])

for u, v ∈ g, a ∈ J and α ∈ J∗.
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Proposition

1 ρ is a representation of h.

2 ωh is bijective and a 1-cocycle with respect to ρ, i.e,

ωh([u, v ]) = ρ(u)(ωh(v))− ρ(v)(ωh(u)).

3 ∇h is a torsion free and flat product:

[u, v ] = ∇h
uv −∇

h
vu and ∇h

[u,v ] = ∇h
u ◦ ∇

h
v −∇

h
v ◦ ∇

h
u.

Mohamed Boucetta Symplectic Lie algebras



Basic concepts

Isotropic ideals and symplectic rank
Symplectic reduction
Induced left symmetric product on normal quotients
Totally geodesic subalgebras
Symplectic oxidation

Proposition

1 ρ is a representation of h.

2 ωh is bijective and a 1-cocycle with respect to ρ, i.e,

ωh([u, v ]) = ρ(u)(ωh(v))− ρ(v)(ωh(u)).

3 ∇h is a torsion free and flat product:

[u, v ] = ∇h
uv −∇

h
vu and ∇h

[u,v ] = ∇h
u ◦ ∇

h
v −∇

h
v ◦ ∇

h
u.

Mohamed Boucetta Symplectic Lie algebras



Basic concepts

Isotropic ideals and symplectic rank
Symplectic reduction
Induced left symmetric product on normal quotients
Totally geodesic subalgebras
Symplectic oxidation

Proposition

1 ρ is a representation of h.

2 ωh is bijective and a 1-cocycle with respect to ρ, i.e,

ωh([u, v ]) = ρ(u)(ωh(v))− ρ(v)(ωh(u)).

3 ∇h is a torsion free and flat product:

[u, v ] = ∇h
uv −∇

h
vu and ∇h

[u,v ] = ∇h
u ◦ ∇

h
v −∇

h
v ◦ ∇

h
u.

Mohamed Boucetta Symplectic Lie algebras



Basic concepts

Isotropic ideals and symplectic rank
Symplectic reduction
Induced left symmetric product on normal quotients
Totally geodesic subalgebras
Symplectic oxidation

If we take J = g, g = h and we recover the well-known fact that g
carries a torsion free flat product given by

ω(∇uv ,w) = −ω(v , [u,w ]), u, v ,w ∈ g.

Moreover, if J is an ideal such that J⊥ is an ideal then
π : g −→ h = g/J⊥ satisfies

π(∇uv) = ∇h
π(u)π(v), u, v ∈ g.

Remark
If J is central then • = 0 and h is abelian.
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In the context when J is isotropic and normal, the flat Lie algebra
(h,∇h) is called the quotient flat Lie algebra associated to the
reduction with respect to the normal ideal J.
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Proposition

Let (g, ω) be a symplectic Lie algebra and ∇ its associated
torsion-free flat connection. Then:

1 A subalgebra L of g is a totally geodesic subalgebra with
respect to ∇ if and only if [L, L⊥] ⊂ L⊥.

2 For every ideal J of g, the orthogonal subalgebra J⊥ is totally
geodesic.

3 Every isotropic ideal J of (g, ω) is a totally geodesic
subalgebra and the induced connection ∇J on J is trivial.

4 Lagrangian subalgebras of (g, ω) are totally geodesic, in
particular, they carry a flat connection.
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Purpose

Given an appropriate set of additional data on a symplectic Lie
algebra (g, ω) the process of reduction can be reversed to construct
a symplectic Lie algebra (g, ω) which reduces to (g, ω).
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Oxidation of Lie algebras. Let g be a Lie algebra and [ , ]0 its
Lie bracket. Assume the following set of additional data is given:

1 a derivation φ ∈ Der(g),

2 a two-cocycle α ∈ Z 2(g), i.e.,∮
u,v ,w

α([u, v ]0,w) = 0,

3 a linear form λ ∈ g∗.

Define on g = 〈ξ〉 ⊕ g⊕ 〈H〉 the Lie bracket{
[u, v ] = [u, v ]0 + α(u, v)H, u, v ∈ g,

[ξ, u] = φ(u) + λ(u)H, u ∈ g.
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Proposition

(g, [ , ]) is a Lie algebra if and only if

αφ = −dλ ∈ B2(g),

where

αφ(u, v) = α(φ(u), v) +α(u, φ(v)) and dα(u, v) = −λ([u, v ]0).

Proof.
It is an immediate consequence of the Jacobi identity.

We call the Lie algebra g = gφ,α,λ the central oxidation of g (with
respect to the data φ, α, λ).
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Proposition

Let g be a nilpotent Lie algebra and assume that the derivation φ
above is nilpotent. Then the Lie algebra g = gφ,α,λ is nilpotent,
and H is contained in the center of g.
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Now let (g, ω) be a symplectic Lie algebra. We define a
non-degenerate two-form ω on the vector space g = 〈ξ〉 ⊕ g⊕ 〈H〉
by requiring that

1 ω|g = ω,

2 g⊥ = 〈ξ,H〉 and ω(ξ,H) = 1.
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Proposition

Let φ ∈ Der(g), α ∈ Z 2(g) such that αφ = −dλ for some λ ∈ g.
Then (gφ,α,λ, ω) is a symplectic Lie algebra if and only if

α(u, v) = ωφ(u, v) := ω(φ(u), v) + ω(u, φ(v)).

Proof.

0 = ω([ξ, u], v) + ω([v , ξ], u) + ω([u, v ], ξ)

= ω(φ(u), v) + ω(u, φ(v))− α(u, v).
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Proposition

Let φ ∈ Der(g), α ∈ Z 2(g) such that αφ = −dλ for some λ ∈ g.
Then (gφ,α,λ, ω) is a symplectic Lie algebra if and only if

α(u, v) = ωφ(u, v) := ω(φ(u), v) + ω(u, φ(v)).

Proof.

0 = ω([ξ, u], v) + ω([v , ξ], u) + ω([u, v ], ξ)

= ω(φ(u), v) + ω(u, φ(v))− α(u, v).
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The symplectic Lie algebra (gφ,α,λ, ω) is called symplectic oxidation
of (g, ω) with respect to the data φ and λ. Observe that the
symplectic oxidation reduces to (g, ω) with respect to the
one-dimensional central ideal J = 〈H〉.

Remark
Let g be a Lie algebra, α ∈ Z 2(g) and φ a derivation of g. Then
αφ ∈ Z 2(g).
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The symplectic Lie algebra (gφ,α,λ, ω) is called symplectic oxidation
of (g, ω) with respect to the data φ and λ. Observe that the
symplectic oxidation reduces to (g, ω) with respect to the
one-dimensional central ideal J = 〈H〉.

Remark
Let g be a Lie algebra, α ∈ Z 2(g) and φ a derivation of g. Then
αφ ∈ Z 2(g).
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Corollary

Let (g, ω) be a symplectic Lie algebra and φ ∈ Der(g) a derivation.
Then there exists a symplectic oxidation (gφ,ωφ,λ, ω) if and only if
the cohomology class

[ωφ,φ] ∈ H2(g).

vanishes.
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