Some developments and problems in symplectic topology

Mohamed Boucetta m.boucetta@uca.ac.ma

Cadi-Ayyad University Faculty of Sciences and Technology Marrakesh Morocco

Seminar Algebra, Geometry, Topology and applications

Theorem. (Darboux's theorem)

Let (M, ω) be a symplectic manifold. Then, for any $p \in M$, there exists a coordinates system $(p_i, q_i)_{i=1}^n$ such that

$$\omega = \sum_{i=1}^{n} dp_i \wedge dq_i.$$

Theorem. (Moser's argument (1965)

Let ω_t a family of symplectic forms such that

$$\frac{d}{dt}\omega_t = d\sigma_t.$$

Then there exists a family of diffeomorphisms ϕ_t such that $\phi_t^* \omega_t = \omega_0$.

Theorem. (Darboux's theorem)

Let (M, ω) be a symplectic manifold. Then, for any $p \in M$, there exists a coordinates system $(p_i, q_i)_{i=1}^n$ such that

$$\omega = \sum_{i=1}^{n} dp_i \wedge dq_i.$$

Theorem. (Moser's argument (1965))

Let ω_t a family of symplectic forms such that

$$\frac{d}{dt}\omega_t = d\sigma_t.$$

Then there exists a family of diffeomorphisms ϕ_t such that $\phi_t^* \omega_t = \omega_0$.

Theorem. (Darboux's theorem)

Let (M, ω) be a symplectic manifold. Then, for any $p \in M$, there exists a coordinates system $(p_i, q_i)_{i=1}^n$ such that

$$\omega = \sum_{i=1}^{n} dp_i \wedge dq_i.$$

Theorem. (Moser's argument (1965))

Let ω_t a family of symplectic forms such that

$$\frac{d}{dt}\omega_t = d\sigma_t.$$

Then there exists a family of diffeomorphisms ϕ_t such that $\phi_t^* \omega_t = \omega_0$.

Corollary.

There is no local invariant in symplectic geometry and the group of symplectomorphisms $\text{Symp}(M, \omega)$ has an infinite dimension.

Purpose.

The subject of symplectic topology is the global structure of a symplectic manifold and the behavior of symplectomorphisms.

- Which manifold support a symplectic structure? What symplectic invariants are there to distinguish one from another?
- Must a symplectomorphism always have a lot of fixed points?
- Are there any special distinguishing features of Hamiltonian flows? For example, must they always have a periodic orbit?
- Is there a geometric way to understand the fact that a symplectic structure makes 2-dimensional measurements?

6

• Are there special symplectic connections on a symplectic manifold?

- Which manifold support a symplectic structure? What symplectic invariants are there to distinguish one from another?
- Must a symplectomorphism always have a lot of fixed points?
- Are there any special distinguishing features of Hamiltonian flows? For example, must they always have a periodic orbit?
- Is there a geometric way to understand the fact that a symplectic structure makes 2-dimensional measurements?
- Are there special symplectic connections on a symplectic manifold?

- Which manifold support a symplectic structure? What symplectic invariants are there to distinguish one from another?
- 2 Must a symplectomorphism always have a lot of fixed points?
- Are there any special distinguishing features of Hamiltonian flows? For example, must they always have a periodic orbit?
- Is there a geometric way to understand the fact that a symplectic structure makes 2-dimensional measurements?

8

• Are there special symplectic connections on a symplectic manifold?

- Which manifold support a symplectic structure? What symplectic invariants are there to distinguish one from another?
- 2 Must a symplectomorphism always have a lot of fixed points?
- Are there any special distinguishing features of Hamiltonian flows? For example, must they always have a periodic orbit?
- Is there a geometric way to understand the fact that a symplectic structure makes 2-dimensional measurements?

9

• Are there special symplectic connections on a symplectic manifold?

- Which manifold support a symplectic structure? What symplectic invariants are there to distinguish one from another?
- 2 Must a symplectomorphism always have a lot of fixed points?
- Are there any special distinguishing features of Hamiltonian flows? For example, must they always have a periodic orbit?
- Is there a geometric way to understand the fact that a symplectic structure makes 2-dimensional measurements?
- Are there special symplectic connections on a symplectic manifold?

Which manifold support a symplectic structure? What symplectic invariants are there to distinguish one from another?

Fact.

Gromov (1985) studied the existence of symplectic structures on open manifolds and built an invariant of compact symplectic manifolds using J-holomorphic curves.

Fact.

Taubes (1997) computed the Seiberg-Witten invariant for 4-dimensional symplectic manifolds and showed that it is equal to Gromov-invariant. Which manifold support a symplectic structure? What symplectic invariants are there to distinguish one from another?

Fact.

Gromov (1985) studied the existence of symplectic structures on open manifolds and built an invariant of compact symplectic manifolds using J-holomorphic curves.

Fact.

Taubes (1997) computed the Seiberg-Witten invariant for 4-dimensional symplectic manifolds and showed that it is equal to Gromov-invariant. Which manifold support a symplectic structure? What symplectic invariants are there to distinguish one from another?

Fact.

Gromov (1985) studied the existence of symplectic structures on open manifolds and built an invariant of compact symplectic manifolds using J-holomorphic curves.

Fact.

Taubes (1997) computed the Seiberg-Witten invariant for 4-dimensional symplectic manifolds and showed that it is equal to Gromov-invariant.

Fact.

There are many sophisticated topological ways for building symplectic manifolds.

Fact.

The problem of determining which compact manifold has a symplectic structure is widely open.

4

Fact.

There are many sophisticated topological ways for building symplectic manifolds.

Fact.

The problem of determining which compact manifold has a symplectic structure is widely open.

Must a symplectomorphism always have a lot of fixed points?

Theorem. (Poincaré's last geometric theorem)

Every area-preserving homeomorphism of the annulus

 $A = \{(u, v) \in \mathbb{R}^2 : a \le u^2 + v^2 \le b\}$

which preserves the two boundary components and twists them in opposite directions must have at least two fixed points.

This result was proved by Birkhoff in 1925.

Must a symplectomorphism always have a lot of fixed points?

Theorem. (Poincaré's last geometric theorem)

Every area-preserving homeomorphism of the annulus

$$A = \{(u, v) \in \mathbb{R}^2 : a \le u^2 + v^2 \le b\}$$

which preserves the two boundary components and twists them in opposite directions must have at least two fixed points.

This result was proved by Birkhoff in 1925.

Conjecture. (Arnold's conjecture (1965))

If ϕ is a 1-time of a time dependent Hamiltonian flow on a compact symplectic manifold M, then ϕ has at least $\operatorname{Crit}(M)$ distinct fixed points.

Theorem. (Conley-Zehnder (1983))

The Arnold's conjecture is true for the standard torus.

By using Floer homology:

Theorem. (Hofer-Floer (1990))

The Arnold's conjecture is true for many classes of symplectic manifolds.

Conjecture. (Arnold's conjecture (1965))

If ϕ is a 1-time of a time dependent Hamiltonian flow on a compact symplectic manifold M, then ϕ has at least $\operatorname{Crit}(M)$ distinct fixed points.

Theorem. (Conley-Zehnder (1983))

The Arnold's conjecture is true for the standard torus.

By using Floer homology:

Theorem. (Hofer-Floer (1990))

The Arnold's conjecture is true for many classes of symplectic manifolds.

Conjecture. (Arnold's conjecture (1965))

If ϕ is a 1-time of a time dependent Hamiltonian flow on a compact symplectic manifold M, then ϕ has at least $\operatorname{Crit}(M)$ distinct fixed points.

Theorem. (Conley-Zehnder (1983))

The Arnold's conjecture is true for the standard torus.

By using Floer homology:

Theorem. (Hofer-Floer (1990))

The Arnold's conjecture is true for many classes of symplectic manifolds.

Conjecture. (Weinstein 1979)

Every hypersurface of contact type in \mathbb{R}^{2n} has a closed characteristic.

Theorem. (Viterbo 1987)

Conjecture. (Weinstein 1979)

Every hypersurface of contact type in \mathbb{R}^{2n} has a closed characteristic.

Theorem. (Viterbo 1987)

Conjecture. (Weinstein 1979)

Every hypersurface of contact type in \mathbb{R}^{2n} has a closed characteristic.

Theorem. (Viterbo 1987)

Conjecture. (Weinstein 1979)

Every hypersurface of contact type in \mathbb{R}^{2n} has a closed characteristic.

Theorem. (Viterbo 1987)

Is there a geometric way to understand the fact that a symplectic structure makes 2-dimensional measurements?

Theorem. (Nonsqueezing theorem (Gromov)) If there is a symplectomorphism $\phi: B^{2n}(r) \longrightarrow Z^{2n}(R) = B^2(R) \times \mathbb{R}^{2n-2}$ then $r \leq R$. $B^{2n}(r) = \{u \in \mathbb{R}^{2n} : ||u|| \leq r\}.$

Is there a geometric way to understand the fact that a symplectic structure makes 2-dimensional measurements?

Theorem. (Nonsqueezing theorem (Gromov)) If there is a symplectomorphism

$$\phi: B^{2n}(r) \longrightarrow Z^{2n}(R) = B^2(R) \times \mathbb{R}^{2n-2}$$

then $r \leq R$. $B^{2n}(r) = \{ u \in \mathbb{R}^{2n} : ||u|| \leq r \}.$

A symplectic capacity is a functor \mathfrak{c} which assigns to every symplectic manifold (M, ω) a nonnegative (possibly infinite) number $\mathfrak{c}(M, \omega)$ and satisfies the following conditions.

A symplectic capacity is a functor \mathfrak{c} which assigns to every symplectic manifold (M, ω) a nonnegative (possibly infinite) number $\mathfrak{c}(M, \omega)$ and satisfies the following conditions.

(Monotonicity) If there is a symplectic embedding
 (M₁, ω₁) ↔ (M₂, ω₂) and dim M₁ = dim M₂ then
 c(M₁, ω₁) ≤ c(M₂, ω₂).

A symplectic capacity is a functor \mathfrak{c} which assigns to every symplectic manifold (M, ω) a nonnegative (possibly infinite) number $\mathfrak{c}(M, \omega)$ and satisfies the following conditions.

- (Monotonicity) If there is a symplectic embedding
 (M₁, ω₁) ↔ (M₂, ω₂) and dim M₁ = dim M₂ then
 c(M₁, ω₁) ≤ c(M₂, ω₂).
- (Conformality) $\mathfrak{c}(M, \lambda \omega) = |\lambda| \mathfrak{c}(M, \omega)$.

A symplectic capacity is a functor \mathfrak{c} which assigns to every symplectic manifold (M, ω) a nonnegative (possibly infinite) number $\mathfrak{c}(M, \omega)$ and satisfies the following conditions.

- (Monotonicity) If there is a symplectic embedding
 (M₁, ω₁) ↔ (M₂, ω₂) and dim M₁ = dim M₂ then
 c(M₁, ω₁) ≤ c(M₂, ω₂).
- (Conformality) $\mathfrak{c}(M, \lambda \omega) = |\lambda| \mathfrak{c}(M, \omega)$.
- (Non triviality) c(B²ⁿ(1), ω₀) > 0 and c(Z²ⁿ(1), ω₀) < ∞.

Proposition.

The existence of a symplectic capacity \mathfrak{c} satisfying

$$\mathbf{c}(B^{2n}(1),\omega_0) = \mathbf{c}(Z^{2n}(1),\omega_0) = \pi$$
(1)

is equivalent to Gromov's nonsqueezing theorem.

Theorem. (Hofer-Zehnder (1990)) There exists a capacity c_{HZ} satisfying

$$\mathfrak{c}_{HZ}(B^{2n}(r),\omega_0) = \mathfrak{c}_{HZ}(Z^{2n}(r),\omega_0) = \pi r^2$$

for every r > 0.

Fact.

There are many capacities.

Proposition.

The existence of a symplectic capacity \mathfrak{c} satisfying

$$\mathbf{c}(B^{2n}(1),\omega_0) = \mathbf{c}(Z^{2n}(1),\omega_0) = \pi$$
(1)

is equivalent to Gromov's nonsqueezing theorem.

Theorem. (Hofer-Zehnder (1990)) There exists a capacity c_{HZ} satisfying

$$\mathfrak{c}_{HZ}(B^{2n}(r),\omega_0) = \mathfrak{c}_{HZ}(Z^{2n}(r),\omega_0) = \pi r^2$$

for every r > 0.

Fact.

There are many capacities.

Proposition.

The existence of a symplectic capacity \mathfrak{c} satisfying

$$\mathbf{c}(B^{2n}(1),\omega_0) = \mathbf{c}(Z^{2n}(1),\omega_0) = \pi$$
(1)

is equivalent to Gromov's nonsqueezing theorem.

Theorem. (Hofer-Zehnder (1990)) There exists a capacity c_{HZ} satisfying

$$\mathfrak{c}_{HZ}(B^{2n}(r),\omega_0) = \mathfrak{c}_{HZ}(Z^{2n}(r),\omega_0) = \pi r^2$$

for every r > 0.

Fact.

There are many capacities.

The birth of symplectic topology

Theorem. (Rigidity (Eliasberg-Gromov))

The group of symplectomorphisms of a symplectic manifold (M, ω) is C^0 -closed in the group of all diffeomorphisms of M.

Fact.

There is a notion of topological symplectic manifold. **Question:** Does S^4 admits a structure of topological symplectic manifold.

The birth of symplectic topology

Theorem. (Rigidity (Eliasberg-Gromov))

The group of symplectomorphisms of a symplectic manifold (M, ω) is C^0 -closed in the group of all diffeomorphisms of M.

Fact.

There is a notion of topological symplectic manifold. Question: Does S^4 admits a structure of topological symplectic manifold.

The birth of symplectic topology

Theorem. (Rigidity (Eliasberg-Gromov))

The group of symplectomorphisms of a symplectic manifold (M, ω) is C^0 -closed in the group of all diffeomorphisms of M.

Fact.

There is a notion of topological symplectic manifold. **Question:** Does S^4 admits a structure of topological symplectic manifold.

Fact.

Unlike the pseudo-Riemannian case any symplectic structure have an infinity of symplectic connections.

Fact.

Symplectic connections have been used in the quantification by deformation in the sense of Fedosov.

Fact.

Fact.

Unlike the pseudo-Riemannian case any symplectic structure have an infinity of symplectic connections.

Fact.

Symplectic connections have been used in the quantification by deformation in the sense of Fedosov.

Fact.

Fact.

Unlike the pseudo-Riemannian case any symplectic structure have an infinity of symplectic connections.

Fact.

Symplectic connections have been used in the quantification by deformation in the sense of Fedosov.

Fact.

Fact.

Unlike the pseudo-Riemannian case any symplectic structure have an infinity of symplectic connections.

Fact.

Symplectic connections have been used in the quantification by deformation in the sense of Fedosov.

Fact.