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Symmetric cones
Symmetric cones

Let V be a finite dimensional real Euclidean space with the inner
product (- | -). A convex cone Q — V (containing 0) is pointed or
proper if € contains no affine line.

If Q is closed, this means Q n (—) = {0}.

Define the dual cone by

Q* ={xe V|(x|ly) =0 forall yeQ}.

Then Q* is a closed convex cone, and has a non-trivial interior Q*°
if and only if Q is pointed.
The automorphism group G(2) of an open convex cone Q < V is
defined by

G(Q) ={geGL(V)|gQcQ}.

It is a closed subgroup of GL(V) and hence a Lie group. The open
cone Q ¢ V is said to be symmetric if it is homogeneous (G(Q2)
acts transitively on €2) and self dual (2* = Q).
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Symmetric cones  The cone of symmetric positive definite matrices

Example 1

Consider V' = Sym(n,R) with the inner product (A|B) = Tr(AB).
Then the set Q = Q,(R) of positive definite symmetric matrices is
a convex cone in V.

Let us prove that Q2 is a symmetric cone.
The group GL(n,R) acts on Q by

p(g)x = gxg"'

and this action is transitive (if x € Q, then x = aa' where

a € GL(n,R), thus x = aa’ = p(a)l,.

Let x € Q*, then for any non zero vector £ e R", y := £€T € Q. By
definition of Q* we have

(X, rn = (x[€€7) = (x]y) > 0
and hence x € Q.
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Symmetric cones  The cone of symmetric positive definite matrices

Conversely, any element x € Q, can be written as

k
x=) &8¢
j=1

where the ; are independent vectors in R"”. Therefore, if y € Q,

then
K

(vx) = Z (vI€&]) = X (v, &) > 0.

Thus x € Q* and Q = Q*.

=
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Symmetric cones  The Lorentz cone

Example 2

Let Q = A, to be the Lorentz cone in the Euclidean space V = R”",
Q={X€R"|X12—X22—~--—X3>07X1>0}.
Let [,] be the following bilinear form on R”
[x,¥] = x1y1 — Xoy2 — -+ — XnYn = X' Jy

where x, y are written as n x 1 matrices and

-1
Then
Q={xeR"|[x,x] >0,x3 >0}.

K. Koufany Geometry of symmetric cones 6



Symmetric cones  The Lorentz cone

To prove that © is homogeneous we consider the group

SOo(1, n— 1) (= the identity component of the group of n x n real
matrices g such that [gx, gy] = [x, y] for all x, y, or, equivalently,
such that g " Jg = J).

Each element of the group SOg(1, n — 1) maps Q onto itself, and
so does G =R, x SOq(1,n — 1), the direct product of

SOo(1,n — 1) with the group of positive dilations.

The matrices

10 .
g”:(O u)’ with v e SO(n—1)

are special elements of SOg(1,n — 1), and so are the hyperbolic

rotations
cosht O sinh t

hy = 0 l—> 0
sinh t 0 cosht

To show that G acts transitively on Q we show that, for any x in Q,
there exists an element in G which maps e; = (1,0,...,0)T to x.
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Symmetric cones  The Lorentz cone

First, write x = Ay, with A = [x,x]% >0, [y,y] = 1. Then there
exists a rotation u € SO(n — 1) such that

2y syn) =u-(0,...,0,r)"

with r = 4/y2 + - + y2. Since y2 — r?> = 1 there exists t > 0

such that
y1 =cosht, r=sinht.

Therefore,
X = Agyh: - e1.

Now we show that Q is self-dual. To see that Q < Q*, let y € Q.
Then, using Schwarz's inequality, we have ,

(X|)/)>X1)/1—\/X22+"'+X,2,\/y22+"'+)’3>0,
for all x € Q\{0}. Hence y belongs to Q*.
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Symmetric cones  The Lorentz cone

To prove the reverse inclusion, let y be in Q*. One has y; > 0. If
yo =0,---,y, =0, then y belongs to Q. Otherwise, define x by

XL=A/Y2+ . Y2 Xo=—Yo,...,Xn = —VYn.

Then x belongs to Q\{0}, so (x | y) >0, or

YW+ +yvi— (i) >0

which means that y belongs to €.
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Symmetric cones 2 as a Riemmanian symmetric space

(2 as a Riemmanian symmetric space

Theorem

Let Q be a symmetric cone in a Euclidean vector space V. Then Q
is a Riemannian symmetric space.

Proof. For x e Q and u,v € V, we let
Gx(u,v) = D,D, log v(x)

where ¢ is the characteristic function of Q,

o) = | e tdy
Q

dy being the Euclidean measure on V.
We have, for u # 0,
2

G (u, u) = g2

log o(x + tu)
t=0

% (soDﬁw — (Du¢)2) :
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Symmetric cones 2 as a Riemmanian symmetric space

and
G et == | ety
d—2 o(x + tu) = f ef(Xb’)(u | y)2dy.
dt?|,_, Q
Put ) .
fly) =e 200 gy) =e 20 (u]y),
then

Gy(u, u) = ﬁ (L f(y)?dy L* g(y)*dy - (L f(y)g(y)dy)z)

which is > 0 by the Schwarz inequality, since f and g are not
proportional.

Therefore, the bilinear form G, defines a Riemannian metric on Q.
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Every element g in G(Q) is an isometry; in fact

Ggx(gu, gv) = (DguDgy(log ¢)) (gx) = DyDy(log o g)(x)
= DyD,(log p)(x) = Gx(u, v)

where the third equality follows form

p(gx) = | Det g|tp(x).

Thus the metric, is invariant under G(2).
Further, for x € Q, let x* defined by

* = —Vlog p(x)

Then one can prove (see Faraut-Koranyi, pages 14-17) that the
map x — x™ is an involutive isometry on Q with a unique fixed
point, denoted by e. Now, if y € Q, then there exists g € G(Q)
such that y = ge and the map x — g(g~1x)* is an involutive
isometry of Q with the unique fixed point y.
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Symmetric cones 2 as a Riemmanian symmetric space

Let G be the identity component of G(2) and K = G n O(V).
Then G acts transitively on ©Q and K is a compact subgroup of G.
Furthermore (see Faraut-Koranyi, page 18) G. = K, where G is
stabilizer subgroup of e.

The map, 0 : g +— (g 1)" is an involution of G (Cartan involution)
and K = G% is a maximal compact subgroup of G. We conclude
that, as a symmetric space,

Q=G/K.
For Q = Qm(R), we have
Qm(R) = GL(m,R)/SO(m).
For Q = A,,, we have

An(R) = SOp(1,n—1)/SO(n—1).
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Euclidean Jordan algebras
Euclidean Jordan algebras

Let V be a finite dimensional Euclidean vector space equipped with
a scalar product (- | -).
V is a Euclidean Jordan algebra if,
Xy = yX,

X2 (xy) = x(x%y),

(xy | 2) = (x| y2).
For x € V, denote by L(x) the linear operator defined by

y = Lx)y = xy.
The quadratic representation P is defined by

P(x) = 2L(x)? — L(x?).

An element x € V is said to be invertible if there exists an element
y € R[x] such that xy = e. Since R[x] is associative, y is unique.
It is called the inverse of x and is denoted by y = x 1.
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Euclidean Jordan algebras

The leading example is V = Sym(n, R) with
— the product

1
xoy = xy+yx),
— the inner product
(x|y) =Tr(xoy) = Tr(xy),
— the quadratic representation

P(x)y = xyx.
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Euclidean Jordan algebras

Proposition

(1) An element x € V is invertible if and only if P(x) is invertible,
and in this case, P(x~1) = P(x)7L.
(2) The differential of the map x — x~ 1 is —P(x)71, i.e.
Dy(x 1) =D(xYu=-Px)tu
(3) If x and y are invertible, then P(x)y is invertible and
(P()y) =P (1) y

(4) For any elements x and y of V,

P(P(y)x) = P(y)P(x)P(y) “the fundamental relation”

P(x 1 —y™ = P(x)"tP(x — y)P(y)! “Hua's identity”
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Euclidean Jordan algebras
Jordan frames

An element c € V is said to be an idempotent if ¢> = ¢. Using the
identity L (x?y) — L (x?) L(y) = 2(L(xy) — L(x)L(y))L(x) with
x =y, we obtain

L (X3) =3L (x2) L(x) —2L(x)3,

and for x = ¢ :
2L(c)® = 3L(c)? + L(c) = 0.
Therefore, an eigenvalue A of L(c) is a solution of
203 —3\2 + A =0,

Then the only possible eigenvalues of L(c) are 1, £, 0 and V is the
direct sum of the corresponding eigenspaces V(c,1), V(c, 3) and
V(c,0). The decomposition

V= V(e D)@ V(e )& V(c0),

is called the Peirce decomposition of V with respect to c.
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Euclidean Jordan algebras

It is an orthogonal decomposition with respect to any associative
scalar product.
Two idempotents ¢ and d are said to be orthogonal if (c|d) =0,
which is equivalent to cd = 0. An idempotent is said to be
primitive if it is not the sum of two non-zero idempotents. An
idempotent c is primitive if and only if dim V(¢,1) = 1.
We say that (¢j)1<j<m is a Jordan frame if each ¢ is a primitive
idempotent and
cici=0, i ]
cag+o+...+cy=c¢€

All the Jordan frames have the same number of elements, denote
by r and called the rank of the Jordan algebra V.
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Euclidean Jordan algebras

The group K acts transitively on the set of primitive idempotents,
and also on the set of Jordan frames. Therefore if we fix a Jordan

frame (¢j)/_;, then every element x € V' can be written in the form
r
x = k(3 \g)
j=1
where k € K and Ag,..., A, real numbers. The scalars (\j)i1<j<r

are unique and called the spectral values of x.
We define the determinant and the trace of the Jordan algebra by

det(x) = [ [N tr(x) = D> A
j=1 j=1

The trace is a linear form of V' and the determinant is a
homogeneous polynomial on V of degree r. Both are invariant
under Aut(V).
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Euclidean Jordan algebras

Proposition

Let V' be a simple Euclidean Jordan algebra on dimension n and
rank r.
(i) We have
TrL(x) = gtr(x),
Det P(x) = (detx) ",
det(P(y)x) = (det y)? det x.

(i) Furthermore, if the scalar product on V is defined by

(x| y) = tr(xy)

then

Vlogdet x = x 1.

(if) The set of invertible elements in V is given by

V* = {x e V| det(x) £ 0}.
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Euclidean Jordan algebras

Proposition

In a simple Euclidean Jordan algebra V' every associative scalar
product is a scalar multiple of tr(xy).

Hence, we assume from now that the scalar product of V is given
by
(x]y) = tr(xy).
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Euclidean Jordan algebras V = Sym(r,R)

The example : V = Sym(r,R)

In this case the determinant and the trace are the usual matrix
determinant and trace.
Put r = p+ g. An idempotent is an orthogonal projection

(I, 0
c_(o O).

Ve, 1) = {(8 8) | a : px p symmetric matrix},

1 0 d .
V(C’i)_{(dT 0) | d : pxqmatrlx},

V(c,0) = {(8 2) | b : g x psymmetric matrix}.

Then
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Euclidean Jordan algebras  Spin factor

The example : Spin factor

Let B be a symmetric bilinear form on R"~1. Then
V =RV = R x R" 1 is a Euclidean Jordan algebra of

dimension n and rank 2 :
The product is

A u)(p,v) = (A + B(u, v), Av + pu).
We have
tr(\, u) = 2)\, det(\, u) = X2 — B(u, u).
An element is invertible if and only if det(\, u) = A\ — B(u, u) % 0.

In this case )

- det(\, u)

The associative inner product is

(A ) [ (s v)) = 2(Ap + B(u, v)).

(A, u)*1 (A, —u).
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Euclidean Jordan algebras  Spin factor

The non-zero idempotents are

e—(1,0), c— (%W)

with B(w,w) = %. For such an idempotent c :
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The cone of squares in V'

The cone of squares in V

Lat V be a Euclidean Jordan algebra with unit element e. Let C be
the set of all squares

C = {X2 | x € V}.
The set C is a cone and therefore its closed dual
C*={yeV|¥xeV,(y|x* =0}

is a closed convex cone.

Since
(v [ x%) = (yx | x) = (L(y)x | x)
we have
C* ={y | L(y) is positive semi-definite }.
Let

Q= C°=Int(C).
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The cone of squares in V'

Theorem

Q is a symmetric cone. Furthermore, Q) is the connected
component of e in V>, and also is the set of elements x € V for
which L(x) is positive definite.

Proof. (1) To prove that Q is self-dual, we show that C* = C.
If x = Zjlle Aj¢j is the spectral decomposition of an element

x € V, then x? = Zjlle A?¢ and

L(x?) = i NL(g).
j=1

Since the operators L (c;) are positive, L (x?) is positive and
C c C*
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The cone of squares in V'

Conversely, let x € C*. Since the idempotents ¢; are orthogonal, we

have )
i=ortla)
J
1 2
Tigr 1)
J
1
= W (xcj | ¢)
J
1
= 1aF (Lix)g | ) = 0.
J

Therefore, x = y? with

k
y =2 Vg
=1

So we have shown that C* = C, and finally that C* = C.
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(2) Let us consider the set
B ={ye V| L(y) is positive definite }

then B is open, therefore B is contained in €. For a non-zero
element y in V let us consider the linear form on V

0(x) = (x| y?) = (Lly)x | y).

Then ¢ is not identically zero and for x in C we have ¢(x) > 0, and
for x in ©Q we have £(x) > 0 since Q is open, which means that Q is
contained in B.

(3) If x = Zj;l Ajcj € V, then it is clear that

k
_ A~
epr—ZelcjeQ
Jj=1

Thus exp(V) = Q. The converse is also clear. Hence we can also
define Q as
Q=expV ={expx | xe V}.
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The cone of squares in V'

(4) The set V* = {x e V| detx # 0} is open. Let x€ Q n V*.
Since x belongs to Q the eigenvalues of x are non-negative, and
since x belongs to V* they are non-zero, therefore x belongs to €,
and Q n VX = Q. This means that Q is closed in V*, hence Q is
the connected component of V* containing the identity element e.
(5) It remains to show that Q is homogeneous. If x is invertible,
then P(x) is invertible, and P(x)Q is a connected open subset of
V> (if x and y are invertible then P(x)y is invertible). Since

x? = P(x)e belongs to Q, we have P(x)Q < Q. On the other hand,
P(x)™1Q = P (x71) Q < Q. Hence, P(x) belongs to G(f) and

Q={x*|xeV*}={P(x)e|xe V*} c G(Qe=Q
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The cone of squares in V'

To summary, we have

Q=expV
=int{x?|xe V}
= the identity component of V*
={x*|xe V*}
= {P(x)e | xe V*}
= {x € V| L(x) positive definite }
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The cone of squares in V' The structure group

The structure group of V

The structure group of V is the subgroup of GL(V) given by
Str(V) = {g € GL(V) | P(gx) = gP(x)g", forany xe V}.

It is known that if x € V*, then P(x) € Str(V) and P(x)" = P(x).
Furthermore, the automorphism group Aut(V) is a subgroup of
Str(V) and an element g in Str(V) belongs to Aut(V) if and only
if ge = e. In particular, g7 = g7 for g € Aut(V).

Proposition

If V is a simple Euclidean Jordan algebra, then
Str(V) = {£/}G(Q).

In particular, if g € Str(V), then g(2) = Q or g(2) = —Q.
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The cone of squares in V' The structure group

Example

If V =Sym(m,R), then Q = Q,,(R) symmetric positive definite
matrices.
In this case, G(Q) = GL(m,R)/{+/n} and Str(V) = GL(m,R).
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The Jordan algebra associated with a symmetric cone

The Jordan algebra associated with a symmetric cone

Let Q be a symmetric cone in a Euclidean space V.

As above, we denote by G(2) the automorphism group of Q, G its
identity component and K = G n O(V).

We write g for the Lie algebra of G and ¢ for the Lie algebra of K.
We choose a point e in Q whose stabilizer is K.

An element X € g belongs to ¢ if and only if X - e = 0.

Since G-e =%, we have g-e = V.

Therefore, the mapping from p into V defined by X — X - eis a
bijection.

We denote by L its inverse: for x in V, L(x) is the unique element
in p such that L(x)e = x.
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The Jordan algebra associated with a symmetric cone

Theorem (Vinberg-Koecher)

Let Q be a symmetric cone in a Euclidean vector space V. Defining
on V the product

xy = L(x)y,
V is a Euclidean Jordan algebra with identity element e and
Q= {X2 | xe V}.

Proof (Folowing Satake proof).
It is clear that the product we have defined is bilinear. It is also
commutative, since

xy —yx = [L(x),L(y)] - e =0

by [p,p]c tand £-e=0.
The inner product of V is an associative bilinear form, since each
L(x) belongs to p and is therefore symmetric.
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The Jordan algebra associated with a symmetric cone

In order to prove (J2 : Jordan identity), we define the associator of
three elements x, y,z in V by

[x,z,y] = x(zy) — (x2)y = [L(x), L(y)]z.

For any x,y € V we must show that x?(xy) = x(x%y), i.e.
[xz,y,x] =0.
Using [L(x), L(y)] € [p,p] < &, we have

[[L(x), L(y)], L(z)]e = [L(x), L(y)](ze)
= [X,Z,y] = L([Xa ZaY])e'

Since X — X - e is bijective from p onto V/, it follows that

[[L(x), L(y)]; L(2)] = L([x, 2, ¥])-
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Applying this identity to z, we immediately find
2
[x,2%,y] = 2[x,z,y]z. (1)

Now, for any x,y,z in V, the associativity of the scalar product
gives

(bPyxl 12) = (P00 | 2) = (x (%) | 2)
= (2| )z —y(x2)) = (< | [2,x,y]) -

By a similar computation we also have

([ yox] 1 2) = (x |y (X*2) = (x*y) 2) = (x| [y, 2])
and using (1) we see that this is further equal to

20x | [y, x, 2x) =2 (% | [y, x,2]) = =2 (<@ | [2,%,]) -
Comparing with (2) we see that
(% y.x]z) =0

This holds for every z in V, therefore [Xz,y,x] = 0, that is,

()

x%(xy) = x (xzy) .
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The Jordan algebra associated with a symmetric cone

Let Q; be the symmetric cone associated with the Jordan algebra
V' (the interior of the set of squares). We have

Q) =expV ={expx | xe V}
={expL(x)-e|xe V}
={exp X -e| X €p}
cG-e=Q

Since Q and Q; are self-dual, then Q; = Q. o

If V is a Euclidean Jordan algebra, then the cone Q = exp V is
called the associated symmetric cone.
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The Jordan algebra associated with a symmetric cone

Let V be a Euclidean Jordan algebra and Q the associated
symmetric cone.

Theorem
For x in Q and u, v in V we set

YU, v) = (P(x)_lu | V)'

The family of bilinear forms ~, defines a G-invariant Riemannian
metric on Q. The map x — x~1 is an involutive isometry with
unique fixed point e.

Proof. If x belongs to Q then P(x) is positive definite. The
invariance of the metric:

(P(gx)'gu|gv) = (P(x)tulv), VgeG(Q)

follows from the fact P(gx) = gP(x)g ', since g € G(Q) < Str(V).
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The Jordan algebra associated with a symmetric cone

Let us now consider the map x — x~1. We know that its
differential is —P(x)~1. To show that it is an isometry we have to
prove that

(P (x1) 7 Pe) | P(x)‘lv) — (P(x) " u ]| v).

But this follows from the fact that P(x~!) = P(x)~1. o
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The Jordan algebra associated with a symmetric cone

For any symmetric cone Q we constructed above a G-invariant
Riemannian metric G, and an isometric involution x — x*.
Further, the G-invariant metric v, and the isometric involution
x +— x~ 1, provide another, independent, proof that Q is a
symmetric Riemannian space.

The metrics G, and 7, are not exactly the same; a G-invariant
metric on € is not unique unless V is simple.

In this case, we have

n
GX = —Vx;
r
and N
X x* = —x71
r
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The Jordan algebra associated with a symmetric cone
Theorem

(1) We have
Aut(\/)o =K,

Der(V) = ¢,

where Aut(V)o denotes the identity component of Aut(V).
(2) Every g in G can be uniquely written as

g =P(x)k, withxeQ, ke K

G = P(Q)K ‘“polar decomposition”

(3) Let g be the Lie algebra of G ( or G(2) ) and
p={L(x) | xe V} . Then we have

g=tdp.

( Cartan decomposition of g w.r.t. X — 6(X) = —XT ).
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Peirce decomposition and classification

Classification

Let V be a simple Euclidean Jordan algebra of dimension n and
rank r. Recall that if c € V is idempotent (c? = c), then the only
possible eigenvalues of L(c) are 1,3, and 0, and V is the direct
sum of the corresponding subspaces V(c,1), V (c, %) and V(c,0).

V=Vi,D®V (%) ® V (c1,0)

(Peirce decomposition of V with respect to the idempotent c¢).
This decomposition is orthogonal with respect to any associative
symmetric bilinear form, since the transformations L(x) are
symmetric with respect to any such form.

K. Koufany Geometry of symmetric cones 42



Peirce decomposition and classification

Proposition

The subspaces V/(c,1) and V/(c,0) are Jordan subalgebras of V.
They are orthogonal in the sense that

V(c,1) - V(c,0) = {0}

Furthermore,

(V(e,1) + V(c,0)) - V (c, %) cv (c, 1) ,

2
v (c, %) v (q, %) € V(e,1) + V(c,0).
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Peirce decomposition and classification

Let {c1,..., ¢} be a Jordan frame,

cicg=0ifi#j, ¢

i = Ci

ag+---+c =e€

Since the operators L (¢;) commute, they admit a simultaneous
diagonalization. We consider the following subspaces of V

Vii=V(c,1) =Rg,

1 1
\/’J =V (C’.’E) NV (Cj, 5) .
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Peirce decomposition and classification

(1) The space V' decomposes in the following orthogonal direct
sum:

@ @
V=@ Vij= ) Ra® } Y
1<isjsr 1<i<r 1<i<j<r

(3) Furthermore,

Vij - Vij < Vij + Vjj,
Vij - Vik © Vik, if i # k,
Vij + Vii = {0}, if {i,j} n{k,£} = 0.
(4) For i + j, all the spaces Vj; have de same dimension, denoted
by d.
(5) We have

d
n=r+§r(r—1).
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Peirce decomposition and classification

Classification of simple Euclidean Jordan algebras

vV dim V rank V. d
Sym(m,R) sm(m+ 1) m 1
Herm(m, C) m? m 2
Herm(m,H) m(2m —1) m 4

R x R"1 n 2 n—2

Herm(3,0) 27 3 8

v Q g ¢
Sym(m,R) Qn(R) sl(mR)®R o(m)
Herm(m,C) Q,(C) sl(m C)®R su(m)
Herm(m,H) Q,(H) sl(mH)@®R su(m,H)4
R x R"! An o(L,n—1®R o(n—-1)
Herm(3, @) Q3( ) 66(726) &) R f4
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