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Symmetric cones

Symmetric cones

Let V be a finite dimensional real Euclidean space with the inner
product p¨ | ¨q. A convex cone Ω Ă V (containing 0q is pointed or
proper if Ω contains no affine line.
If Ω is closed, this means Ω X p´Ωq “ t0u.
Define the dual cone by

Ω˚ “ tx P V | px |yq ě 0 for all y P Ωu.

Then Ω˚ is a closed convex cone, and has a non-trivial interior Ω˚˝

if and only if Ω is pointed.
The automorphism group G pΩq of an open convex cone Ω Ă V is
defined by

G pΩq “ tg P GLpV q | gΩ Ă Ωu.

It is a closed subgroup of GLpV q and hence a Lie group. The open
cone Ω Ă V is said to be symmetric if it is homogeneous (G pΩq

acts transitively on Ω) and self dual (Ω˚ “ Ω).
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Symmetric cones The cone of symmetric positive definite matrices

Example 1

Consider V “ Sympn,Rq with the inner product pA|Bq “ TrpABq.
Then the set Ω “ ΩnpRq of positive definite symmetric matrices is
a convex cone in V .
Let us prove that Ω is a symmetric cone.
The group GLpn,Rq acts on Ω by

ρpgqx “ gxgJ

and this action is transitive (if x P Ω, then x “ ααJ where
α P GLpn,Rq, thus x “ ααJ “ ρpαqIn.
Let x P Ω˚, then for any non zero vector ξ P Rn, y :“ ξξJ P Ω. By
definition of Ω˚ we have

pxξ, ξqRn “ px |ξξJq “ px |yq ą 0

and hence x P Ω.
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Symmetric cones The cone of symmetric positive definite matrices

Conversely, any element x P Ω, can be written as

x “

k
ÿ

j“1

ξjξ
J
j

where the ξj are independent vectors in Rn. Therefore, if y P Ω,
then

py |xq “

k
ÿ

j“1

py |ξjξ
J
j q “

k
ÿ

j“1

pyξj , ξjqRn ą 0.

Thus x P Ω˚ and Ω “ Ω˚.
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Symmetric cones The Lorentz cone

Example 2

Let Ω “ Λn to be the Lorentz cone in the Euclidean space V “ Rn,

Ω “
␣

x P Rn | x2
1 ´ x2

2 ´ ¨ ¨ ¨ ´ x2
n ą 0, x1 ą 0

(

.

Let r, s be the following bilinear form on Rn

rx , y s “ x1y1 ´ x2y2 ´ ¨ ¨ ¨ ´ xnyn “ xJJy

where x , y are written as n ˆ 1 matrices and

J “

¨

˚

˚

˚

˝

1 0 ¨ ¨ ¨ ¨ ¨ ¨

0 ´1 ¨ ¨ ¨ ¨ ¨ ¨
...

...
. . .

...
¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ´1

˛

‹

‹

‹

‚

.

Then
Ω “ tx P Rn | rx , xs ą 0, x1 ą 0u .

K. Koufany Geometry of symmetric cones 6



Symmetric cones The Lorentz cone

To prove that Ω is homogeneous we consider the group
SO0p1, n ´ 1q (= the identity component of the group of n ˆ n real
matrices g such that rgx , gy s “ rx , y s for all x , y , or, equivalently,
such that gJJg “ J).
Each element of the group SO0p1, n ´ 1q maps Ω onto itself, and
so does G “ R` ˆ SO0p1, n ´ 1q, the direct product of
SO0p1, n ´ 1q with the group of positive dilations.
The matrices

gu “

ˆ

1 0
0 u

˙

, with u P SOpn ´ 1q

are special elements of SO0p1, n ´ 1q, and so are the hyperbolic
rotations

ht “

¨

˝

cosh t 0 sinh t
0 In´2 0

sinh t 0 cosh t

˛

‚.

To show that G acts transitively on Ω we show that, for any x in Ω,
there exists an element in G which maps e1 “ p1, 0, . . . , 0qJ to x .
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Symmetric cones The Lorentz cone

First, write x “ λy , with λ “ rx , xs
1
2 ą 0, ry , y s “ 1. Then there

exists a rotation u P SOpn ´ 1q such that

py2, . . . , ynq
J

“ u ¨ p0, . . . , 0, rqJ

with r “

b

y2
2 ` ¨ ¨ ¨ ` y2

n . Since y2
1 ´ r2 “ 1 there exists t ě 0

such that
y1 “ cosh t, r “ sinh t.

Therefore,
x “ λguht ¨ e1.

Now we show that Ω is self-dual. To see that Ω Ă Ω˚, let y P Ω.
Then, using Schwarz’s inequality, we have ,

px | yq ě x1y1 ´

b

x2
2 ` ¨ ¨ ¨ ` x2

n

b

y2
2 ` ¨ ¨ ¨ ` y2

n ą 0,

for all x P Ω̄zt0u. Hence y belongs to Ω˚.
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Symmetric cones The Lorentz cone

To prove the reverse inclusion, let y be in Ω˚. One has y1 ą 0. If
y2 “ 0, ¨ ¨ ¨ , yn “ 0, then y belongs to Ω. Otherwise, define x by

x1 “

b

y2
2 ` . . . ` y2

n , x2 “ ´y2, . . . , xn “ ´yn.

Then x belongs to Ω̄zt0u, so px | yq ą 0, or

y1

b

y2
2 ` ¨ ¨ ¨ ` y2

n ´
`

y2
2 ` ¨ ¨ ¨ ` y2

n

˘

ą 0

which means that y belongs to Ω.
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Symmetric cones Ω as a Riemmanian symmetric space

Ω as a Riemmanian symmetric space

Theorem
Let Ω be a symmetric cone in a Euclidean vector space V . Then Ω
is a Riemannian symmetric space.

Proof. For x P Ω and u, v P V , we let

Gxpu, vq “ DuDv logφpxq

where φ is the characteristic function of Ω,

φpxq “

ż

Ω
e´px |yqdy

dy being the Euclidean measure on V .
We have, for u ‰ 0,

Gxpu, uq “ D2
u logφpxq “

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0
logφpx ` tuq

“
1
φ2

´

φD2
uφ ´ pDuφq

2
¯

,
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Symmetric cones Ω as a Riemmanian symmetric space

and
d

dt

ˇ

ˇ

ˇ

ˇ

t“0
φpx ` tuq “ ´

ż

Ω
e´px |yqpu | yqdy

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0
φpx ` tuq “

ż

Ω
e´px |yqpu | yq2dy .

Put
f pyq “ e´ 1

2 px |yq, gpyq “ e´ 1
2 px |yqpu | yq,

then

Gxpu, uq “
1

φ2pxq2

˜

ż

Ω
f pyq2dy

ż

Ω˚

gpyq2dy ´

ˆ
ż

Ω
f pyqgpyqdy

˙2
¸

which is ą 0 by the Schwarz inequality, since f and g are not
proportional.
Therefore, the bilinear form Gx defines a Riemannian metric on Ω.
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Symmetric cones Ω as a Riemmanian symmetric space

Every element g in G pΩq is an isometry; in fact

Ggxpgu, gvq “ pDguDgv plogφqq pgxq “ DuDv plogφ ˝ gqpxq

“ DuDv plogφqpxq “ Gxpu, vq

where the third equality follows form

φpgxq “ |Det g |´1φpxq.

Thus the metric, is invariant under G pΩq.
Further, for x P Ω, let x˚ defined by

x˚ “ ´∇ logφpxq

Then one can prove (see Faraut-Korànyi, pages 14–17) that the
map x ÞÑ x˚ is an involutive isometry on Ω with a unique fixed
point, denoted by e. Now, if y P Ω, then there exists g P G pΩq

such that y “ ge and the map x ÞÑ gpg´1xq˚ is an involutive
isometry of Ω with the unique fixed point y .
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Symmetric cones Ω as a Riemmanian symmetric space

Let G be the identity component of G pΩq and K “ G X OpV q.
Then G acts transitively on Ω and K is a compact subgroup of G .
Furthermore (see Faraut-Korànyi, page 18) Ge “ K , where Ge is
stabilizer subgroup of e.
The map, θ : g ÞÑ pg´1qJ is an involution of G (Cartan involution)
and K “ G θ is a maximal compact subgroup of G . We conclude
that, as a symmetric space,

Ω “ G{K .

For Ω “ ΩmpRq, we have

ΩmpRq “ GLpm,Rq{SOpmq.

For Ω “ Λn, we have

ΛnpRq “ SO0p1, n ´ 1q{SOpn ´ 1q.
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Euclidean Jordan algebras

Euclidean Jordan algebras

Let V be a finite dimensional Euclidean vector space equipped with
a scalar product p¨ | ¨q.
V is a Euclidean Jordan algebra if,

xy “ yx ,

x2pxyq “ xpx2yq,

pxy | zq “ px | yzq.

For x P V , denote by Lpxq the linear operator defined by

y ÞÑ Lpxqy “ xy .

The quadratic representation P is defined by

Ppxq “ 2Lpxq2 ´ Lpx2q.

An element x P V is said to be invertible if there exists an element
y P Rrxs such that xy “ e. Since Rrxs is associative, y is unique.
It is called the inverse of x and is denoted by y “ x´1.
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Euclidean Jordan algebras

The leading example is V “ Sympn,Rq with
– the product

x ˝ y “
1
2

pxy ` yxq,

– the inner product

px | yq “ Trpx ˝ yq “ Trpxyq,

– the quadratic representation

Ppxqy “ xyx .
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Euclidean Jordan algebras

Proposition

p1q An element x P V is invertible if and only if Ppxq is invertible,
and in this case, Ppx´1q “ Ppxq´1.
p2q The differential of the map x ÞÑ x´1 is ´Ppxq´1, i.e.

Du

`

x´1˘ “ D
`

x´1˘ u “ ´Ppxq´1u.

p3q If x and y are invertible, then Ppxqy is invertible and

pPpxqyq´1 “ P
`

x´1˘ y´1.

p4q For any elements x and y of V ,

PpPpyqxq “ PpyqPpxqPpyq “the fundamental relation”

p5q If x and x are invertible, then

Ppx´1 ´ y´1q “ Ppxq´1Ppx ´ yqPpyq´1 “Hua’s identity”
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Euclidean Jordan algebras

Jordan frames

An element c P V is said to be an idempotent if c2 “ c . Using the
identity L

`

x2y
˘

´ L
`

x2
˘

Lpyq “ 2pLpxyq ´ LpxqLpyqqLpxq with
x “ y , we obtain

L
`

x3˘ “ 3L
`

x2˘ Lpxq ´ 2Lpxq3,

and for x “ c :

2Lpcq3 ´ 3Lpcq2 ` Lpcq “ 0.

Therefore, an eigenvalue λ of Lpcq is a solution of

2λ3 ´ 3λ2 ` λ “ 0,

Then the only possible eigenvalues of Lpcq are 1, 1
2 , 0 and V is the

direct sum of the corresponding eigenspaces V pc, 1q, V pc , 1
2q and

V pc , 0q. The decomposition

V “ V pc , 1q ‘ V pc ,
1
2

q ‘ V pc , 0q,

is called the Peirce decomposition of V with respect to c .
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Euclidean Jordan algebras

It is an orthogonal decomposition with respect to any associative
scalar product.
Two idempotents c and d are said to be orthogonal if pc |dq “ 0,
which is equivalent to cd “ 0. An idempotent is said to be
primitive if it is not the sum of two non-zero idempotents. An
idempotent c is primitive if and only if dimV pc , 1q “ 1.
We say that pcjq1ďjďm is a Jordan frame if each cj is a primitive
idempotent and

cicj “ 0, i ­“ j

c1 ` c2 ` . . . ` cm “ e.

All the Jordan frames have the same number of elements, denote
by r and called the rank of the Jordan algebra V .
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Euclidean Jordan algebras

The group K acts transitively on the set of primitive idempotents,
and also on the set of Jordan frames. Therefore if we fix a Jordan
frame pcjq

r
j“1, then every element x P V can be written in the form

x “ kp

r
ÿ

j“1

λjcjq

where k P K and λ1, . . . , λr real numbers. The scalars pλjq1ďjďr

are unique and called the spectral values of x .
We define the determinant and the trace of the Jordan algebra by

detpxq “

r
ź

j“1

λj , trpxq “

r
ÿ

j“1

λj .

The trace is a linear form of V and the determinant is a
homogeneous polynomial on V of degree r . Both are invariant
under AutpV q.
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Euclidean Jordan algebras

Proposition
Let V be a simple Euclidean Jordan algebra on dimension n and
rank r .
piq We have

Tr Lpxq “
n

r
trpxq,

DetPpxq “ pdet xq
2n
r ,

detpPpyqxq “ pdet yq2 det x .

piiq Furthermore, if the scalar product on V is defined by

px | yq “ trpxyq

then
∇ log det x “ x´1.

piiq The set of invertible elements in V is given by

Vˆ “ tx P V | detpxq ­“ 0u.
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Euclidean Jordan algebras

Proposition
In a simple Euclidean Jordan algebra V every associative scalar
product is a scalar multiple of trpxyq.

Hence, we assume from now that the scalar product of V is given
by

px |yq “ trpxyq.
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Euclidean Jordan algebras V “ Sympr,Rq

The example : V “ Sympr ,Rq

In this case the determinant and the trace are the usual matrix
determinant and trace.
Put r “ p ` q. An idempotent is an orthogonal projection

c “

ˆ

Ip 0
0 0

˙

.

Then

V pc, 1q “

"ˆ

a 0
0 0

˙

| a : p ˆ p symmetric matrix
*

,

V pc,
1
2

q “

"ˆ

0 d
dJ 0

˙

| d : p ˆ q matrix
*

,

V pc, 0q “

"ˆ

0 0
0 b

˙

| b : q ˆ p symmetric matrix
*

.
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Euclidean Jordan algebras Spin factor

The example : Spin factor

Let B be a symmetric bilinear form on Rn´1. Then
V “ R1,n´1 “ R ˆ Rn´1 is a Euclidean Jordan algebra of
dimension n and rank 2 :
The product is

pλ, uqpµ, vq “ pλµ ` Bpu, vq, λv ` µuq.

We have

trpλ, uq “ 2λ, detpλ, uq “ λ2 ´ Bpu, uq.

An element is invertible if and only if detpλ, uq “ λ2 ´ Bpu, uq ­“ 0.
In this case

pλ, uq´1 “
1

detpλ, uq
pλ,´uq.

The associative inner product is

ppλ, uq | pµ, vqq “ 2pλµ ` Bpu, vqq.
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Euclidean Jordan algebras Spin factor

The non-zero idempotents are

e “ p1, 0q, c “

ˆ

1
2
,w

˙

with Bpw ,wq “ 1
4 . For such an idempotent c :

V pc , 1q “ Rc ,

V pc , 0q “ R
ˆ

1
2
,´w

˙

,

V

ˆ

c ,
1
2

˙

“ tp0, uq | Bpu,wq “ 0u.
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The cone of squares in V

The cone of squares in V

Lat V be a Euclidean Jordan algebra with unit element e. Let C be
the set of all squares

C “
␣

x2 | x P V
(

.

The set C is a cone and therefore its closed dual

C˚ “
␣

y P V | @x P V , py | x2q ě 0
(

is a closed convex cone.
Since

py | x2q “ pyx | xq “ pLpyqx | xq

we have
C˚ “ ty | Lpyq is positive semi-definite u.

Let
Ω “ C ˝ “ IntpC q.
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The cone of squares in V

Theorem
Ω is a symmetric cone. Furthermore, Ω is the connected
component of e in Vˆ, and also is the set of elements x P V for
which Lpxq is positive definite.

Proof. (1) To prove that Ω is self-dual, we show that C˚ “ C .
If x “

řk
j“1 λjcj is the spectral decomposition of an element

x P V , then x2 “
řk

j“1 λ
2
j cj and

L
`

x2˘ “

k
ÿ

j“1

λ2
j L pcjq .

Since the operators L pcjq are positive, L
`

x2
˘

is positive and
C Ă C˚.
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The cone of squares in V

Conversely, let x P C˚. Since the idempotents cj are orthogonal, we
have

λj “
1

}cj}
2 px | cjq

“
1

}cj}
2

`

x | c2
j

˘

“
1

}cj}
2 pxcj | cjq

“
1

}cj}
2 pLpxqcj | cjq ě 0.

Therefore, x “ y2 with

y “

k
ÿ

j“1

a

λjcj .

So we have shown that C˚ Ă C , and finally that C˚ “ C .

K. Koufany Geometry of symmetric cones 27



The cone of squares in V

(2) Let us consider the set

B “ ty P V | Lpyq is positive definite u

then B is open, therefore B is contained in Ω. For a non-zero
element y in V let us consider the linear form on V

ℓpxq “
`

x | y2˘ “ pLpyqx | yq.

Then ℓ is not identically zero and for x in C we have ℓpxq ě 0, and
for x in Ω we have ℓpxq ą 0 since Ω is open, which means that Ω is
contained in B .
(3) If x “

řk
j“1 λjcj P V , then it is clear that

exp x “

k
ÿ

j“1

eλj cj P Ω

Thus exppV q Ă Ω. The converse is also clear. Hence we can also
define Ω as

Ω “ expV “ texp x | x P V u.
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The cone of squares in V

(4) The set Vˆ “ tx P V | det x ‰ 0u is open. Let x P Ω̄ X Vˆ.
Since x belongs to Ω̄ the eigenvalues of x are non-negative, and
since x belongs to Vˆ they are non-zero, therefore x belongs to Ω,
and Ω̄ X Vˆ “ Ω. This means that Ω is closed in Vˆ, hence Ω is
the connected component of Vˆ containing the identity element e.
(5) It remains to show that Ω is homogeneous. If x is invertible,
then Ppxq is invertible, and PpxqΩ is a connected open subset of
Vˆ (if x and y are invertible then Ppxqy is invertible). Since
x2 “ Ppxqe belongs to Ω, we have PpxqΩ Ă Ω. On the other hand,
Ppxq´1Ω “ P

`

x´1
˘

Ω Ă Ω. Hence, Ppxq belongs to G pΩq and

Ω “
␣

x2 | x P Vˆ
(

“ tPpxqe | x P Vˆu Ă G pΩqe “ Ω.
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The cone of squares in V

To summary, we have

Ω “ expV

“ int
␣

x2 | x P V
(

“ the identity component of Vˆ

“
␣

x2 | x P Vˆ
(

“
␣

Ppxqe | x P Vˆ
(

“ tx P V | Lpxq positive definite u
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The cone of squares in V The structure group

The structure group of V

The structure group of V is the subgroup of GLpV q given by

StrpV q “ tg P GLpV q | Ppgxq “ gPpxqgJ, for any x P V u.

It is known that if x P Vˆ, then Ppxq P StrpV q and PpxqJ “ Ppxq.
Furthermore, the automorphism group AutpV q is a subgroup of
StrpV q and an element g in StrpV q belongs to AutpV q if and only
if ge “ e. In particular, gJ “ g´1 for g P AutpV q.

Proposition
If V is a simple Euclidean Jordan algebra, then

StrpV q “ t˘I uG pΩq.

In particular, if g P StrpV q, then gpΩq “ Ω or gpΩq “ ´Ω.
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The cone of squares in V The structure group

Example

If V “ Sympm,Rq, then Ω “ ΩmpRq symmetric positive definite
matrices.
In this case, G pΩq “ GLpm,Rq{t˘Imu and StrpV q “ GLpm,Rq.
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The Jordan algebra associated with a symmetric cone

The Jordan algebra associated with a symmetric cone

Let Ω be a symmetric cone in a Euclidean space V .
As above, we denote by G pΩq the automorphism group of Ω,G its
identity component and K “ G X OpV q.
We write g for the Lie algebra of G and k for the Lie algebra of K .
We choose a point e in Ω whose stabilizer is K .
An element X P g belongs to k if and only if X ¨ e “ 0.
Since G ¨ e “ Ω, we have g ¨ e “ V .
Therefore, the mapping from p into V defined by X ÞÑ X ¨ e is a
bijection.
We denote by L its inverse: for x in V , Lpxq is the unique element
in p such that Lpxqe “ x .
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The Jordan algebra associated with a symmetric cone

Theorem (Vinberg-Kœcher)

Let Ω be a symmetric cone in a Euclidean vector space V . Defining
on V the product

xy “ Lpxqy ,

V is a Euclidean Jordan algebra with identity element e and

Ω̄ “
␣

x2 | x P V
(

.

Proof (Folowing Satake proof).
It is clear that the product we have defined is bilinear. It is also
commutative, since

xy ´ yx “ rLpxq, Lpyqs ¨ e “ 0

by rp, ps Ă k and k ¨ e “ 0.
The inner product of V is an associative bilinear form, since each
Lpxq belongs to p and is therefore symmetric.
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The Jordan algebra associated with a symmetric cone

In order to prove (J2 : Jordan identity), we define the associator of
three elements x , y , z in V by

rx , z , y s “ xpzyq ´ pxzqy “ rLpxq, Lpyqsz .

For any x , y P V we must show that x2pxyq “ xpx2yq, i.e.
“

x2, y , x
‰

“ 0 .
Using rLpxq, Lpyqs P rp, ps Ă k, we have

rrLpxq, Lpyqs, Lpzqse “ rLpxq, Lpyqspzeq

“ rx , z , y s “ Lprx , z , y sqe.

Since X ÞÑ X ¨ e is bijective from p onto V , it follows that

rrLpxq, Lpyqs, Lpzqs “ Lprx , z , y sq.
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The Jordan algebra associated with a symmetric cone

Applying this identity to z , we immediately find
“

x , z2, y
‰

“ 2rx , z , y sz . (1)

Now, for any x , y , z in V , the associativity of the scalar product
gives

`“

x2, y , x
‰

| z
˘

“
`

x2pxyq | z
˘

´
`

x
`

x2y
˘

| z
˘

“
`

x2 | pxyqz ´ ypxzq
˘

“
`

x2 | rz , x , y s
˘

.
(2)

By a similar computation we also have
`“

x2, y , x
‰

| z
˘

“
`

x | y
`

x2z
˘

´
`

x2y
˘

z
˘

“
`

x |
“

y , x2, z
‰˘

and using (1) we see that this is further equal to

2px | ry , x , zsxq “ 2
`

x2 | ry , x , zs
˘

“ ´2
`

x2 | rz , x , y s
˘

.

Comparing with (2) we see that
`“

x2, y , x
‰

| z
˘

“ 0

This holds for every z in V , therefore
“

x2, y , x
‰

“ 0, that is,

x2pxyq “ x
`

x2y
˘

.
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The Jordan algebra associated with a symmetric cone

Let Ω1 be the symmetric cone associated with the Jordan algebra
V (the interior of the set of squares). We have

Ω1 “ expV “ texp x | x P V u

“ texp Lpxq ¨ e | x P V u

“ texpX ¨ e | X P pu

Ă G ¨ e “ Ω

Since Ω and Ω1 are self-dual, then Ω1 “ Ω. ˝

If V is a Euclidean Jordan algebra, then the cone Ω “ expV is
called the associated symmetric cone.
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The Jordan algebra associated with a symmetric cone

Let V be a Euclidean Jordan algebra and Ω the associated
symmetric cone.

Theorem
For x in Ω and u, v in V we set

γxpu, vq “
`

Ppxq´1u | v
˘

.

The family of bilinear forms γx defines a G -invariant Riemannian
metric on Ω. The map x ÞÑ x´1 is an involutive isometry with
unique fixed point e.

Proof. If x belongs to Ω then Ppxq is positive definite. The
invariance of the metric:

`

Ppgxq´1gu | gv
˘

“
`

Ppxq´1u | v
˘

, @g P G pΩq

follows from the fact Ppgxq “ gPpxqgJ, since g P G pΩq Ă StrpV q.
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The Jordan algebra associated with a symmetric cone

Let us now consider the map x ÞÑ x´1. We know that its
differential is ´Ppxq´1. To show that it is an isometry we have to
prove that

´

P
`

x´1˘´1
Ppxq´1u | Ppxq´1v

¯

“
`

Ppxq´1u | v
˘

.

But this follows from the fact that Ppx´1q “ Ppxq´1. ˝
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The Jordan algebra associated with a symmetric cone

For any symmetric cone Ω we constructed above a G -invariant
Riemannian metric Gx and an isometric involution x ÞÑ x˚.
Further, the G -invariant metric γx and the isometric involution
x ÞÑ x´1, provide another, independent, proof that Ω is a
symmetric Riemannian space.
The metrics Gx and γx are not exactly the same; a G -invariant
metric on Ω is not unique unless V is simple.
In this case, we have

Gx “
n

r
γx ,

and
x ÞÑ x˚ “

n

r
x´1.
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The Jordan algebra associated with a symmetric cone

Theorem
p1q We have

AutpV q0 “ K ,

DerpV q “ k,

where AutpV q0 denotes the identity component of AutpV q.
p2q Every g in G can be uniquely written as

g “ Ppxqk, with x P Ω, k P K

i.e.
G “ PpΩqK “polar decomposition”

p3q Let g be the Lie algebra of G p or G pΩq q and
p “ tLpxq | x P V u . Then we have

g “ k ‘ p.

p Cartan decomposition of g w.r.t. X ÞÑ θpX q “ ´XJ q.
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Peirce decomposition and classification

Classification

Let V be a simple Euclidean Jordan algebra of dimension n and
rank r . Recall that if c P V is idempotent (c2 “ c), then the only
possible eigenvalues of Lpcq are 1, 1

2 , and 0 , and V is the direct
sum of the corresponding subspaces V pc , 1q,V

`

c , 1
2

˘

and V pc, 0q.

V “ V pc,, 1q ‘ V

ˆ

c,,
1
2

˙

‘ V pc1, 0q

(Peirce decomposition of V with respect to the idempotent c).
This decomposition is orthogonal with respect to any associative
symmetric bilinear form, since the transformations Lpxq are
symmetric with respect to any such form.
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Peirce decomposition and classification

Proposition

The subspaces V pc , 1q and V pc, 0q are Jordan subalgebras of V .
They are orthogonal in the sense that

V pc , 1q ¨ V pc , 0q “ t0u

Furthermore,

`

V pc , 1q ` V pc, 0q
˘

¨ V

ˆ

c,
1
2

˙

Ă V

ˆ

c ,
1
2

˙

,

V

ˆ

c,
1
2

˙

¨ V

ˆ

c1,
1
2

˙

Ă V pc , 1q ` V pc , 0q.
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Peirce decomposition and classification

Let tc1, . . . , cru be a Jordan frame,

cicj “ 0 if i ‰ j , c2
i “ ci

c1 ` ¨ ¨ ¨ ` cr “ e

Since the operators L pci q commute, they admit a simultaneous
diagonalization. We consider the following subspaces of V

Vii “ V pci ,, 1q “ Rci ,

Vij “ V

ˆ

ci ,
1
2

˙

X V

ˆ

cj ,
1
2

˙

.
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Peirce decomposition and classification

Theorem
p1q The space V decomposes in the following orthogonal direct
sum:

V “
à

1ďiďjďr

Vij “

‘
ÿ

1ďiďr

Rci ‘

‘
ÿ

1ďiăjďr

Vij

p3q Furthermore,

Vij ¨ Vij Ă Vij ` Vjj ,

Vij ¨ Vjk Ă Vik , if i ‰ k ,

Vij ` Vki “ t0u, if ti , ju X tk , ℓu “ 0.

p4q For i ­“ j , all the spaces Vij have de same dimension, denoted
by d .
p5q We have

n “ r `
d

2
rpr ´ 1q.
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Peirce decomposition and classification

Classification of simple Euclidean Jordan algebras

V dimV rankV d

Sympm,Rq 1
2mpm ` 1q m 1

Hermpm,Cq m2 m 2
Hermpm,Hq mp2m ´ 1q m 4
R ˆ Rn´1 n 2 n ´ 2
Hermp3,Oq 27 3 8

V Ω g k

Sympm,Rq ΩmpRq slpm,Rq ‘ R opmq

Hermpm,Cq ΩmpCq slpm,Cq ‘ R supmq

Hermpm,Hq ΩmpHq slpm,Hq ‘ R supm,Hq4
R ˆ Rn´1 Λn op1, n ´ 1q ‘ R opn ´ 1q

Hermp3,Oq Ω3pOq e6p´26q ‘ R f4
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