

Analytic linear Lie Rack Structures on Leibniz Algebras

Abid Fatima-Ezzahrae Supervised by : Pr. H. Abchir & Pr. M. Boucetta

> Seminar AGTA 26 December 2020

Rack Structures And Leibniz Algebras

"Lie Rack Structures"

\rightsquigarrow Lie Rack :

A Lie rack is a pointed smooth manifold (X, 1) together with a smooth map $\rhd : X \times X \longrightarrow X$, $(a, b) \mapsto a \rhd b$ such that, for any $a, b, c \in X$,

▶ the left translation $L_a: X \longrightarrow X$, $b \mapsto a \triangleright b$ are diffeomorphisms,

•
$$a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright (a \triangleright c),$$

•
$$1 \triangleright a = a$$
 and $a \triangleright 1 = 1$.

 \rightsquigarrow Example :

Any Lie group G has a Lie rack structure given by g ▷ h := g⁻¹hg.

 $\{\text{Lie groups}\} \subset \{\text{Lie racks}\}$

ション ふゆ アメリア メリア しょうくしゃ

Rack Structures And Leibniz Algebras

" Leibniz Algebras"

\rightsquigarrow Leibniz algebra :

A left Leibniz algebra ¹ is an algebra $(\mathfrak{h}, [,])$ over a field \mathbb{K} such that, for every element $u \in \mathfrak{h}$, $\mathrm{ad}_u : \mathfrak{h} \longrightarrow \mathfrak{h}$, $v \mapsto [u, v]$ is a derivation of \mathfrak{h} , i.e.,

$$[u, [v, w]] = [[u, v], w] + [v, [u, w]]$$
(1)

 \rightsquigarrow Example :

• If the Leibniz bracket is skew, then $(\mathfrak{h}, [,])$ is a Lie algebra.

 ${Lie algebras} \subset {Leibniz algebras}$

^{1.} J. L. Loday, Une version non-commutative des algebres de Lie, L'Ens. Math **39** (1993) 269-293.

Rack Structures And Leibniz Algebras

From Lie racks to Leibniz algebras

 \rightsquigarrow Tangent Functor²: Given a pointed Lie rack (X, 1), for any $a \in X$, we denote by Ad_a : $T_1X = \mathfrak{h} \longrightarrow \mathfrak{h}$ the differential of L_a at 1. We have

 $\mathbf{L}_{a \rhd b} = \mathbf{L}_a \circ \mathbf{L}_b \circ \mathbf{L}_a^{-1} \quad \text{and} \quad \mathrm{Ad}_{a \rhd b} = \mathrm{Ad}_a \circ \mathrm{Ad}_b \circ \mathrm{Ad}_a^{-1}.$

Thus $\operatorname{Ad}: X \longrightarrow \operatorname{GL}(\mathfrak{h})$ is an homomorphism of Lie racks. If we put

$$[u,v]_{\triangleright} = \frac{d}{dt}_{|t=0} \operatorname{Ad}_{c(t)} v, \quad u,v \in \mathfrak{h}, c :] - \epsilon, \epsilon[\longrightarrow X, \ c(0) = 1, c'(0) = u.$$

Theorem Any Lie rack $(X, \triangleright, 1)$, the tangent space $(\mathfrak{h}, [,]_{\triangleright})$ is a left Leibniz algebra.

^{2.} M. Kinyon, *Leibniz algebras, Lie racks, and digroups*, Journal of Lie Theory, volume 17 (2007) 99–114.

• Analityc Linear Lie Rack Structures on finite dimensional vector space.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• Analityc Linear Lie Rack Structures on finite dimensional vector space.

ション ふゆ アメリア メリア しょうくしゃ

└ Characterization of A.L.L.R.S.

• Analityc Linear Lie Rack Structures on finite dimensional vector space.

- └ Characterization of A.L.L.R.S.
- → Rigidity of Leibniz algebras.

• Analityc Linear Lie Rack Structures on finite dimensional vector space.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• A.L.L.R.S on Leibniz algebras with $H^0 = H^1 = 0$.

• Analityc Linear Lie Rack Structures on finite dimensional vector space.

- A.L.L.R.S on Leibniz algebras with $H^0 = H^1 = 0$.
- A.L.L.R.S and Rigidity of $\mathfrak{sl}_2(\mathbb{R})$ and $\mathfrak{so}(3)$.

Definitions

A linear Lie rack structure on a finite dimensional vector space V is a Lie rack operation (x, y) → x ⊳ y pointed at 0 and such that for any x, the map L_x : y → x ⊳ y is linear.

Definitions

- A linear Lie rack structure on a finite dimensional vector space V is a Lie rack operation (x, y) → x ⊳ y pointed at 0 and such that for any x, the map L_x : y → x ⊳ y is linear.
- A linear Lie rack operation \triangleright is called analytic if for any $x, y \in V$,

$$x \triangleright y = y + [x, y] + \sum_{n=2}^{\infty} A_{n,1}(x, \ldots, x, y),$$

Definitions

- A linear Lie rack structure on a finite dimensional vector space V is a Lie rack operation (x, y) → x ⊳ y pointed at 0 and such that for any x, the map L_x : y → x ⊳ y is linear.
- A linear Lie rack operation \triangleright is called analytic if for any $x, y \in V$,

$$x \triangleright y = y + [x, y] + \sum_{n=2}^{\infty} A_{n,1}(x, \ldots, x, y),$$

where : $A_{n,1} : V \times \ldots \times V \longrightarrow V$ is an (n+1)-multilinear map which is symmetric in the *n* first arguments.

Definitions

- A linear Lie rack structure on a finite dimensional vector space V is a Lie rack operation (x, y) → x ⊳ y pointed at 0 and such that for any x, the map L_x : y → x ⊳ y is linear.
- A linear Lie rack operation \triangleright is called analytic if for any $x, y \in V$,

$$x \triangleright y = y + [x, y] + \sum_{n=2}^{\infty} A_{n,1}(x, \ldots, x, y),$$

where : $A_{1,1}$ is the left Leibniz bracket associated to \triangleright .

Characterization of analytic linear Lie rack structures

"Main Theorem"

Let V be a real finite dimensional vector space and $(A_{n,1})_{n\geq 1}$ a sequence of n+1-multilinear maps symmetric in the n first arguments. We suppose that the operation \triangleright given by

$$x \triangleright y = y + \sum_{n=1}^{\infty} A_{n,1}(x,\ldots,x,y)$$

converges. Then \triangleright is a Lie rack structure on V if and only if for any $p, q \in \mathbb{N}^*$ and $x, y, z \in V$,

 $A_{\rho,1}(x, A_{q,1}(y, z)) = \sum_{s_1 + \ldots + s_q + k = p} A_{q,1}(A_{s_1,1}(x, y), \ldots, A_{s_q,1}(x, y), A_{k,1}(x, z)),$

where for sake of simplicity $A_{p,1}(x, y) := A_{p,1}(x, \dots, x, y)$. In particular, if p = q = 1 we get that $[,] := A_{1,1}$ is a left Leibniz bracket which is actually the left Leibniz bracket associated to (V, \triangleright) . Invariant maps

If p = 1 and $q \in \mathbb{N}^*$, the relation ³ becomes

$$\begin{aligned} \mathcal{L}_{x} A_{q,1}(y_{1}, \ldots, y_{q+1}) & := & [x, A_{q,1}(y_{1}, \ldots, y_{q+1})] \\ & - \sum_{i=1}^{q+1} A_{q,1}(y_{1}, \ldots, [x, y_{i}], \ldots, y_{q+1}) \\ & = & 0. \end{aligned}$$

A multilinear map A on a left Leibniz algebra satisfying $\mathcal{L}_x A = 0$ will be called invariant.

3.

$$A_{p,1}(x, A_{q,1}(y, z)) = \sum_{s_1 + \ldots + s_q + k = p} A_{q,1}(A_{s_1,1}(x, y), \ldots, A_{s_q,1}(x, y), A_{k,1}(x, z)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Canonical A.L.L.R.S on Leibniz algebras

• If $(\mathfrak{h}, [,])$ be a left Leibniz algebra then the operation $\stackrel{c}{\rhd}: \mathfrak{h} \times \mathfrak{h} \longrightarrow \mathfrak{h}$ given by

 $u \stackrel{c}{\triangleright} v = \exp(\mathrm{ad}_u)(v)$

defines an (canonical) analytic linear Lie rack structure on \mathfrak{h} such that the associated left Leibniz bracket on $T_0\mathfrak{h} = \mathfrak{h}$ is the initial bracket [,]. Where $A_{0,1}^0(x, y) = y$ and

$$A^0_{n,1}(x_1,\ldots,x_n,y):=rac{1}{(n!)^2}\sum_{\sigma\in S_n}\operatorname{ad}_{\mathsf{x}_{\sigma(1)}}\circ\ldots\circ\operatorname{ad}_{\mathsf{x}_{\sigma(n)}}(y).$$

► Corollary $\frac{The \left(A_{n,1}^{0}\right)_{n \in \mathbb{N}} \text{ satisfy the sequence of equations}^{4}.$ 4. $A_{p,1}(x, A_{q,1}(y, z)) = \sum_{s_{1} + \ldots + s_{q} + k = p} A_{q,1}(A_{s_{1},1}(x, y), \ldots, A_{s_{q},1}(x, y), A_{k,1}(x, z)).$ $= \sum_{s_{1} + \ldots + s_{q} + k = p} A_{q,1}(A_{s_{1},1}(x, y), \ldots, A_{s_{q},1}(x, y), A_{k,1}(x, z)).$

Main Proposition

Let $(\mathfrak{h}, [,])$ be a left Leibniz algebra, $F : \mathbb{R} \longrightarrow \mathbb{R}$ a smooth function and $P : \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathbb{R}$ a symmetric multilinear *p*-form such that, for any $y, x_1 \ldots, x_p \in \mathfrak{h}$,

$$\sum_{i=1} P(x_1,\ldots,[y,x_i],\ldots,x_p) = 0.$$

Then the operation \triangleright given by

$$x \triangleright y = \exp(F(P(x, \dots, x)) \operatorname{ad}_{x})(y)$$
(2)

is a linear Lie rack structure on \mathfrak{h} and its associated left Leibniz bracket is $[,]_{\rhd} = F(0)[,]$. Moreover, if F is analytic then \triangleright is analytic .

Main Proposition

Let $(\mathfrak{h}, [,])$ be a left Leibniz algebra, $F : \mathbb{R} \longrightarrow \mathbb{R}$ a smooth function and $P : \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathbb{R}$ a symmetric multilinear *p*-form such that, for any $y, x_1 \ldots, x_p \in \mathfrak{h}$,

$$\sum_{i=1} P(x_1,\ldots,[y,x_i],\ldots,x_p) = 0.$$

Then the operation \triangleright given by

$$x \triangleright y = \exp(F(P(x, \dots, x)) \operatorname{ad}_{x})(y)$$
(2)

▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ ● の ○ ○

is a linear Lie rack structure on \mathfrak{h} and its associated left Leibniz bracket is $[,]_{\triangleright} = F(0)[,]$. Moreover, if F is analytic then \triangleright is analytic . \rightsquigarrow If F is the identity map, the \triangleright is the canonical A.L.L.R.S on \mathfrak{h} .

Main Proposition

Let $(\mathfrak{h}, [,])$ be a left Leibniz algebra, $F : \mathbb{R} \longrightarrow \mathbb{R}$ a smooth function and $P : \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathbb{R}$ a symmetric multilinear *p*-form such that, for any $y, x_1 \ldots, x_p \in \mathfrak{h}$,

$$\sum_{i=1} P(x_1,\ldots,[y,x_i],\ldots,x_p) = 0.$$

Then the operation \triangleright given by

$$x \triangleright y = \exp(F(P(x, \dots, x)) \operatorname{ad}_{x})(y)$$
(2)

is a linear Lie rack structure on \mathfrak{h} and its associated left Leibniz bracket is $[,]_{\rhd} = F(0)[,]$. Moreover, if F is analytic then \triangleright is analytic . \rightsquigarrow If one takes F(0) = 0, the two pointed Lie rack structures

$$x \triangleright_0 y = y$$
 and $x \triangleright_1 y = \exp(F(P(x, \dots, x))) \operatorname{ad}_x)(y)$

are two pointed Lie rack structures on abelian Leibniz algebra which are not equivalent (even locally near 0).

Main Proposition

Let $(\mathfrak{h}, [,])$ be a left Leibniz algebra, $F : \mathbb{R} \longrightarrow \mathbb{R}$ a smooth function and $P : \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathbb{R}$ a symmetric multilinear *p*-form such that, for any $y, x_1 \ldots, x_p \in \mathfrak{h}$,

$$\sum_{i=1}^{n} P(x_1,\ldots,[y,x_i],\ldots,x_p) = 0.$$

Then the operation \triangleright given by

$$x \triangleright y = \exp(F(P(x, \dots, x)) \operatorname{ad}_{x})(y)$$
(2)

is a linear Lie rack structure on \mathfrak{h} and its associated left Leibniz bracket is $[,]_{\triangleright} = F(0)[,]$. Moreover, if F is analytic then \triangleright is analytic . Rigid Leibniz algebra :

A left Leibniz algebra $(\mathfrak{h}, [,])$ is called rigid if any analytic linear Lie rack structure \triangleright on \mathfrak{h} such that $[,]_{\triangleright} = [,]$ is given by

$$x \triangleright y = \exp(F(P(x,\ldots,x))) \operatorname{ad}_{x})(y),$$

Main Proposition

Let $(\mathfrak{h}, [,])$ be a left Leibniz algebra, $F : \mathbb{R} \longrightarrow \mathbb{R}$ a smooth function and $P : \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathbb{R}$ a symmetric multilinear *p*-form such that, for any $y, x_1 \ldots, x_p \in \mathfrak{h}$,

$$\sum_{i=1} P(x_1,\ldots,[y,x_i],\ldots,x_p) = 0.$$

Then the operation \triangleright given by

$$x \triangleright y = \exp(F(P(x, \dots, x)) \operatorname{ad}_{x})(y)$$
(2)

is a linear Lie rack structure on \mathfrak{h} and its associated left Leibniz bracket is $[,]_{\triangleright} = F(0)[,]$. Moreover, if F is analytic then \triangleright is analytic . Rigid Leibniz algebra :

A left Leibniz algebra $(\mathfrak{h}, [,])$ is called rigid if any analytic linear Lie rack structure \triangleright on \mathfrak{h} such that $[,]_{\triangleright} = [,]$ is given by

$$x \triangleright y = \exp(F(P(x,\ldots,x))) \operatorname{ad}_x)(y),$$

where $F : \mathbb{R} \longrightarrow \mathbb{R}$ is analytic with F(0) = 1,

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Main Proposition

Let $(\mathfrak{h}, [,])$ be a left Leibniz algebra, $F : \mathbb{R} \longrightarrow \mathbb{R}$ a smooth function and $P : \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathbb{R}$ a symmetric multilinear *p*-form such that, for any $y, x_1 \ldots, x_p \in \mathfrak{h}$,

$$\sum_{i=1}^{r} \boldsymbol{P}(x_1,\ldots,[y,x_i],\ldots,x_p) = 0.$$

Then the operation \triangleright given by

$$x \triangleright y = \exp(F(P(x, \dots, x)) \operatorname{ad}_{x})(y)$$
(2)

is a linear Lie rack structure on \mathfrak{h} and its associated left Leibniz bracket is $[,]_{\triangleright} = F(0)[,]$. Moreover, if F is analytic then \triangleright is analytic . Rigid Leibniz algebra :

A left Leibniz algebra $(\mathfrak{h}, [,])$ is called rigid if any analytic linear Lie rack structure \triangleright on \mathfrak{h} such that $[,]_{\triangleright} = [,]$ is given by

$$x \triangleright y = \exp(F(P(x,\ldots,x))) \operatorname{ad}_x)(y),$$

where $P: \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathbb{R}$ invariant symmetric multilinear *p*-form on \mathfrak{h} .

Characterization of A.L.L.R.S and Cohomological interpretation

$$A_{p,1}(x, A_{q,1}(y, z)) = \sum_{s_1 + \ldots + s_q + k = p} A_{q,1}(A_{s_1,1}(x, y), \ldots, A_{s_q,1}(x, y), A_{k,1}(x, z)),$$

where for sake of simplicity $A_{p,1}(x, y) := A_{p,1}(x, \dots, x, y)$. For q = 1, The above equation can be written for any $x, y, z \in \mathfrak{h}$,

$$\delta(i_{x} \dots i_{x} A_{p,1})(y,z) = -\sum_{r=1}^{p-1} [A_{r,1}(x,y), A_{p-r,1}(x,z)]$$

Characterization of A.L.L.R.S and Cohomological interpretation

$$A_{\rho,1}(x,A_{q,1}(y,z)) = \sum_{s_1+\ldots+s_q+k=\rho} A_{q,1}(A_{s_1,1}(x,y),\ldots,A_{s_q,1}(x,y),A_{k,1}(x,z)),$$

where for sake of simplicity $A_{p,1}(x, y) := A_{p,1}(x, \dots, x, y)$. For q = 1, The above equation can be written for any $x, y, z \in \mathfrak{h}$,

$$\delta(i_{x} \dots i_{x} A_{p,1})(y,z) = -\sum_{r=1}^{p-1} [A_{r,1}(x,y), A_{p-r,1}(x,z)],$$

where

$$\overset{\checkmark}{\delta} : Hom(\otimes^{n}\mathfrak{h}, \mathfrak{h}) \longrightarrow Hom(\otimes^{n+1}\mathfrak{h}, \mathfrak{h}) \text{ given by}$$

$$\delta(\omega)(\mathbf{x_{0}}, \dots, \mathbf{x_{n}}) = \sum_{i=0}^{n-1} [x_{i}, \omega(\mathbf{x_{0}}, \dots, \hat{x_{i}}, \dots, \mathbf{x_{n}})] + (-1)^{n-1} [\omega(\mathbf{x_{0}}, \dots, \mathbf{x_{n-1}}), \mathbf{x_{n}}]$$

$$+ \sum_{i < j} (-1)^{i+1} \omega(\mathbf{x_{0}}, \dots, \hat{x_{i}}, \dots, \mathbf{x_{j-1}}, [\mathbf{x_{i}}, \mathbf{x_{j}}], \mathbf{x_{j+1}}, \dots, \mathbf{x_{n}}),$$

and then defines a cohomology $H^{p}(\mathfrak{h})$ for $p \in \mathbb{N}$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Characterization of A.L.L.R.S and Cohomological interpretation

$$A_{\rho,1}(x,A_{q,1}(y,z)) = \sum_{s_1+\ldots+s_q+k=\rho} A_{q,1}(A_{s_1,1}(x,y),\ldots,A_{s_q,1}(x,y),A_{k,1}(x,z)),$$

where for sake of simplicity $A_{p,1}(x, y) := A_{p,1}(x, \dots, x, y)$. For q = 1, The above equation can be written for any $x, y, z \in \mathfrak{h}$,

$$\delta(i_{x} \dots i_{x} A_{p,1})(y,z) = -\sum_{r=1}^{p-1} [A_{r,1}(x,y), A_{p-r,1}(x,z)],$$

where

$$\overset{\checkmark}{\delta} : Hom(\otimes^{n}\mathfrak{h}, \mathfrak{h}) \longrightarrow Hom(\otimes^{n+1}\mathfrak{h}, \mathfrak{h}) \text{ given by}$$

$$\delta(\omega)(\mathbf{x_{0}}, \dots, \mathbf{x_{n}}) = \sum_{i=0}^{n-1} [x_{i}, \omega(\mathbf{x_{0}}, \dots, \hat{x_{i}}, \dots, \mathbf{x_{n}})] + (-1)^{n-1} [\omega(\mathbf{x_{0}}, \dots, \mathbf{x_{n-1}}), \mathbf{x_{n}}]$$

$$+ \sum_{i < j} (-1)^{i+1} \omega(\mathbf{x_{0}}, \dots, \hat{x_{i}}, \dots, \mathbf{x_{j-1}}, [\mathbf{x_{i}}, \mathbf{x_{j}}], \mathbf{x_{j+1}}, \dots, \mathbf{x_{n}}),$$

and then defines a cohomology $H^p(\mathfrak{h})$ for $p \in \mathbb{N}$. $\Rightarrow i_x \dots i_x A_{p,1} : \mathfrak{h} \longrightarrow \mathfrak{h}, y \mapsto A_{p,1}(x, \dots, x, y).$

A.L.L.R.S on Leibniz algebras with $H^0 = H^1 = 0$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

A.L.L.R.S on Leibniz algebras with $H^0 = H^1 = 0$

 \rightsquigarrow The sequence $(A_{n,1}^0)_{n\in\mathbb{N}}$ defining the canonical linear Lie rack structure of \mathfrak{h} satisfies

$$\delta(i_{x} \dots i_{x} A_{p,1}^{0})(y,z) = -\sum_{r=1}^{p-1} [A_{r,1}^{0}(x,y), A_{p-r,1}^{0}(x,z)]$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

A.L.L.R.S on Leibniz algebras with $H^0 = H^1 = 0$

→ Main Theorem :

Let $(\mathfrak{h}, [,])$ be a left Leibniz algebra such that $H^0(\mathfrak{h}) = H^1(\mathfrak{h}) = 0$. Let $(A_{n,1})_{n\geq 0}$ be a sequence where $A_{0,1}(x, y) = y$ and $A_{1,1}(x, y) = [x, y]$ and, for any $n \geq 2$, $A_{n,1} : \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathfrak{h}$ is multilinear invariant and symmetric in the n first arguments. We suppose that the $A_{n,1}$ satisfy⁵. Then there exists a unique sequence $(B_n)_{n\geq 2}$ of invariant symmetric multilinear maps $B_n : \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathfrak{h}$ such that, for any $x, y \in \mathfrak{h}$,

$$A_{n,1}(x,y) = A_{n,1}^{0}(x,y) + \sum_{\substack{1 \le k \le \left[\frac{n}{2}\right] \\ s = l_{1} + \dots + l_{k} \le n}} A_{k,1}^{0}(B_{l_{1}}(x),\dots,B_{l_{k}}(x),A_{n-s,1}^{0}(x,y)),$$
(3)

where $A_{p,1}(x, y) = A_{p,1}(x, ..., x, y)$ and $B_l(x) = B_l(x, ..., x)$.

5.

$$A_{p,1}(x, A_{q,1}(y, z)) = \sum_{s_1 + \ldots + s_q + k = p} A_{q,1}(A_{s_1,1}(x, y), \ldots, A_{s_q,1}(x, y), A_{k,1}(x, z)).$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Main Theorem

Let \mathfrak{h} be either $\mathfrak{sl}_2(\mathbb{R})$ or $\mathfrak{so}(3)$ and \triangleright an analytic linear Lie rack structure on \mathfrak{h} such that $[,]_{\triangleright}$ is the Lie algebra bracket of \mathfrak{h} . Then there exists an analytic function $F : \mathbb{R} \longrightarrow \mathbb{R}$ given by

$$F(u) = 1 + \sum_{k=1}^{\infty} a_k u^k$$

such that, for any $x, y \in \mathfrak{h}$,

 $x \triangleright y = \exp(F(\langle x, x \rangle) \operatorname{ad}_x)(y),$

where $\langle x, x \rangle = \frac{1}{2} \operatorname{tr}(\operatorname{ad}_x \circ \operatorname{ad}_x)$. So \mathfrak{h} is rigid.

Steps of the proof

- Consider h be either sl₂(ℝ) or so(3). Since H⁰(h) = H¹(h) = 0, we will use characterization ⁶ of A.L.L.R.S with H⁰ = H¹ = 0. Therefore, we will need to determine the space of Invariant multilinear symmetric forms on h.
- Explicit A.L.L.R.S on β.
- ▶ Proof that there exists a unique sequence $(a_n)_{n\geq 1}$ such that the function $F(t) = 1 + \sum_{t=1}^{\infty} a_n t^n$ converge and $x \triangleright y = \exp(F(\langle x, x \rangle) \operatorname{ad}_x)(y)$ $= y + \sum_{n=0}^{\infty} F(\langle x, x \rangle)^{2n+1} A_{2n+1,1}^0(x, y) + \sum_{n=1}^{\infty} F(\langle x, x \rangle)^{2n} A_{2n,1}^0(x, y).$

6.

$$A_{n,1}(x,y) = A_{n,1}^{\mathbf{0}}(x,y) + \sum_{\substack{\mathbf{1} \le k \le \left[\frac{n}{2}\right]\\s = l_1 + \dots + l_k \le n}} A_{k,1}^{\mathbf{0}}(B_{l_1}(x),\dots,B_{l_k}(x),A_{n-s,1}^{\mathbf{0}}(x,y)), \quad (4)$$

Invariant multilinear symmetric forms on $\mathfrak{sl}_2(\mathbb{R})$ and $\mathfrak{so}(3)$

Let
$$\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$$
, $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{R})$ or $\mathfrak{g} = \mathfrak{so}(3)$.

→ Since $H^0(\mathfrak{g}) = H^1(\mathfrak{g}) = 0$, then the $A_{n,1}$ which define the A.L.L.R.S on \mathfrak{g} can be written as follows :

$$A_{n,\mathbf{1}}(x,y) = A_{n,\mathbf{1}}^{\mathbf{0}}(x,y) + \sum_{\substack{\mathbf{1} \le k \le \left\lceil \frac{n}{2} \right\rceil \\ s = l_{\mathbf{1}} + \dots + l_k \le n}} A_{k,\mathbf{1}}^{\mathbf{0}}(B_{l_{\mathbf{1}}}(x),\dots,B_{l_k}(x),A_{n-s,\mathbf{1}}^{\mathbf{0}}(x,y)).$$

 \rightsquigarrow For any $n \in \mathbb{N}^*$, we define $P : \mathfrak{g}^{2n} \longrightarrow \mathbb{K}$ $(\mathbb{K} = \mathbb{R}, \mathbb{C})$ by

$$P_n(x_1,\ldots,x_{2n}) = \frac{1}{(2n)!} \sum_{\sigma \in S_{2n}} \langle x_{\sigma(1)}, x_{\sigma(2)} \rangle \ldots \langle x_{\sigma(2n-1)}, x_{\sigma(2n)} \rangle \quad \text{and} \quad P_0 = 1,$$

where $\langle x, x \rangle = \frac{1}{2} tr(ad_x^2)$. This defines a symmetric invariant form on g and the map $B_g^g : g^{2n+1} \longrightarrow g$ given by

$$B_n^{\mathfrak{g}}(x_1,\ldots,x_{2n+1}) = \sum_{k=1}^{2n+1} P_n(x_1,\ldots,\hat{x}_k,\ldots,x_{2n+1}) x_k$$

is symmetric and invariant. We denote by $S_n^{\mathfrak{g}}(\mathfrak{g},\mathfrak{g})$ the vector space of \mathfrak{g} -invariant *n*-multilinear symmetric forms on \mathfrak{g} with values in \mathfrak{g} .

Invariant multilinear symmetric forms on on $\mathfrak{sl}_2(\mathbb{R})$ and $\mathfrak{so}(3)$

Theorem :
Let
$$\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$$
. Then⁷, for any $n \in \mathbb{N}^*$, we have
 $S_{2n}^{\mathfrak{g}}(\mathfrak{g},\mathfrak{g}) = 0$ and $S_{2n+1}^{\mathfrak{g}}(\mathfrak{g},\mathfrak{g}) = \mathbb{C}B_n^{\mathfrak{g}}$.
Corollary :
If $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{R})$ or $\mathfrak{g} = \mathfrak{so}(3)$ then, for any $n \in \mathbb{N}^*$, we have
 $S_{2n}^{\mathfrak{g}}(\mathfrak{g},\mathfrak{g}) = 0$ and $S_{2n+1}^{\mathfrak{g}}(\mathfrak{g},\mathfrak{g}) = \mathbb{R}B_n^{\mathfrak{g}}$.

^{7.} M. Balagovic, Chevalley restriction theorem for vector-valued functions on quantum groups, Representation Theory An Electronic Journal of the American Mathematical Society Volume 15, Pages 617-645 (2011).

Main Proposition : Let \mathfrak{h} be either $\mathfrak{sl}_2(\mathbb{R})$ or $\mathfrak{so}(3)$ and \triangleright an analytic linear Lie rack product on \mathfrak{h} such that $[,]_{\triangleright}$ is the Lie algebra bracket of \mathfrak{h} . Then there exists a sequence $(U_n)_{n\in\mathbb{N}^*}$ with $U_1 = 1$, $U_2 = \frac{1}{2}$, for any $x, y \in \mathfrak{h}$,

$$x \triangleright y = y + \left(\sum_{n=0}^{\infty} U_{2n+1} \langle x, x \rangle^n\right) [x, y] + \left(\sum_{n=1}^{\infty} U_{2n} \langle x, x \rangle^{n-1}\right) \operatorname{ad}_x^2(y)$$

and for any $n \in \mathbb{N}^*$,

$$U_{2n} = \frac{1}{2} \left[\sum_{r=0}^{n-1} U_{2r+1} U_{2(n-r)-1} - \sum_{r=1}^{n-1} U_{2r} U_{2(n-r)} \right].$$
 (5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proof of the theorem

The idea of the proof is showing that there exists a unique sequence $(a_n)_{n\geq 1}$ such that the function $F(t) = 1 + \sum_{t=1}^{\infty} a_n t^n$ converge and

$$\begin{aligned} x \rhd y &= \exp(F(\langle x, x \rangle) \mathrm{ad}_x)(y) \\ &= y + \sum_{n=0}^{\infty} F(\langle x, x \rangle)^{2n+1} A_{2n+1,1}^0(x, y) + \sum_{n=1}^{\infty} F(\langle x, x \rangle)^{2n} A_{2n,1}^0(x, y). \end{aligned}$$

Using the following formulas

$$\begin{cases} A_{2n}^{0}(x,y) = \frac{\langle x,x\rangle^{n-1}}{(2n)!} \operatorname{ad}_{x}^{2}(y) = \frac{\langle x,x\rangle^{n}}{(2n)!} y - \frac{\langle x,x\rangle^{n-1} \langle x,y\rangle}{(2n)!} x, \ n \ge 1, \\ A_{2n+1}^{0}(x,y) = \frac{\langle x,x\rangle^{n}}{(2n+1)!} [x,y], \quad n \ge 0. \end{cases}$$

$$(6)$$

Proof of the theorem

one can see that

$$\exp(F(\langle x, x \rangle) \operatorname{ad}_{x})(y) = y + \left(\sum_{n=0}^{\infty} \frac{[F(\langle x, x \rangle)]^{2n+1} \langle x, x \rangle^{n}}{(2n+1)!}\right) [x, y] \\ + \left(\sum_{n=1}^{\infty} \frac{[F(\langle x, x \rangle)]^{2n} \langle x, x \rangle^{n-1}}{(2n)!}\right) \operatorname{ad}_{x}^{2}(y).$$

Put $[F(\langle x, x \rangle)]^n = \sum_{m=0}^{\infty} B_{n,m} \langle x, x \rangle^m$ and compute the coefficients $B_{n,m}$.

$$[F(\langle x, x \rangle)]^n = (1 + a_1 \langle x, x \rangle + a_2 \langle x, x \rangle^2 + \ldots + a_m \langle x, x \rangle^m + R)^n = (1 + a_1 \langle x, x \rangle + a_2 \langle x, x \rangle^2 + \ldots + a_m \langle x, x \rangle^m)^n + P,$$

where P contains terms of degree $\geq m + 1$.

Proof of the theorem

The multinomial theorem gives

$$\left(1+a_1\langle x,x\rangle+a_2\langle x,x\rangle^2+\ldots+a_m\langle x,x\rangle^m\right)^n=\sum_{k_0+\ldots+k_m=n}\frac{n!}{k_0!k_1!\ldots k_m!}a_1^{k_1}\ldots a_m^{k_m}\langle x,x\rangle^{k_1+2k_2+\ldots+mk_m}.$$

Thus

$$B_{n,m} = \sum_{k_1+2k_2+\ldots+mk_m=m, k_0+k_1+\ldots+k_m=n} \frac{n!}{k_0!k_1!\ldots k_m!} a_1^{k_1}\ldots a_m^{k_m},$$

▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ ● の ○ ○

for $m \geq 1$ and $B_{n,0} = 1$.

Proof of the theorem

$$\begin{split} \sum_{n=0}^{\infty} \frac{F(\langle x, x \rangle)^{2n+1} \langle x, x \rangle^n}{(2n+1)!} &= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{B_{2n+1,m} \langle x, x \rangle^{m+n}}{(2n+1)!} \\ &= \sum_{n=0}^{\infty} \left(\sum_{p=0}^n \frac{B_{2p+1,n-p}}{(2p+1)!} \right) \langle x, x \rangle^n, \\ \sum_{n=1}^{\infty} \frac{F(\langle x, x \rangle)^{2n} \langle x, x \rangle^{n-1}}{(2n)!} &= \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} \frac{B_{2n,m} \langle x, x \rangle^{m+n-1}}{(2n)!} \\ &= \sum_{n=1}^{\infty} \left(\sum_{p=1}^n \frac{B_{2p,n-p}}{(2p)!} \right) \langle x, x \rangle^{n-1}. \end{split}$$

Proof of the theorem

For sake of simplicity and clarity, put

$$V_{n,m}(a_1,\ldots,a_m) = \frac{B_{n,m}}{n!}$$

=
$$\sum_{k_1+2k_2+\ldots+mk_m=m,k_0+k_1+\ldots+k_m=n} \frac{a_1^{k_1}\ldots a_m^{k_m}}{k_0!k_1!\ldots k_m!}$$

To prove the theorem we need to show that there exists a unique sequences $(a_n)_{n\geq 1}$ such that

$$U_{2n+1} = \sum_{p=0}^{n} V_{2p+1,n-p}(a_1,\ldots,a_{n-p}), \quad n \ge 1, \quad (7)$$
$$U_{2n} = \sum_{p=1}^{n} V_{2p,n-p}(a_1,\ldots,a_{n-p}), \quad n \ge 1. \quad (8)$$

Proof of the theorem

Note first that the relation(5) and the fact that $U_2 = \frac{1}{2}$ defines the sequence $(U_{2n})_{n\geq 1}$ entirely in function of the sequence $(U_{2n+1})_{n\geq 0}$. On the other hand, since $V_{1,n}(a_1,\ldots,a_n) = a_n$ and $U_1 = 1$ then

$$U_3 = a_1 + \frac{1}{3!}$$
 and $U_{2n+1} = a_n + \sum_{p=1}^n V_{2p+1,n-p}(a_1,\ldots,a_{n-p}), n \ge 2.$

Since the quantity $\sum_{p=1}^{n} V_{2p+1,n-p}(a_1,\ldots,a_{n-p})$ depends only on (a_1,\ldots,a_{n-1}) , these relations define inductively and uniquely the sequence $(a_n)_{n\geq 1}$ in function of $(U_{2n+1})_{n\geq 0}$. To achieve the proof we need to prove (8). We will proceed by induction and we will use the following relation

$$\frac{\partial V_{n,m}}{\partial a_l}(a_1,\ldots,a_m) = V_{n-1,m-l}(a_1,\ldots,a_{m-l}), \quad l = 1,\ldots,m.$$

Proof of the theorem Indeed,

$$\frac{\partial V_{n,m}}{\partial a_l}(a_1,\ldots,a_m) = \sum_{\substack{k_1+2k_2+\ldots+mk_m=m,\\k_0+k_1+\ldots+k_m=n,k_l \ge 1}} \frac{a_1^{k_1}\ldots a_l^{k_l-1}\ldots a_m^{k_m}}{k_0!k_1!\ldots(k_l-1)!\ldots k_m!}$$

$$k_l'=k_l-1 \sum_{\substack{k_1+2k_2+\ldots+lk_l'+\ldots+mk_m=m-l,\\k_0+k_1+\ldots+k_l'+\ldots+k_m=n-1}} \frac{a_1^{k_1}\ldots a_l^{k_l'}\ldots a_m^{k_m}}{k_0!k_1!\ldots(k_l')!\ldots k_m!}.$$

To conclude, one needs to remark that in the relation

$$k_1+2k_2+\ldots+lk_l'+\ldots+mk_m=m-l$$

the left side is a sum of nonnegative number and the right side is nonnegative so $(m - l + 1)k_{m-l+1} = \ldots = mk_m = 0$ and hence the relation is equivalent to

$$k_1 + 2k_2 + \ldots + (m - l)k_{m-l} = m - l.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Proof of the theorem

We can now prove (8). We proceed by induction. For n = 1, we have $U_2 = \frac{1}{2}$ and $V_{2,0} = \frac{1}{2}$. Suppose that the relation holds from 1 to n - 1. By virtue of (5), we have

$$U_{2n} = \frac{1}{2} \left[\sum_{r=0}^{n-1} U_{2r+1} U_{2(n-r)-1} - \sum_{r=1}^{n-1} U_{2r} U_{2(n-r)} \right]$$

and all the U_r appearing in this formula are given by (7) and (8) this implies that $U_{2n} = H(a_1, \ldots, a_{n-1})$. On the other hand, we have

$$\sum_{p=1}^{n} V_{2p,n-p}(a_1,\ldots,a_{n-p}) = G(a_1,\ldots,a_{n-1}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof of the theorem

To show that U_{2n} satisfies (8) is equivalent to showing

$$H(0) = G(0) \text{ and } \frac{\partial H}{\partial a_l} = \frac{\partial G}{\partial a_l}, \quad l = 1, \dots n - 1.$$

But $V_{n,m}(0) = 0$ if $m \ge 1$ and $V_{n,0}(0) = \frac{1}{n!}.$
$$H(0) = \frac{1}{2} \left(\sum_{r=0}^{n-1} \frac{1}{(2r+1)!(2(n-r)-1)!} - \sum_{r=1}^{n-1} \frac{1}{(2r)!(2(n-r))!} \right)$$
$$= \frac{1}{2} \left(\sum_{r=0}^{n-1} \frac{1}{(2r+1)!(2(n-r)-1)!} - \sum_{r=0}^{n} \frac{1}{(2r)!(2(n-r))!} \right)$$
$$+ \frac{1}{(2n)!}$$
$$= -\frac{1}{2} (1-1)^{2n} + \frac{1}{(2n)!} = \frac{1}{(2n)!},$$

Proof of the theorem

 $G(0) = V_{2n,0}(0) = \frac{1}{(2n)!} = H(0)$. For r = 0, ..., n-1, by induction hypothesis U_{2r+1} is given by (7) and by using (9) on can see easily that $\frac{\partial U_{2r+1}}{\partial a_l} = U_{2(r-l)}$ if l = 1, ..., r and 0 if $l \ge r + 1$. Similarly, we have $\frac{\partial U_{2r}}{\partial a_l} = U_{2(r-l)-1}$ if l = 1, ..., r-1 and 0 if $l \ge r$. For sake of simplicity, we put

$$\frac{\partial U_{2r+1}}{\partial a_l} = U_{2(r-l)} \quad \text{and} \quad \frac{\partial U_{2r}}{\partial a_l} = U_{2(r-l)-1}$$

with the convention $U_0 = 1$ and $U_s = 0$ if s is negative. Then, for l = 1, ..., n - 1, we have

Proof of the theorem

$$\begin{aligned} \frac{\partial H}{\partial a_l} &= \frac{1}{2} \left[\sum_{r=0}^{n-1} \left(\frac{\partial U_{2r+1}}{\partial a_l} U_{2(n-r)-1} + \frac{\partial U_{2(n-r)-1}}{\partial a_l} U_{2r+1} \right) - \sum_{r=1}^{n-1} \left(\frac{\partial U_{2r}}{\partial a_l} U_{2(n-r)} + \frac{\partial U_{2(n-r)}}{\partial a_l} U_{2r} \right) \right] \\ &= \frac{1}{2} \left[\sum_{r=0}^{n-1} \left(U_{2(r-l)} U_{2(n-r)-1} + U_{2(n-r-l-1)} U_{2r+1} \right) - \sum_{r=1}^{n-1} \left(U_{2(r-l)-1} U_{2(n-r)} + U_{2(n-r-l)-1} U_{2r} \right) \right] \\ &= \frac{1}{2} \sum_{r=0}^{n-1-l} U_{2r} U_{2(n-r-l)-1} + \frac{1}{2} \sum_{r=0}^{n-1} U_{2(n-r-l-1)} U_{2r+1} \\ &- \frac{1}{2} \sum_{r=0}^{n-l-2} U_{2r+1} U_{2(n-r-l-1)} - \frac{1}{2} \sum_{r=1}^{n-1} U_{2(n-r-l)-1} U_{2r} \\ &= \frac{1}{2} U_{2(n-l)-1} + \frac{1}{2} \sum_{r=n-l-1}^{n-1} U_{2(n-r-l-1)} U_{2r+1} - \frac{1}{2} \sum_{r=n-l}^{n-1} U_{2(n-r-l)-1} U_{2r} \\ &= U_{2(n-l)-1}. \end{aligned}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

This completes the proof.