Analytic linear Lie Rack Structures on Leibniz Algebras

Abid Fatima-Ezzahrae
Supervised by : Pr. H. Abchir \& Pr. M. Boucetta

Seminar AGTA
26 December 2020

Rack Structures And Leibniz Algebras

"Lie Rack Structures"

\rightsquigarrow Lie Rack :
A Lie rack is a pointed smooth manifold $(X, 1)$ together with a smooth map $\triangleright: X \times X \longrightarrow X,(a, b) \mapsto a \triangleright b$ such that,for any $a, b, c \in X$,

- the left translation $\mathrm{L}_{a}: X \longrightarrow X, b \mapsto a \triangleright b$ are diffeomorphisms,
- $a \triangleright(b \triangleright c)=(a \triangleright b) \triangleright(a \triangleright c)$,
- $1 \triangleright a=a$ and $a \triangleright 1=1$.
\rightsquigarrow Example :
- Any Lie group G has a Lie rack structure given by $g \triangleright h:=g^{-1} h g$.
$\{$ Lie groups $\} \subset\{$ Lie racks $\}$

Rack Structures And Leibniz Algebras

" Leibniz Algebras"

\rightsquigarrow Leibniz algebra :
A left Leibniz algebra ${ }^{1}$ is an algebra $(\mathfrak{h},[]$,$) over a field \mathbb{K}$ such that, for every element $u \in \mathfrak{h}, \operatorname{ad}_{u}: \mathfrak{h} \longrightarrow \mathfrak{h}, v \mapsto[u, v]$ is a derivation of \mathfrak{h}, i.e.,

$$
\begin{equation*}
[u,[v, w]]=[[u, v], w]+[v,[u, w]] \tag{1}
\end{equation*}
$$

\rightsquigarrow Example :

- If the Leibniz bracket is skew, then $(\mathfrak{h},[]$,$) is a Lie algebra.$

$$
\{\text { Lie algebras }\} \subset\{\text { Leibniz algebras }\}
$$

1. J. L. Loday, Une version non-commutative des algebres de Lie, L'Ens. Math 39 (1993) 269-293.

Rack Structures And Leibniz Algebras

From Lie racks to Leibniz algebras

\rightsquigarrow Tangent Functor ${ }^{2}$: Given a pointed Lie rack $(X, 1)$, for any $a \in X$, we denote by $\operatorname{Ad}_{a}: T_{1} X=\mathfrak{h} \longrightarrow \mathfrak{h}$ the differential of L_{a} at 1 . We have

$$
\mathrm{L}_{a \triangleright b}=\mathrm{L}_{a} \circ \mathrm{~L}_{b} \circ \mathrm{~L}_{a}^{-1} \quad \text { and } \quad \operatorname{Ad}_{a \triangleright b}=\operatorname{Ad}_{a} \circ \operatorname{Ad}_{b} \circ \operatorname{Ad}_{a}^{-1}
$$

Thus Ad : $X \longrightarrow \operatorname{GL}(\mathfrak{h})$ is an homomorphism of Lie racks. If we put

$$
\left.[u, v]_{\triangleright}=\left.\frac{d}{d t}\right|_{\mid t=0} \operatorname{Ad}_{c(t)} v, \quad u, v \in \mathfrak{h}, c:\right]-\epsilon, \epsilon\left[\longrightarrow X, c(0)=1, c^{\prime}(0)=u\right.
$$

Theorem
Any Lie rack $(X, \triangleright, 1)$, the tangent space $\left(\mathfrak{h},[,]_{\triangleright}\right)$ is a left Leibniz algebra.
2. M. Kinyon, Leibniz algebras, Lie racks, and digroups, Journal of Lie Theory, volume 17 (2007) 99-114.

Analytic Linear Lie Rack Structures On Leibniz Algebras

- Analityc Linear Lie Rack Structures on finite dimensional vector space.

Analytic Linear Lie Rack Structures On Leibniz Algebras

- Analityc Linear Lie Rack Structures on finite dimensional vector space.
\llcorner Characterization of A.L.L.R.S.

Analytic Linear Lie Rack Structures On Leibniz Algebras

- Analityc Linear Lie Rack Structures on finite dimensional vector space.
\bigsqcup Characterization of A.L.L.R.S.
\hookrightarrow Rigidity of Leibniz algebras.

Analytic Linear Lie Rack Structures On Leibniz Algebras

- Analityc Linear Lie Rack Structures on finite dimensional vector space.
- A.L.L.R.S on Leibniz algebras with $H^{0}=H^{1}=0$.

Analytic Linear Lie Rack Structures On Leibniz Algebras

- Analityc Linear Lie Rack Structures on finite dimensional vector space.
- A.L.L.R.S on Leibniz algebras with $H^{0}=H^{1}=0$.
- A.L.L.R.S and Rigidity of $\mathfrak{s l}_{2}(\mathbb{R})$ and $\mathfrak{s o}(3)$.

Analytic linear Lie rack structures

Definitions

- A linear Lie rack structure on a finite dimensional vector space V is a Lie rack operation $(x, y) \mapsto x \triangleright y$ pointed at 0 and such that for any x, the map $\mathrm{L}_{x}: y \mapsto x \triangleright y$ is linear.

Analytic linear Lie rack structures

Definitions

- A linear Lie rack structure on a finite dimensional vector space V is a Lie rack operation $(x, y) \mapsto x \triangleright y$ pointed at 0 and such that for any x, the map $\mathrm{L}_{x}: y \mapsto x \triangleright y$ is linear.
- A linear Lie rack operation \triangleright is called analytic if for any $x, y \in V$,

$$
x \triangleright y=y+[x, y]+\sum_{n=2}^{\infty} A_{n, 1}(x, \ldots, x, y)
$$

Analytic linear Lie rack structures

Definitions

- A linear Lie rack structure on a finite dimensional vector space V is a Lie rack operation $(x, y) \mapsto x \triangleright y$ pointed at 0 and such that for any x, the map $\mathrm{L}_{x}: y \mapsto x \triangleright y$ is linear.
- A linear Lie rack operation \triangleright is called analytic if for any $x, y \in V$,

$$
x \triangleright y=y+[x, y]+\sum_{n=2}^{\infty} A_{n, 1}(x, \ldots, x, y),
$$

where : $A_{n, 1}: V \times \ldots \times V \longrightarrow V$ is an $(n+1)$-multilinear map which is symmetric in the n first arguments.

Analytic linear Lie rack structures

Definitions

- A linear Lie rack structure on a finite dimensional vector space V is a Lie rack operation $(x, y) \mapsto x \triangleright y$ pointed at 0 and such that for any x, the map $\mathrm{L}_{x}: y \mapsto x \triangleright y$ is linear.
- A linear Lie rack operation \triangleright is called analytic if for any $x, y \in V$,

$$
x \triangleright y=y+[x, y]+\sum_{n=2}^{\infty} A_{n, 1}(x, \ldots, x, y),
$$

where: $A_{1,1}$ is the left Leibniz bracket associated to \triangleright.

Characterization of analytic linear Lie rack structures

"Main Theorem"

Let V be a real finite dimensional vector space and $\left(A_{n, 1}\right)_{n \geq 1}$ a sequence of $n+1$-multilinear maps symmetric in the n first arguments. We suppose that the operation \triangleright given by

$$
x \triangleright y=y+\sum_{n=1}^{\infty} A_{n, 1}(x, \ldots, x, y)
$$

converges. Then \triangleright is a Lie rack structure on V if and only if for any $p, q \in \mathbb{N}^{*}$ and $x, y, z \in V$,

$$
A_{p, \mathbf{1}}\left(x, A_{q, \mathbf{1}}(y, z)\right)=\sum_{s_{\mathbf{1}}+\ldots+s_{q}+k=p} A_{q, \mathbf{1}}\left(A_{s_{1}, \mathbf{1}}(x, y), \ldots, A_{s_{q}, \mathbf{1}}(x, y), A_{k, \mathbf{1}}(x, z)\right),
$$

where for sake of simplicity $A_{p, 1}(x, y):=A_{p, 1}(x, \ldots, x, y)$.
In particular, if $p=q=1$ we get that $[]:,=A_{1,1}$ is a left Leibniz bracket which is actually the left Leibniz bracket associated to (V, \triangleright).

Invariant maps

If $p=1$ and $q \in \mathbb{N}^{*}$, the relation ${ }^{3}$ becomes

$$
\begin{aligned}
\mathcal{L}_{x} A_{q, 1}\left(y_{1}, \ldots, y_{q+1}\right):= & {\left[x, A_{q, 1}\left(y_{1}, \ldots, y_{q+1}\right)\right] } \\
& -\sum_{i=1}^{q+1} A_{q, 1}\left(y_{1}, \ldots,\left[x, y_{i}\right], \ldots, y_{q+1}\right) \\
= & 0 .
\end{aligned}
$$

A multilinear map A on a left Leibniz algebra satisfying $\mathcal{L}_{x} A=0$ will be called invariant.
3.

$$
A_{p, \mathbf{1}}\left(x, A_{q, \mathbf{1}}(y, z)\right)=\sum_{s_{\mathbf{1}}+\ldots+s_{q}+k=p} A_{q, \mathbf{1}}\left(A_{s_{\mathbf{1}}, \mathbf{1}}(x, y), \ldots, A_{s_{q}, \mathbf{1}}(x, y), A_{k, \mathbf{1}}(x, z)\right) .
$$

Canonical A.L.L.R.S on Leibniz algebras

- If $(\mathfrak{h},[]$,$) be a left Leibniz algebra then the operation$ $\stackrel{\subset}{\triangleright}: \mathfrak{h} \times \mathfrak{h} \longrightarrow \mathfrak{h}$ given by

$$
u \stackrel{c}{\triangleright} v=\exp \left(\operatorname{ad}_{u}\right)(v)
$$

defines an (canonical) analytic linear Lie rack structure on \mathfrak{h} such that the associated left Leibniz bracket on $T_{0} \mathfrak{h}=\mathfrak{h}$ is the initial bracket [,]. Where $A_{0,1}^{0}(x, y)=y$ and

$$
A_{n, 1}^{0}\left(x_{1}, \ldots, x_{n}, y\right):=\frac{1}{(n!)^{2}} \sum_{\sigma \in S_{n}} \operatorname{ad}_{x_{\sigma(1)}} \circ \ldots \circ \operatorname{ad}_{x_{\sigma(n)}}(y)
$$

- Corollary

The $\left(A_{n, 1}^{0}\right)_{n \in \mathbb{N}}$ satisfy the sequence of equations ${ }^{4}$.
4.

$$
A_{p, \mathbf{1}}\left(x, A_{q, \mathbf{1}}(y, z)\right)=\sum_{s_{\mathbf{1}}+\ldots+s_{q}+k=p} A_{q, \mathbf{1}}\left(A_{s_{\mathbf{1}}, \mathbf{1}}(x, y), \ldots, A_{s_{q}, \mathbf{1}}(x, y), A_{k, \mathbf{1}}(x, z)\right) .
$$

Main Proposition

Let $(\mathfrak{h},[]$,$) be a left Leibniz algebra, F: \mathbb{R} \longrightarrow \mathbb{R}$ a smooth function and $P: \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathbb{R}$ a symmetric multilinear p-form such that, for any $y, x_{1} \ldots, x_{p} \in \mathfrak{h}$,

$$
\sum_{i=1}^{p} P\left(x_{1}, \ldots,\left[y, x_{i}\right], \ldots, x_{p}\right)=0
$$

Then the operation \triangleright given by

$$
\begin{equation*}
x \triangleright y=\exp \left(F(P(x, \ldots, x)) \operatorname{ad}_{x}\right)(y) \tag{2}
\end{equation*}
$$

is a linear Lie rack structure on \mathfrak{h} and its associated left Leibniz bracket is $[,]_{\triangleright}=F(0)[$,$] . Moreover, if F$ is analytic then \triangleright is analytic.

Main Proposition

Let $(\mathfrak{h},[]$,$) be a left Leibniz algebra, F: \mathbb{R} \longrightarrow \mathbb{R}$ a smooth function and $P: \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathbb{R}$ a symmetric multilinear p-form such that, for any $y, x_{1} \ldots, x_{p} \in \mathfrak{h}$,

$$
\sum_{i=1}^{p} P\left(x_{1}, \ldots,\left[y, x_{i}\right], \ldots, x_{p}\right)=0
$$

Then the operation \triangleright given by

$$
\begin{equation*}
x \triangleright y=\exp \left(F(P(x, \ldots, x)) \operatorname{ad}_{x}\right)(y) \tag{2}
\end{equation*}
$$

is a linear Lie rack structure on \mathfrak{h} and its associated left Leibniz bracket is $[,]_{\triangleright}=F(0)[$,$] . Moreover, if F$ is analytic then \triangleright is analytic.
\rightsquigarrow If F is the identity map, the \triangleright is the canonical A.L.L.R.S on \mathfrak{h}.

Main Proposition

Let $(\mathfrak{h},[]$,$) be a left Leibniz algebra, F: \mathbb{R} \longrightarrow \mathbb{R}$ a smooth function and $P: \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathbb{R}$ a symmetric multilinear p-form such that, for any $y, x_{1} \ldots, x_{p} \in \mathfrak{h}$,

$$
\sum_{i=1}^{p} P\left(x_{1}, \ldots,\left[y, x_{i}\right], \ldots, x_{p}\right)=0
$$

Then the operation \triangleright given by

$$
\begin{equation*}
x \triangleright y=\exp \left(F(P(x, \ldots, x)) \operatorname{ad}_{x}\right)(y) \tag{2}
\end{equation*}
$$

is a linear Lie rack structure on \mathfrak{h} and its associated left Leibniz bracket is $[,]_{\triangleright}=F(0)[$,$] . Moreover, if F$ is analytic then \triangleright is analytic.
\rightsquigarrow If one takes $F(0)=0$, the two pointed Lie rack structures

$$
\left.x \triangleright_{0} y=y \quad \text { and } \quad x \triangleright_{1} y=\exp (F(P(x, \ldots, x))) \operatorname{ad}_{x}\right)(y)
$$

are two pointed Lie rack structures on abelian Leibniz algebra which are not equivalent (even locally near 0).

Main Proposition

Let $(\mathfrak{h},[]$,$) be a left Leibniz algebra, F: \mathbb{R} \longrightarrow \mathbb{R}$ a smooth function and $P: \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathbb{R}$ a symmetric multilinear p-form such that, for any $y, x_{1} \ldots, x_{p} \in \mathfrak{h}$,

$$
\sum_{i=1}^{p} P\left(x_{1}, \ldots,\left[y, x_{i}\right], \ldots, x_{p}\right)=0
$$

Then the operation \triangleright given by

$$
\begin{equation*}
x \triangleright y=\exp \left(F(P(x, \ldots, x)) \operatorname{ad}_{x}\right)(y) \tag{2}
\end{equation*}
$$

is a linear Lie rack structure on \mathfrak{h} and its associated left Leibniz bracket is $[,]_{\triangleright}=F(0)[$,$] . Moreover, if F$ is analytic then \triangleright is analytic.
Rigid Leibniz algebra :
A left Leibniz algebra ($\mathfrak{h},[$,$]) is called rigid if any analytic linear Lie rack$ structure \triangleright on \mathfrak{h} such that $[,]_{\triangleright}=[$,$] is given by$

$$
\left.x \triangleright y=\exp (F(P(x, \ldots, x))) \operatorname{ad}_{x}\right)(y)
$$

Main Proposition

Let $(\mathfrak{h},[]$,$) be a left Leibniz algebra, F: \mathbb{R} \longrightarrow \mathbb{R}$ a smooth function and $P: \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathbb{R}$ a symmetric multilinear p-form such that, for any $y, x_{1} \ldots, x_{p} \in \mathfrak{h}$,

$$
\sum_{i=1}^{p} P\left(x_{1}, \ldots,\left[y, x_{i}\right], \ldots, x_{p}\right)=0
$$

Then the operation \triangleright given by

$$
\begin{equation*}
x \triangleright y=\exp \left(F(P(x, \ldots, x)) \operatorname{ad}_{x}\right)(y) \tag{2}
\end{equation*}
$$

is a linear Lie rack structure on \mathfrak{h} and its associated left Leibniz bracket is $[,]_{\triangleright}=F(0)[$,$] . Moreover, if F$ is analytic then \triangleright is analytic.
Rigid Leibniz algebra :
A left Leibniz algebra ($\mathfrak{h},[$,$]) is called rigid if any analytic linear Lie rack$ structure \triangleright on \mathfrak{h} such that $[,]_{\triangleright}=[$,$] is given by$

$$
\left.x \triangleright y=\exp (F(P(x, \ldots, x))) \operatorname{ad}_{x}\right)(y)
$$

where $F: \mathbb{R} \longrightarrow \mathbb{R}$ is analytic with $F(0)=1$,

Main Proposition

Let $(\mathfrak{h},[]$,$) be a left Leibniz algebra, F: \mathbb{R} \longrightarrow \mathbb{R}$ a smooth function and $P: \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathbb{R}$ a symmetric multilinear p-form such that, for any $y, x_{1} \ldots, x_{p} \in \mathfrak{h}$,

$$
\sum_{i=1}^{p} P\left(x_{1}, \ldots,\left[y, x_{i}\right], \ldots, x_{p}\right)=0
$$

Then the operation \triangleright given by

$$
\begin{equation*}
x \triangleright y=\exp \left(F(P(x, \ldots, x)) \operatorname{ad}_{x}\right)(y) \tag{2}
\end{equation*}
$$

is a linear Lie rack structure on \mathfrak{h} and its associated left Leibniz bracket is $[,]_{\triangleright}=F(0)[$,$] . Moreover, if F$ is analytic then \triangleright is analytic.
Rigid Leibniz algebra :
A left Leibniz algebra ($\mathfrak{h},[$,$]) is called rigid if any analytic linear Lie rack$ structure \triangleright on \mathfrak{h} such that $[,]_{\triangleright}=[$,$] is given by$

$$
\left.x \triangleright y=\exp (F(P(x, \ldots, x))) \operatorname{ad}_{x}\right)(y)
$$

where $\quad P: \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathbb{R}$ invariant symmetric multilinear p-form on \mathfrak{h}.

Characterization of A.L.L.R.S and Cohomological interpretation

$$
A_{p, 1}\left(x, A_{q, 1}(y, z)\right)=\sum_{s_{1}+\ldots+s_{q}+k=p} A_{q, 1}\left(A_{s_{1}, 1}(x, y), \ldots, A_{s_{q}, 1}(x, y), A_{k, 1}(x, z)\right)
$$

where for sake of simplicity $A_{p, 1}(x, y):=A_{p, 1}(x, \ldots, x, y)$.
For $q=1$, The above equation can be written for any $x, y, z \in \mathfrak{h}$,

$$
\delta\left(i_{x} \ldots i_{x} A_{p, 1}\right)(y, z)=-\sum_{r=1}^{p-1}\left[A_{r, 1}(x, y), A_{p-r, 1}(x, z)\right]
$$

Characterization of A.L.L.R.S and Cohomological interpretation

$$
A_{p, 1}\left(x, A_{q, 1}(y, z)\right)=\sum_{s_{1}+\ldots+s_{q}+k=p} A_{q, 1}\left(A_{s_{1}, 1}(x, y), \ldots, A_{s_{q}, 1}(x, y), A_{k, 1}(x, z)\right)
$$

where for sake of simplicity $A_{p, 1}(x, y):=A_{p, 1}(x, \ldots, x, y)$.
For $q=1$, The above equation can be written for any $x, y, z \in \mathfrak{h}$,

$$
\delta\left(i_{x} \ldots i_{x} A_{p, 1}\right)(y, z)=-\sum_{r=1}^{p-1}\left[A_{r, 1}(x, y), A_{p-r, 1}(x, z)\right]
$$

where
$\rightsquigarrow \delta: \operatorname{Hom}\left(\otimes^{n} \mathfrak{h}, \mathfrak{h}\right) \longrightarrow \operatorname{Hom}\left(\otimes^{n+1} \mathfrak{h}, \mathfrak{h}\right)$ given by

$$
\begin{aligned}
\delta(\omega)\left(x_{\mathbf{0}}, \ldots, x_{n}\right)= & \sum_{i=\mathbf{0}}^{n-\mathbf{1}}\left[x_{i}, \omega\left(x_{\mathbf{0}}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right)\right]+(-\mathbf{1})^{n-\mathbf{1}}\left[\omega\left(x_{\mathbf{0}}, \ldots, x_{n-\mathbf{1}}\right), x_{n}\right] \\
& +\sum_{i<j}(-1)^{i+\mathbf{1}} \omega\left(x_{\mathbf{0}}, \ldots, \hat{x}_{i}, \ldots, x_{j-\mathbf{1}},\left[x_{i}, x_{j}\right], x_{j+\mathbf{1}}, \ldots, x_{n}\right),
\end{aligned}
$$

and then defines a cohomology $H^{p}(\mathfrak{h})$ for $p \in \mathbb{N}$.

Characterization of A.L.L.R.S and Cohomological interpretation

$$
A_{p, 1}\left(x, A_{q, 1}(y, z)\right)=\sum_{s_{1}+\ldots+s_{q}+k=p} A_{q, 1}\left(A_{s_{1}, 1}(x, y), \ldots, A_{s_{q}, 1}(x, y), A_{k, 1}(x, z)\right)
$$

where for sake of simplicity $A_{p, 1}(x, y):=A_{p, 1}(x, \ldots, x, y)$.
For $q=1$, The above equation can be written for any $x, y, z \in \mathfrak{h}$,

$$
\delta\left(i_{x} \ldots i_{x} A_{p, 1}\right)(y, z)=-\sum_{r=1}^{p-1}\left[A_{r, 1}(x, y), A_{p-r, 1}(x, z)\right]
$$

where
$\rightsquigarrow \delta: \operatorname{Hom}\left(\otimes^{n} \mathfrak{h}, \mathfrak{h}\right) \longrightarrow \operatorname{Hom}\left(\otimes^{n+1} \mathfrak{h}, \mathfrak{h}\right)$ given by

$$
\begin{aligned}
\delta(\omega)\left(x_{\mathbf{0}}, \ldots, x_{n}\right)= & \sum_{i=\mathbf{0}}^{n-\mathbf{1}}\left[x_{i}, \omega\left(x_{\mathbf{0}}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right)\right]+(-\mathbf{1})^{n-\mathbf{1}}\left[\omega\left(x_{\mathbf{0}}, \ldots, x_{n-\mathbf{1}}\right), x_{n}\right] \\
& +\sum_{i<j}(-1)^{i+\mathbf{1}} \omega\left(x_{\mathbf{0}}, \ldots, \hat{x}_{i}, \ldots, x_{j-\mathbf{1}},\left[x_{i}, x_{j}\right], x_{j+\mathbf{1}}, \ldots, x_{n}\right),
\end{aligned}
$$

and then defines a cohomology $H^{p}(\mathfrak{h})$ for $p \in \mathbb{N}$.
$\rightsquigarrow i_{x} \ldots i_{x} A_{p, \mathbf{1}}: \mathfrak{h} \longrightarrow \mathfrak{h}, y \mapsto A_{p, \mathbf{1}}(x, \ldots, x, y)$.
A.L.L.R.S on Leibniz algebras with $H^{0}=H^{1}=0$

A.L.L.R.S on Leibniz algebras with $H^{0}=H^{1}=0$

\rightsquigarrow The sequence $\left(A_{n, 1}^{0}\right)_{n \in \mathbb{N}}$ defining the canonical linear Lie rack structure of \mathfrak{h} satisfies

$$
\delta\left(i_{x} \ldots i_{x} A_{p, 1}^{0}\right)(y, z)=-\sum_{r=1}^{p-1}\left[A_{r, 1}^{0}(x, y), A_{p-r, 1}^{0}(x, z)\right]
$$

A.L.L.R.S on Leibniz algebras with $H^{0}=H^{1}=0$

\rightsquigarrow Main Theorem :
Let $(\mathfrak{h},[]$,$) be a left Leibniz algebra such that H^{0}(\mathfrak{h})=H^{1}(\mathfrak{h})=0$. Let $\left(A_{n, 1}\right)_{n \geq 0}$ be a sequence where $A_{0,1}(x, y)=y$ and $A_{1,1}(x, y)=[x, y]$ and, for any $n \geq 2, A_{n, 1}: \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathfrak{h}$ is multilinear invariant and symmetric in the n first arguments. We suppose that the $A_{n, 1}$ satisfy ${ }^{5}$. Then there exists a unique sequence $\left(B_{n}\right)_{n \geq 2}$ of invariant symmetric multilinear maps $B_{n}: \mathfrak{h} \times \ldots \times \mathfrak{h} \longrightarrow \mathfrak{h}$ such that, for any $x, y \in \mathfrak{h}$,

$$
\begin{equation*}
A_{n, \mathbf{1}}(x, y)=A_{n, \mathbf{1}}^{0}(x, y)+\sum_{\substack{1 \leq k \leq\left[\frac{n}{2}\right] \\ s=I_{1}+\cdots+I_{k} \leq n}} A_{k, \mathbf{1}}^{0}\left(B_{l_{\mathbf{1}}}(x), \ldots, B_{l_{k}}(x), A_{n-s, \mathbf{1}}^{0}(x, y)\right), \tag{3}
\end{equation*}
$$

where $A_{p, 1}(x, y)=A_{p, 1}(x, \ldots, x, y)$ and $B_{l}(x)=B_{l}(x, \ldots, x)$.
5.

$$
A_{p, \mathbf{1}}\left(x, A_{q, \mathbf{1}}(y, z)\right)=\sum_{s_{\mathbf{1}}+\ldots+s_{q}+k=p} A_{q, \mathbf{1}}\left(A_{s_{\mathbf{1}}, \mathbf{1}}(x, y), \ldots, A_{s_{q}, \mathbf{1}}(x, y), A_{k, \mathbf{1}}(x, z)\right)
$$

A.L.L.R.S and Rigidity of $\mathfrak{s l}_{2}(\mathbb{R})$ and $\mathfrak{s o}(3)$

Main Theorem

Let \mathfrak{h} be either $\mathfrak{s l}_{2}(\mathbb{R})$ or $\mathfrak{s o (3)}$ and \triangleright an analytic linear Lie rack structure on \mathfrak{h} such that $[,]_{\triangleright}$ is the Lie algebra bracket of \mathfrak{h}. Then there exists an analytic function $F: \mathbb{R} \longrightarrow \mathbb{R}$ given by

$$
F(u)=1+\sum_{k=1}^{\infty} a_{k} u^{k}
$$

such that, for any $x, y \in \mathfrak{h}$,

$$
x \triangleright y=\exp \left(F(\langle x, x\rangle) \operatorname{ad}_{x}\right)(y)
$$

where $\langle x, x\rangle=\frac{1}{2} \operatorname{tr}\left(\operatorname{ad}_{x} \circ \operatorname{ad}_{x}\right)$. So \mathfrak{h} is rigid.

A.L.L.R.S and Rigidity of $\mathfrak{s l}_{2}(\mathbb{R})$ and $\mathfrak{s o (3)}$

Steps of the proof

- Consider \mathfrak{h} be either $\mathfrak{s l}_{2}(\mathbb{R})$ or $\mathfrak{s o}(3)$. Since $H^{0}(\mathfrak{h})=H^{1}(\mathfrak{h})=0$, we will use characterization ${ }^{6}$ of A.L.L.R.S with $H^{0}=H^{1}=0$. Therefore, we will need to determine the space of Invariant multilinear symmetric forms on \mathfrak{h}.
- Explicit A.L.L.R.S on \mathfrak{h}.
- Proof that there exists a unique sequence $\left(a_{n}\right)_{n \geq 1}$ such that the function $F(t)=1+\sum_{t=1}^{\infty} a_{n} t^{n}$ converge and

$$
x \triangleright y=\exp \left(F(\langle x, x\rangle) \operatorname{ad}_{x}\right)(y)
$$

$$
=y+\sum_{n=0}^{\infty} F(\langle x, x\rangle)^{2 n+1} A_{2 n+1,1}^{0}(x, y)+\sum_{n=1}^{\infty} F(\langle x, x\rangle)^{2 n} A_{2 n, 1}^{0}(x, y)
$$

6.

$$
\begin{align*}
A_{n, \mathbf{1}}(x, y)=A_{n, \mathbf{1}}^{0}(x, y)+\sum_{\substack{1 \leq k \leq\left[\frac{n}{2}\right] \\
s=I_{\mathbf{1}}+\ldots+I_{k} \leq n}} A_{k, \mathbf{1}}^{0}\left(B_{\mathbf{l}}(x), \ldots, B_{I_{k}}(x), A_{n-s, \mathbf{1}}^{0}(x, y)\right) \tag{4}\\
\end{align*}
$$

A.L.L.R.S and Rigidity of $\mathfrak{s l}_{2}(\mathbb{R})$ and $\mathfrak{s o}(3)$

Invariant multilinear symmetric forms on $\mathfrak{s l}_{2}(\mathbb{R})$ and $\mathfrak{s o}(3)$

Let $\mathfrak{g}=\mathfrak{s l}_{2}(\mathbb{C}), \mathfrak{g}=\mathfrak{s l}_{2}(\mathbb{R})$ or $\mathfrak{g}=\mathfrak{s o}(3)$.
\rightsquigarrow Since $\left.H^{0}(\mathfrak{g})\right)=H^{1}(\mathfrak{g})=0$, then the $A_{n, 1}$ which define the A.L.L.R.S on \mathfrak{g} can be written as follows:

$$
A_{n, \mathbf{1}}(x, y)=A_{n, \mathbf{1}}^{0}(x, y)+\sum_{\substack{1 \leq k \leq\left[\frac{n}{2}\right] \\ s=I_{\mathbf{1}}+\ldots+I_{k} \leq n}} \quad A_{k, \mathbf{1}}^{0}\left(B_{I_{\mathbf{1}}}(x), \ldots, B_{I_{k}}(x), A_{n-s, \mathbf{1}}^{0}(x, y)\right) .
$$

\rightsquigarrow For any $n \in \mathbb{N}^{*}$, we define $P: \mathfrak{g}^{2 n} \longrightarrow \mathbb{K}(\mathbb{K}=\mathbb{R}, \mathbb{C})$ by

$$
P_{n}\left(x_{\mathbf{1}}, \ldots, x_{\mathbf{2} n}\right)=\frac{1}{(2 n)!} \sum_{\sigma \in S_{\mathbf{2}}}\left\langle x_{\sigma(\mathbf{1})}, x_{\sigma(\mathbf{2})}\right\rangle \ldots\left\langle x_{\sigma(\mathbf{2} n-\mathbf{1})}, x_{\sigma(\mathbf{2} n)}\right\rangle \quad \text { and } \quad P_{\mathbf{0}}=1,
$$

where $\langle x, x\rangle=\frac{1}{2} \operatorname{tr}\left(\operatorname{ad}_{x}^{\mathbf{2}}\right)$. This defines a symmetric invariant form on \mathfrak{g} and the map $B_{n}^{\mathfrak{g}}: \mathfrak{g}^{\mathbf{2 n + 1}} \longrightarrow \mathfrak{g}$ given by

$$
B_{n}^{\mathfrak{g}}\left(x_{\mathbf{1}}, \ldots, x_{\mathbf{2 n + 1}}\right)=\sum_{k=1}^{2 n+\mathbf{1}} P_{n}\left(x_{\mathbf{1}}, \ldots, \hat{x}_{k}, \ldots, x_{\mathbf{2 n + 1}}\right) x_{k}
$$

is symmetric and invariant. We denote by $S_{n}^{\mathfrak{g}}(\mathfrak{g}, \mathfrak{g})$ the vector space of \mathfrak{g}-invariant n-multilinear symmetric forms on \mathfrak{g} with values in \mathfrak{g}.

A.L.L.R.S and Rigidity of $\mathfrak{s l}_{2}(\mathbb{R})$ and $\mathfrak{s o}(3)$

Invariant multilinear symmetric forms on on $\mathfrak{s l}_{2}(\mathbb{R})$ and $\mathfrak{s o (3)}$

Theorem :

Let $\mathfrak{g}=\mathfrak{s l}_{2}(\mathbb{C})$. Then ${ }^{7}$, for any $n \in \mathbb{N}^{*}$, we have

$$
S_{2 n}^{\mathfrak{g}}(\mathfrak{g}, \mathfrak{g})=0 \quad \text { and } \quad S_{2 n+1}^{\mathfrak{g}}(\mathfrak{g}, \mathfrak{g})=\mathbb{C} B_{n}^{\mathfrak{g}} .
$$

Corollary :
If $\mathfrak{g}=\mathfrak{s l}_{2}(\mathbb{R})$ or $\mathfrak{g}=\mathfrak{s o}(3)$ then, for any $n \in \mathbb{N}^{*}$, we have

$$
S_{2 n}^{\mathfrak{g}}(\mathfrak{g}, \mathfrak{g})=0 \quad \text { and } \quad S_{2 n+1}^{\mathfrak{g}}(\mathfrak{g}, \mathfrak{g})=\mathbb{R} B_{n}^{\mathfrak{g}} .
$$

7. M. Balagovic, Chevalley restriction theorem for vector-valued functions on quantum groups, Representation Theory An Electronic Journal of the American Mathematical Society Volume 15, Pages 617-645 (2011).

A.L.L.R.S and Rigidity of $\mathfrak{s l}_{2}(\mathbb{R})$ and $\mathfrak{s o}(3)$

Main Proposition :

Let \mathfrak{h} be either $\mathfrak{s l}_{2}(\mathbb{R})$ or $\mathfrak{s o}(3)$ and \triangleright an analytic linear Lie rack product on \mathfrak{h} such that $[,]_{\triangleright}$ is the Lie algebra bracket of \mathfrak{h}. Then there exists a sequence $\left(U_{n}\right)_{n \in \mathbb{N}^{*}}$ with $U_{1}=1, U_{2}=\frac{1}{2}$, for any $x, y \in \mathfrak{h}$,

$$
x \triangleright y=y+\left(\sum_{n=0}^{\infty} U_{2 n+1}\langle x, x\rangle^{n}\right)[x, y]+\left(\sum_{n=1}^{\infty} U_{2 n}\langle x, x\rangle^{n-1}\right) \operatorname{ad}_{x}^{2}(y)
$$

and for any $n \in \mathbb{N}^{*}$,

$$
\begin{equation*}
U_{2 n}=\frac{1}{2}\left[\sum_{r=0}^{n-1} U_{2 r+1} U_{2(n-r)-1}-\sum_{r=1}^{n-1} U_{2 r} U_{2(n-r)}\right] . \tag{5}
\end{equation*}
$$

A.L.L.R.S and Rigidity of $\mathfrak{s l}_{2}(\mathbb{R})$ and $\mathfrak{s o (3)}$

Proof of the theorem

The idea of the proof is showing that there exists a unique sequence $\left(a_{n}\right)_{n \geq 1}$ such that the function $F(t)=1+\sum_{t=1}^{\infty} a_{n} t^{n}$ converge and

$$
x \triangleright y=\exp \left(F(\langle x, x\rangle) \operatorname{ad}_{x}\right)(y)
$$

$$
=y+\sum_{n=0}^{\infty} F(\langle x, x\rangle)^{2 n+1} A_{2 n+1,1}^{0}(x, y)+\sum_{n=1}^{\infty} F(\langle x, x\rangle)^{2 n} A_{2 n, 1}^{0}(x, y)
$$

Using the following formulas

$$
\left\{\begin{array}{l}
A_{2 n}^{0}(x, y)=\frac{\langle x, x\rangle^{n-1}}{(2 n)!} \operatorname{ad}_{x}^{2}(y)=\frac{\langle x, x\rangle^{n}}{(2 n)!} y-\frac{\langle x, x\rangle^{n-1}\langle x, y\rangle}{(2 n)!} x, n \geq 1 \tag{6}\\
A_{2 n+1}^{0}(x, y)=\frac{\langle x, x\rangle^{n}}{(2 n+1)!}[x, y], \quad n \geq 0
\end{array}\right.
$$

A.L.L.R.S and Rigidity of $\mathfrak{s l}_{2}(\mathbb{R})$ and $\mathfrak{s o}(3)$

Proof of the theorem

one can see that

$$
\begin{aligned}
\exp \left(F(\langle x, x\rangle) \operatorname{ad}_{x}\right)(y)= & y+\left(\sum_{n=0}^{\infty} \frac{[F(\langle x, x\rangle)]^{2 n+1}\langle x, x\rangle^{n}}{(2 n+1)!}\right)[x, y] \\
& +\left(\sum_{n=1}^{\infty} \frac{[F(\langle x, x\rangle)]^{2 n}\langle x, x\rangle^{n-1}}{(2 n)!}\right) \operatorname{ad}_{x}^{2}(y)
\end{aligned}
$$

Put $[F(\langle x, x\rangle)]^{n}=\sum_{m=0}^{\infty} B_{n, m}\langle x, x\rangle^{m}$ and compute the coefficients $B_{n, m}$.

$$
\begin{aligned}
{[F(\langle x, x\rangle)]^{n} } & =\left(1+a_{1}\langle x, x\rangle+a_{2}\langle x, x\rangle^{2}+\ldots+a_{m}\langle x, x\rangle^{m}+R\right)^{n} \\
& =\left(1+a_{1}\langle x, x\rangle+a_{2}\langle x, x\rangle^{2}+\ldots+a_{m}\langle x, x\rangle^{m}\right)^{n}+P
\end{aligned}
$$

where P contains terms of degree $\geq m+1$.

A.L.L.R.S and Rigidity of $\mathfrak{s l}_{2}(\mathbb{R})$ and $\mathfrak{s o}(3)$

Proof of the theorem

The multinomial theorem gives
$\left(1+a_{\mathbf{1}}\langle x, x\rangle+a_{\mathbf{2}}\langle x, x\rangle^{\mathbf{2}}+\ldots+a_{m}\langle x, x\rangle^{m}\right)^{n}=\sum_{k_{0}+\ldots+k_{m}=n} \frac{n!}{k_{0}!k_{\mathbf{1}}!\ldots k_{m}!} a_{\mathbf{1}}^{k_{\mathbf{1}}} \ldots a_{m}^{k_{m}}\langle x, x\rangle^{k_{\mathbf{1}}+\mathbf{2} k_{\mathbf{2}}+\ldots+m k_{m}}$.
Thus

$$
B_{n, m}=\sum_{k_{1}+2 k_{2}+\ldots+m k_{m}=m, k_{0}+k_{1}+\ldots+k_{m}=n} \frac{n!}{k_{0}!k_{1}!\ldots k_{m}!} a_{1}^{k_{1}} \ldots a_{m}^{k_{m}},
$$

for $m \geq 1$ and $B_{n, 0}=1$.

A.L.L.R.S and Rigidity of $\mathfrak{s l}_{2}(\mathbb{R})$ and $\mathfrak{s o}(3)$

Proof of the theorem

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{F(\langle x, x\rangle)^{2 n+1}\langle x, x\rangle^{n}}{(2 n+1)!} & =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{B_{2 n+1, m}\langle x, x\rangle^{m+n}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{p=0}^{n} \frac{B_{2 p+1, n-p}}{(2 p+1)!}\right)\langle x, x\rangle^{n} \\
\sum_{n=1}^{\infty} \frac{F(\langle x, x\rangle)^{2 n}\langle x, x\rangle^{n-1}}{(2 n)!} & =\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} \frac{B_{2 n, m}\langle x, x\rangle^{m+n-1}}{(2 n)!} \\
& =\sum_{n=1}^{\infty}\left(\sum_{p=1}^{n} \frac{B_{2 p, n-p}}{(2 p)!}\right)\langle x, x\rangle^{n-1}
\end{aligned}
$$

A.L.L.R.S and Rigidity of $\mathfrak{s l}_{2}(\mathbb{R})$ and $\mathfrak{s o}(3)$

Proof of the theorem

For sake of simplicity and clarity, put

$$
\begin{aligned}
V_{n, m}\left(a_{1}, \ldots, a_{m}\right) & =\frac{B_{n, m}}{n!} \\
& =\sum_{k_{1}+2 k_{2}+\ldots+m k_{m}=m, k_{0}+k_{1}+\ldots+k_{m}=n} \frac{a_{1}^{k_{1}} \ldots a_{m}^{k_{m}}}{k_{0}!k_{1}!\ldots k_{m}!} .
\end{aligned}
$$

To prove the theorem we need to show that there exists a unique sequences $\left(a_{n}\right)_{n \geq 1}$ such that

$$
\begin{align*}
U_{2 n+1} & =\sum_{p=0}^{n} V_{2 p+1, n-p}\left(a_{1}, \ldots, a_{n-p}\right), \quad n \geq 1 \tag{7}\\
U_{2 n} & =\sum_{p=1}^{n} V_{2 p, n-p}\left(a_{1}, \ldots, a_{n-p}\right), \quad n \geq 1 \tag{8}
\end{align*}
$$

A.L.L.R.S and Rigidity of $\mathfrak{s L}_{2}(\mathbb{R})$ and $\mathfrak{s o}(3)$

Proof of the theorem

Note first that the relation(5) and the fact that $U_{2}=\frac{1}{2}$ defines the sequence $\left(U_{2 n}\right)_{n \geq 1}$ entirely in function of the sequence $\left(U_{2 n+1}\right)_{n \geq 0}$. On the other hand, since $V_{1, n}\left(a_{1}, \ldots, a_{n}\right)=a_{n}$ and $U_{1}=1$ then

$$
U_{3}=a_{1}+\frac{1}{3!} \quad \text { and } \quad U_{2 n+1}=a_{n}+\sum_{p=1}^{n} V_{2 p+1, n-p}\left(a_{1}, \ldots, a_{n-p}\right), \quad n \geq 2
$$

Since the quantity $\sum_{p=1}^{n} V_{2 p+1, n-p}\left(a_{1}, \ldots, a_{n-p}\right)$ depends only on $\left(a_{1}, \ldots, a_{n-1}\right)$, these relations define inductively and uniquely the sequence $\left(a_{n}\right)_{n \geq 1}$ in function of $\left(U_{2 n+1}\right)_{n \geq 0}$. To achieve the proof we need to prove (8). We will proceed by induction and we will use the following relation

$$
\frac{\partial V_{n, m}}{\partial a_{l}}\left(a_{1}, \ldots, a_{m}\right)=V_{n-1, m-l}\left(a_{1}, \ldots, a_{m-l}\right), \quad l=1, \ldots, m .
$$

A.L.L.R.S and Rigidity of $\mathfrak{s L}_{2}(\mathbb{R})$ and $\mathfrak{s o}(3)$

Proof of the theorem

Indeed,

$$
\begin{aligned}
\frac{\partial V_{n, m}}{\partial a_{l}}\left(a_{1}, \ldots, a_{m}\right) & =\sum_{\substack{k_{1}+2 k_{2}+\ldots+m k_{m}=m, k_{0}+k_{1}+\ldots+k_{m}=n, k_{l} \geq 1}} \frac{a_{1}^{k_{1}} \ldots a_{l}^{k_{1}-1} \ldots a_{m}^{k_{m}}}{k_{0}!k_{1}!\ldots\left(k_{l}-1\right)!\ldots k_{m}!} \\
\stackrel{k_{l}^{\prime}=k_{l}-1}{=} & \sum_{\substack{k_{1}+2 k_{2}+\ldots+l k_{l}^{\prime}+\ldots+m k_{m}=m-l, k_{0}+k_{1}+\ldots+k_{l}^{\prime}+\ldots+k_{m}=n-1}} \frac{a_{1}^{k_{1}} \ldots a_{l}^{k_{l}^{\prime}} \ldots a_{m}^{k_{m}}}{k_{0}!k_{1}!\ldots\left(k_{l}^{\prime}\right)!\ldots k_{m}!}
\end{aligned}
$$

To conclude, one needs to remark that in the relation

$$
k_{1}+2 k_{2}+\ldots+I k_{l}^{\prime}+\ldots+m k_{m}=m-I
$$

the left side is a sum of nonnegative number and the right side is nonnegative so $(m-I+1) k_{m-I+1}=\ldots=m k_{m}=0$ and hence the relation is equivalent to

$$
k_{1}+2 k_{2}+\ldots+(m-I) k_{m-I}=m-I
$$

A.L.L.R.S and Rigidity of $\mathfrak{s l}_{2}(\mathbb{R})$ and $\mathfrak{s o}(3)$

Proof of the theorem

We can now prove (8). We proceed by induction. For $n=1$, we have $U_{2}=\frac{1}{2}$ and $V_{2,0}=\frac{1}{2}$. Suppose that the relation holds from 1 to $n-1$. By virtue of (5), we have

$$
U_{2 n}=\frac{1}{2}\left[\sum_{r=0}^{n-1} U_{2 r+1} U_{2(n-r)-1}-\sum_{r=1}^{n-1} U_{2 r} U_{2(n-r)}\right]
$$

and all the U_{r} appearing in this formula are given by (7) and (8) this implies that $U_{2 n}=H\left(a_{1}, \ldots, a_{n-1}\right)$. On the other hand, we have

$$
\sum_{p=1}^{n} V_{2 p, n-p}\left(a_{1}, \ldots, a_{n-p}\right)=G\left(a_{1}, \ldots, a_{n-1}\right)
$$

A.L.L.R.S and Rigidity of $\mathfrak{s L}_{2}(\mathbb{R})$ and $\mathfrak{s o}(3)$

Proof of the theorem

To show that $U_{2 n}$ satisfies (8) is equivalent to showing

$$
H(0)=G(0) \quad \text { and } \quad \frac{\partial H}{\partial a_{l}}=\frac{\partial G}{\partial a_{l}}, \quad I=1, \ldots n-1 .
$$

But $V_{n, m}(0)=0$ if $m \geq 1$ and $V_{n, 0}(0)=\frac{1}{n!}$.

$$
\begin{aligned}
H(0)= & \frac{1}{2}\left(\sum_{r=0}^{n-1} \frac{1}{(2 r+1)!(2(n-r)-1)!}-\sum_{r=1}^{n-1} \frac{1}{(2 r)!(2(n-r))!}\right) \\
= & \frac{1}{2}\left(\sum_{r=0}^{n-1} \frac{1}{(2 r+1)!(2(n-r)-1)!}-\sum_{r=0}^{n} \frac{1}{(2 r)!(2(n-r))!}\right) \\
& +\frac{1}{(2 n)!} \\
= & -\frac{1}{2}(1-1)^{2 n}+\frac{1}{(2 n)!}=\frac{1}{(2 n)!},
\end{aligned}
$$

A.L.L.R.S and Rigidity of $\mathfrak{s l}_{2}(\mathbb{R})$ and $\mathfrak{s o}(3)$

Proof of the theorem

$G(0)=V_{2 n, 0}(0)=\frac{1}{(2 n)!}=H(0)$. For $r=0, \ldots, n-1$, by induction hypothesis $U_{2 r+1}$ is given by (7) and by using (9) on can see easily that $\frac{\partial U_{2 r+1}}{\partial a^{\prime}}=U_{2(r-I)}$ if $I=1, \ldots, r$ and 0 if $I \geq r+1$. Similarly, we have $\frac{\partial U_{2 r}}{\partial a_{l}}=U_{2(r-I)-1}$ if $I=1, \ldots, r-1$ and 0 if $I \geq r$. For sake of simplicity, we put

$$
\frac{\partial U_{2 r+1}}{\partial a_{l}}=U_{2(r-l)} \quad \text { and } \quad \frac{\partial U_{2 r}}{\partial a_{l}}=U_{2(r-l)-1}
$$

with the convention $U_{0}=1$ and $U_{s}=0$ if s is negative. Then, for $I=1, \ldots, n-1$, we have

A.L.L.R.S and Rigidity of $\mathfrak{s l}_{2}(\mathbb{R})$ and $\mathfrak{s o}(3)$

Proof of the theorem

$$
\begin{aligned}
& \frac{\partial H}{\partial a_{l}}=\frac{\mathbf{1}}{2}\left[\sum_{r=\mathbf{0}}^{n-\mathbf{1}}\left(\frac{\partial U_{\mathbf{2} r+\mathbf{1}}}{\partial a_{l}} U_{\mathbf{2}(n-r)-\mathbf{1}}+\frac{\partial U_{\mathbf{2}(n-r)-\mathbf{1}}}{\partial a_{l}} U_{\mathbf{2} r+\mathbf{1}}\right)-\sum_{r=\mathbf{1}}^{n-\mathbf{1}}\left(\frac{\partial U_{\mathbf{2 r}}}{\partial a_{l}} U_{\mathbf{2}(n-r)}+\frac{\partial U_{\mathbf{2}(n-r)}}{\partial a_{l}} U_{\mathbf{2} r}\right)\right] \\
& =\frac{1}{2}\left[\sum_{r=0}^{n-\mathbf{1}}\left(U_{\mathbf{2}(r-l)} U_{\mathbf{2}(n-r)-\mathbf{1}}+U_{\mathbf{2}(n-r-l-1)} U_{\mathbf{2} r+\mathbf{1}}\right)-\sum_{r=\mathbf{1}}^{n-\mathbf{1}}\left(U_{\mathbf{2}(r-l)-\mathbf{1}} U_{\mathbf{2}(n-r)}+U_{\mathbf{2}(n-r-l)-1} U_{\mathbf{2} r}\right)\right] \\
& =\frac{1}{2} \sum_{r=0}^{n-1-l} U_{\mathbf{2 r}} U_{\mathbf{2}(n-r-l)-1}+\frac{1}{2} \sum_{r=0}^{n-\mathbf{1}} U_{\mathbf{2}(n-r-I-1)} U_{\mathbf{2 r + 1}} \\
& -\frac{1}{2} \sum_{r=0}^{n-I-\mathbf{2}} U_{\mathbf{2} r+\mathbf{1}} U_{\mathbf{2}(n-r-l-1)}-\frac{1}{2} \sum_{r=1}^{n-\mathbf{1}} U_{\mathbf{2}(n-r-l)-\mathbf{1}} U_{\mathbf{2} r} \\
& =\frac{1}{2} U_{\mathbf{2}(n-l)-1}+\frac{1}{2} \sum_{r=n-l-1}^{n-1} U_{\mathbf{2}(n-r-l-1)} U_{\mathbf{2} r+1}-\frac{1}{2} \sum_{r=n-l}^{n-1} U_{\mathbf{2}(n-r-l)-\mathbf{1}} U_{\mathbf{2} r} \\
& =\quad U_{\mathbf{2}(n-l)-\mathbf{1}} .
\end{aligned}
$$

This completes the proof.

