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Lie groups

For any Lie group GG we have a canonical involution:

s.: G — G, written g g .

Q s.(e) =e.
Q s.0s5. =1dg.



Example: The unit circle S' ¢ C
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Symmetries (s,) in a Lie group G

For any fixed point a in (G, there exists a smooth involution of
G such that a is an isolated fixed point for it.
It is defined by:

Se G
—

G
%1[ la

G—2 @,

where [, : G — G is the left translation by the element g € G.
More precisely, the map s, is given by:

5,(b) == ab 'a.



Example: The unit circle S' ¢ C
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Example: The unit circle S' ¢ C




What about the unit sphere S*?

]R3
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The unit sphere S? C R?
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The unit sphere S? C R?
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The unit sphere S? C R?
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The unit sphere S? C R?

For each = € S?, we have an involution:

s, @ S — S?
y > Ri(m)(y),

where R, () is the rotation around the z-axis by angle 7.
Explicitly, it is given by:

Ro(m)(y) :== 2(z, y)x — y.
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Symmetries on the Poincaré Half-Plane

Consider H := {z =2+ iy € C/ y > 0} with the metric
ds? = y%(dxz + dy?). The group SL(2,IR) acts transitively
and isometrically on H via:

a b az+b
czi= :
c d cz+d
Moreover, a symmetry (an isometry of IH) at i is given by:

5i(2) =~ = (_01 é) -

Hence, under conjugaison by elements in SL(2,1R) we get
symmetries: s, : I[H — H for any a € H.
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What is a Symmetric Space?

Definition
A symmetric space is a connected smooth manifold M with a
smooth family of involutions {s,}.cas, in the sense that

MxM — M
(x,y) +— s.(y),

is smooth, and which satisfies the following properties:
Q s.(x)=2, VzeM,
Q 5,086,058, =55y, VIT,yEM,
©Q For each x € M, there exists a neighborhood U, C M of
x such that x is the only fixed point of s, in U,.
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An equivalent definition

Definition
A symmetric space is a connected smooth manifold M with a
smooth map p: M x M — M written as u(x,y) :=x -y,
which satisfies the following properties:
Qur-x=x Ve M,
Quz-(v-y =y, Vz,yeM,
Qu-(y-2)=(-y) - (r-2), Vz,y,z€ M,
Q For each z € M, there exists a neighborhood U, C M of
x such that

TYy=y _
{yeUm = y=ux.
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Example: Lie groups
For a connected Lie group GG, we have
w:GxG—=G, written a-b:=ab la.

Only the last property requires verification. Using the fact that
expe : g — G is a local diffeomorphism on a neighborhood of
0 € g, there exists a neighborhood U, C G of e € G such that

2
g =e€ _
{ el = g=ce.
So for each a € G, we define U, := U.,a, then we get

a-b:b<:> (ba‘l)Qze . b—ua
beU, beU, -
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Example: Symmetric Pairs

Definition
A symmetric pair is a triple (G, H, o) such that:
Q G is a connected Lie group and H a closed subgroup;

Q o0 : G — G is an involutive automorphism of G satisfying
the following condition

FiXO(U) C H C Fix(o0),
where Fix(o) := {g € G| o(g) = g}.

Main example: (GL™(n,R),SO(n), o), where the involution
automorphism o is
T

o:GL"(n,R) = GL*(n,R), A~ (A7")".
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From Symmetric Pairs to Symmetric Spaces

Theorem

Let (G, H,o) be a symmetric pair, then M := G/H is a
symmetric space.
Proof. Let 7 : G — M, g — g be the projection map. Define:
s:(b) :== o (b), S5 = Ay 0550 \y1,

where \, : M — M, b+~ ab;

p:MxM— M,  a@-b:=s4b) = ac(a1b).
This is well defined since H C Fix(o). For a,b € G, we have

a-(a-b) =a-as(a'b)
= ao (e tao(a=1b))

= b.
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Moreover, for g € GG, we have

g-(@-b) = go(g'ac(a='b))
= go(g~'a)o (o(a~'g)o(g~'b))
= go(g~ta)o (o(a~"g)g " go(g7'b))
= (g-a)-(3-b).
Finally, let g = m @ b be the canonical decomposition of g.
Consider a symmetric neighborhood V[, C m of 0 in m such

that o eXPgy, Vo — Uz C M is a diffeomorphism. For
u € Vp, we get

€-expg(u) = o (expg(u))
= expg (0'(u))

= expg(—u).
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Thus

S]]
S]]

—N
Q ol

m =
|

Similarly, for each a € G, we put Uz

obtain
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Examples of Symmetric Pairs

@ (G x G,AG,0), where G is a connected Lie group and
0:GxG—GxG, (a,b)— (ba).
@ (SO(p+q),SO(p) x SO(q), o), with o given by:

0:50(p+¢q) - SO(p+4q), A~ 1,,AL,,

where [, , = (%’ O[ )
—1q
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Examples of Symmetric Pairs

e (SO°(p, q),SO(p) x SO(q), o), where SO°(p, q) is the
identity component of the generalized orthogonal group
defined by:

O(p,q) == {A € GL(p+ . R) | AT1, A = I, .
and o is the following automorphism:
7:80%p,q) = SO%p,q), A (AN =1,,AL,.
@ (S0(2n),U(n),o), with o given by:
o :S0(2n) — SO(2n), Aws J,AJL,

0 -1,
where J,, := <]n 0 )
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Proposition

Let (G, H,o) be a symmetric pair, then M := G/H is a

reductive homogeneous GG-space. More precisely we have:
1. The Lie algebra of H ish :={u € g/ o'(u) = u}.
2.g=bhdm, wherem:={ucg/o'(u) =—u}.
3. Ad(H)(m) Cm, and [m,m]Cb.

Definition
Let 7 : g — g be an involutive automorphism of a Lie algebra
g.
@ The pair (g, 7) is called an involutive Lie algebra.
@ The canonical decomposition of g is g = & m, where
b := ker (1 — Idy) and m := ker (7 + Id,).

The following relations hold:
[hah] - b7 [ham] C m, [m,m] - b
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Conversely, we have

Proposition
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Proof. Since Lie (Fix(d)) = b, it suffices to check that
H C Fix(0). But this is obvious by using the following
commutative diagram

G

Texpé

g

G
expé)[
g

The last assertion follows from the uniqueness of the universal
covering manifold. =

—_—
-
_—
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The Canonical decomposition of g for the
previous Examples

@ For (GL™(n,R),SO(n), o), we have
h=so(n), and m = Sym(n,R).
@ For (G x G,AG, o), we have
b= {(u,u)|uecg}, and m={(u,—u)|uceg}.

@ For (SO(p + ¢),SO(p) x SO(q), ), we have

h = so(p) x so(q), and m:{(jﬁ if) |X€/\/lp7q(]R)}.
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The Canonical decomposition of g for the
previous Examples

@ For (SO%(p,q),SO(p) x SO(q), o), we have

h =so0(p) x so(q), and m = {(XOT )0(> | X € /\/lp,q(]R)}.

@ For (SO(2n),U(n), o), we have

h = {(_X}; ;;) | X €s0(n),Y € Sym(n,IR,)},

m= {(if _};() | X,Y Eso(n)}.
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Homomorphism of Symmetric Spaces

A homomorphism between two symmetric spaces (M, i11) and
(M, p2) is a smooth map ® : My — M such that:

O(x-y) = P(z) - P(y), Va,y e M.

An isomorphism between two symmetric spaces (M, i1) and
(M, pi2) is both a homomorphism and diffeomorphism.

An automorphism of a symmetric space (M, 1) is just an
isomorphism from M to itself. We denote by Aut(M) the
group of all automorphisms of M.
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Let (M, i) be a symmetric space. Define the group of
displacements of M by:

G(M) := (s, 08,; z,y € M).
If & € Aut(M), then using the following commutative diagram

M—= oM

M M,

5o (x)

we get that
® o (5;08,) 0 D7 = Sa(a) © Sa(y)-

Hence G(M) is a normal subgroup of Aut(M).
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Let 0 € M be a fixed point, then for each =,y € M we have

§,085,=5,05,05,08, = (5,05,) 0 (5,085,) .

Thus
G(M) = (s, 05,; x € M).

For each u € T,M, we define a vector field u € X (M) by:

1
ﬂx::§u-(o-x), Ve M.
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From Symmetric Spaces to Symmetric Pairs

Theorem

Let (M, 1) be a symmetric space and o € M a fixed point,
then the following properties hold.

1. Aut(M) is a Lie transformation group with Lie algebra
Der(M) := {X EXM)| Xpy=2-Xy+ Xy -y, Vz,y € M}

2. G(M) is a connected Lie subgroup of Aut(M) with Lie
algebra
g(M) :={u|ueT,M}.

3. G(M) acts transitively on M.

YN



From Symmetric Spaces to Symmetric Pairs

Theorem (Continued)
4. (G(M), H,,0,) is a symmetric pair, where H, denotes
the isotropy group of o, and o, given by:

0,: G(M) — G(M), Fws,0Fos,.

Moreover, M is isomorphic to G(M)/H,.

5. G(M) is the smallest subgroup of Aut(M) which is
transitive on M and stable under o,.

6. The canonical decomposition of g(M) corresponding to
o, IS
g(M) = m @ [m, m],
where m := ker (o) + 1Id,).

For a full proof one can see Loos, Ottmar. Symmetric spaces: General
theory. Vol. 1. WA Benjamin, 196935



Affine Symmetric Spaces

Definition
An affine symmetric space is a connected smooth manifold M
endowed with a connection V which satisfies the following:

@ For each x € M, there exists an affine map s, : M — M

such that:
where v : (—¢,e) — M is a geodesic of V with v(0) = z.

The affine map s, : M — M is called the geodesic symmetry
about z.
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Sy M — M, s, (y(t)) = ~v(—1).

Clearly a geodesic symmetry s, is different from Id;; and
admits x as an isolated fixed point.

Moreover, if v : (—e,e) — M is a geodesic of V with
7(0) = z and u, = 4(0), then

d

Tac z\Ux) — T t
alue) = 55 5 0(0)
d
== (=t
dt\t=07( )
= —U,.
Thus
,TISm = — IdTTM

7



Furthermore, using the following Lemma

Lemma

We deduce that
@ 5,05, =Idy, Vze M,
@ 5,056,086, =55y, VI,y€e€M.
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(M, V)

An affine symmetric space

20



(M' V) — (M/ {Sx}x € M)

An affine symmetric space A symmetric space
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Proof. Let D e T (T(LZ)M) be the difference tensor between
Vand V/, ie

D(X,Y):=V,iY —VyY, VXY €X(M).

Let x € M and s, its associated geodesic symmetry, then for
any u,v € T, M we have

D.(u,v) = D, (szx(u),szx(v))

= T,5, (Dx(u,v)>
= —D,(u,v).

Hence D,(u,v) = 0 and therefore D =0. =

40



Properties

Proposition
Let (M, V) be an affine symmetric space, then we have
1. V is complete.

2. Aff(M,V) acts transitively on M, and the same is true
for its identity component Aff*(M, V).

Proof. For the first assertion, if 7 : [0,¢] — M is a geodesic
segment, then it can be extended to [0, 2/] by reflecting
about the point ~y(¢):

PR B () for t €0,/
. {57(4) (v(20 —1t)) for telt,20].
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Proof. V is complete
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Proof. V is complete
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Proof. Aff(M, V) acts transitively on M
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Proof. Aff(M,V) acts transitively on )
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Proof. Aff(M,V) acts transitively on )
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Proof. Aff(M,V) acts transitively on )
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Proof. Aff(M,V) acts transitively on )
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Symmetric Pair associated to Affine
Symmetric Space

If (M, V) is an affine symmetric space, then we can write
M = Aff'(M,V)/H,,,

where H,  denotes the isotropy group of a point o € M in

Aff°(M, V). Let s° be the geodesic symmetry about 2, and

define a homomorphism

oV AfO(M, V) — Aff(M, V), written F 50 Fos’.

In fact oV is an involutive automorphism of Aff’(M, V).
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Symmetric Pair associated to Affine
Symmetric Space

Proposition

With the notations above, the triple (Affo(M V), Hyy, av) is
a symmetric pair.

Proof. It only remains to check that
Fix"(¢Y) C H,, C Fix(cV).
For the first inclusion, let w € Lie (Fix(cV)) and put

B = eXpAH(M‘v)(tw), vVt e R.

Since 3 lies in Fix’(cV), we have 5° 0 3, 0 s° = 3.

5Y)



Thus
s’ (Bi(wo)) = Bi(wo).

Using the fact that z is an isolated fixed point of 5° we get
that (3;(xg) = x¢ for ¢t lies in a small enough neighborhood of
0. Hence f; lies in HSO for t sufficiently small, which implies by
taking the derivative of /3; with respect to ¢t = 0 that w € b,,.

For the second inclusion, let F' € H,, be an element of H,,,
then a direct computation yields

Ty (8° 0 Fos”) =T, F.

Since M is connected it follows that s° o F 0% = F and
hence H,, C Fix(cV). =
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