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Lie groups

For any Lie group G we have a canonical involution:

se : G→ G, written g 7→ g−1.

1 se(e) = e.

2 se ◦ se = IdG.
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Example: The unit circle S1 ⊂ C
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Symmetries (sa) in a Lie group G

For any fixed point a in G, there exists a smooth involution of
G such that a is an isolated fixed point for it.
It is defined by:

G
se // G

la
��

G

la−1

OO

sa // G,

where lg : G→ G is the left translation by the element g ∈ G.
More precisely, the map sa is given by:

sa(b) := ab−1a.
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Example: The unit circle S1 ⊂ C

5



Example: The unit circle S1 ⊂ C

6



Example: The unit circle S1 ⊂ C

7



Example: The unit circle S1 ⊂ C

8



Example: The unit circle S1 ⊂ C
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Example: The unit circle S1 ⊂ C
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What about the unit sphere S2?
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The unit sphere S2 ⊂ R3
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The unit sphere S2 ⊂ R3
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The unit sphere S2 ⊂ R3
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The unit sphere S2 ⊂ R3

For each x ∈ S2, we have an involution:

sx : S2 −→ S2

y 7−→ Rx(π)(y),

where Rx(π) is the rotation around the x-axis by angle π.
Explicitly, it is given by:

Rx(π)(y) := 2〈x, y〉x− y.
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Symmetries on the Poincaré Half-Plane

Consider IH := {z = x+ iy ∈ |C/ y > 0} with the metric
ds2 := 1

y2 (dx2 + dy2). The group SL(2, IR) acts transitively
and isometrically on IH via:(

a b
c d

)
· z :=

az + b

cz + d
.

Moreover, a symmetry (an isometry of IH) at i is given by:

si(z) := −1

z
=

(
0 1
−1 0

)
· z.

Hence, under conjugaison by elements in SL(2, IR) we get
symmetries: sa : IH→ IH for any a ∈ IH.
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What is a Symmetric Space?

Definition

A symmetric space is a connected smooth manifold M with a
smooth family of involutions {sx}x∈M , in the sense that

M ×M −→ M
(x, y) 7−→ sx(y),

is smooth, and which satisfies the following properties:

1 sx(x) = x, ∀x ∈M ;

2 sx ◦ sy ◦ sx = ssx(y), ∀x, y ∈M ;

3 For each x ∈M , there exists a neighborhood Ux ⊆M of
x such that x is the only fixed point of sx in Ux.
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An equivalent definition

Definition

A symmetric space is a connected smooth manifold M with a
smooth map µ : M ×M →M written as µ(x, y) := x · y,
which satisfies the following properties:

1 x · x = x, ∀x ∈M ;

2 x · (x · y) = y, ∀x, y ∈M ;

3 x · (y · z) = (x · y) · (x · z), ∀x, y, z ∈M ;

4 For each x ∈M , there exists a neighborhood Ux ⊆M of
x such that {

x · y = y
y ∈ Ux

⇒ y = x.
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Example: Lie groups

For a connected Lie group G, we have

µ : G×G→ G, written a · b := ab−1a.

Only the last property requires verification. Using the fact that
expG : g→ G is a local diffeomorphism on a neighborhood of
0 ∈ g, there exists a neighborhood Ue ⊆ G of e ∈ G such that{

g2 = e
g ∈ Ue

⇒ g = e.

So for each a ∈ G, we define Ua := Uea, then we get{
a · b = b
b ∈ Ua

⇔
{

(ba−1)
2

= e
b ∈ Ua

⇒ b = a.
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Example: Symmetric Pairs

Definition

A symmetric pair is a triple (G,H, σ) such that:

1 G is a connected Lie group and H a closed subgroup;

2 σ : G→ G is an involutive automorphism of G satisfying
the following condition

Fix0(σ) ⊆ H ⊆ Fix(σ),

where Fix(σ) :=
{
g ∈ G | σ(g) = g

}
.

Main example: (GL+(n,R), SO(n), σ), where the involution
automorphism σ is

σ : GL+(n,R)→ GL+(n,R), A 7→
(
A−1

)T
.
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From Symmetric Pairs to Symmetric Spaces

Theorem

Let (G,H, σ) be a symmetric pair, then M := G/H is a
symmetric space.

Proof. Let π : G→M, g 7→ g be the projection map. Define:

se(b) := σ(b), sa := λa ◦ se ◦ λa−1 ,

where λa : M →M, b 7→ ab;

µ : M ×M →M, a · b := sa(b) = aσ(a−1b).

This is well defined since H ⊆ Fix(σ). For a, b ∈ G, we have

a · (a · b) = a · aσ(a−1b)

= aσ (a−1aσ(a−1b))

= b.
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Moreover, for g ∈ G, we have

g · (a · b) = gσ (g−1aσ(a−1b))

= gσ(g−1a)σ (σ(a−1g)σ(g−1b))

= gσ(g−1a)σ (σ(a−1g)g−1gσ(g−1b))

= (g · a) · (g · b).

Finally, let g = m⊕ h be the canonical decomposition of g.
Consider a symmetric neighborhood V0 ⊆ m of 0 in m such
that π ◦ expG|V0

: V0 → Ue ⊂M is a diffeomorphism. For
u ∈ V0, we get

e · expG(u) = σ (expG(u))

= expG (σ′(u))

= expG(−u).

22



Thus {
e · a = a
a ∈ Ue

⇒ a = e.

Similarly, for each a ∈ G, we put Ua := λa (Ue), then we
obtain {

a · b = b

b ∈ Ua
⇒ b = a.
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Examples of Symmetric Pairs

(G×G,∆G, σ), where G is a connected Lie group and

σ : G×G→ G×G, (a, b) 7→ (b, a).

(SO(p+ q), SO(p)× SO(q), σ), with σ given by:

σ : SO(p+ q)→ SO(p+ q), A 7→ Ip,qAIp,q,

where Ip,q :=

(
Ip 0
0 −Iq

)
.
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Examples of Symmetric Pairs

(SO0(p, q), SO(p)× SO(q), σ), where SO0(p, q) is the
identity component of the generalized orthogonal group
defined by:

O(p, q) :=
{
A ∈ GL(p+ q,R) | AT Ip,qA = Ip,q

}
,

and σ is the following automorphism:

σ : SO0(p, q)→ SO0(p, q), A 7→
(
A−1

)T
= Ip,qAIp,q.

(SO(2n),U(n), σ), with σ given by:

σ : SO(2n)→ SO(2n), A 7→ JnAJ
T
n ,

where Jn :=

(
0 −In
In 0

)
.
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Proposition

Let (G,H, σ) be a symmetric pair, then M := G/H is a
reductive homogeneous G-space. More precisely we have:

1. The Lie algebra of H is h := {u ∈ g / σ′(u) = u}.
2. g = h⊕m, where m := {u ∈ g / σ′(u) = −u}.
3. Ad(H)(m) ⊆ m, and [m,m] ⊆ h.

Definition

Let τ : g→ g be an involutive automorphism of a Lie algebra
g.

The pair (g, τ) is called an involutive Lie algebra.

The canonical decomposition of g is g = h⊕m, where
h := ker (τ − Idg) and m := ker (τ + Idg).

The following relations hold:
[h, h] ⊆ h, [h,m] ⊆ m, [m,m] ⊆ h.
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Conversely, we have

Proposition

Any involutive automorphism τ : g→ g of a Lie algebra g
gives rise to a symmetric pair (G̃, H̃, σ̃), where

G̃ is a simply connected Lie group having g as Lie algebra;

H̃ := 〈expG̃(h)〉, with h := ker (τ − Idg);

σ̃ ∈ Aut(G̃) such that σ̃′ = τ .

Moreover, if (G,H, σ) is a symmetric pair with (g, τ) as
associated involutive Lie algebra and such that G/H is simply

connected, then G̃/H̃ ∼= G/H.
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Proof. Since Lie (Fix(σ̃)) = h, it suffices to check that

H̃ ⊆ Fix(σ̃). But this is obvious by using the following
commutative diagram

G̃ σ̃ // G̃

g

exp
G̃

OO

τ // g.

exp
G̃

OO

The last assertion follows from the uniqueness of the universal
covering manifold.
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The Canonical decomposition of g for the
previous Examples

For (GL+(n,R), SO(n), σ), we have

h = so(n), and m = Sym(n,R).

For (G×G,∆G, σ), we have

h =
{

(u, u) | u ∈ g
}
, and m =

{
(u,−u) | u ∈ g

}
.

For (SO(p+ q), SO(p)× SO(q), σ), we have

h = so(p)× so(q), and m =
{(

0 X
−XT 0

)
| X ∈Mp,q(R)

}
.

29



The Canonical decomposition of g for the
previous Examples

For (SO0(p, q), SO(p)× SO(q), σ), we have

h = so(p)× so(q), and m =
{(

0 X
XT 0

)
| X ∈Mp,q(R)

}
.

For (SO(2n),U(n), σ), we have

h =

{(
X Y
−Y X

)
| X ∈ so(n), Y ∈ Sym(n,R)

}
,

and

m =

{(
X Y
Y −X

)
| X, Y ∈ so(n)

}
.
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Homomorphism of Symmetric Spaces

A homomorphism between two symmetric spaces (M1, µ1) and
(M2, µ2) is a smooth map Φ : M1 →M2 such that:

Φ(x · y) = Φ(x) · Φ(y), ∀x, y ∈M1.

An isomorphism between two symmetric spaces (M1, µ1) and
(M2, µ2) is both a homomorphism and diffeomorphism.

An automorphism of a symmetric space (M,µ) is just an
isomorphism from M to itself. We denote by Aut(M) the
group of all automorphisms of M .
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Let (M,µ) be a symmetric space. Define the group of
displacements of M by:

G(M) := 〈sx ◦ sy ; x, y ∈M〉.

If Φ ∈ Aut(M), then using the following commutative diagram

M
sx //

Φ
��

M

Φ
��

M
sΦ(x)

//M,

we get that

Φ ◦ (sx ◦ sy) ◦ Φ−1 = sΦ(x) ◦ sΦ(y).

Hence G(M) is a normal subgroup of Aut(M).
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Let o ∈M be a fixed point, then for each x, y ∈M we have

sx ◦ sy = sx ◦ so ◦ so ◦ sy = (sx ◦ so) ◦ (sy ◦ so)−1.

Thus
G(M) = 〈sx ◦ so ; x ∈M〉.

For each u ∈ ToM , we define a vector field ũ ∈ X(M) by:

ũx :=
1

2
u · (o · x), ∀x ∈M.
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From Symmetric Spaces to Symmetric Pairs

Theorem

Let (M,µ) be a symmetric space and o ∈M a fixed point,
then the following properties hold.

1. Aut(M) is a Lie transformation group with Lie algebra

Der(M) :=

{
X ∈ X(M) | Xx·y = x ·Xy +Xx · y, ∀x, y ∈M

}
.

2. G(M) is a connected Lie subgroup of Aut(M) with Lie
algebra

g(M) :=
{
ũ | u ∈ ToM

}
.

3. G(M) acts transitively on M .
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From Symmetric Spaces to Symmetric Pairs

Theorem (Continued)

4. (G(M), Ho, σo) is a symmetric pair, where Ho denotes
the isotropy group of o, and σo given by:

σo : G(M)→ G(M), F 7→ so ◦ F ◦ so.

Moreover, M is isomorphic to G(M)/Ho.

5. G(M) is the smallest subgroup of Aut(M) which is
transitive on M and stable under σo.

6. The canonical decomposition of g(M) corresponding to
σo is

g(M) = m⊕ [m,m],

where m := ker (σ′o + Idg).

For a full proof one can see Loos, Ottmar. Symmetric spaces: General
theory. Vol. 1. WA Benjamin, 1969.35



Affine Symmetric Spaces

Definition

An affine symmetric space is a connected smooth manifold M
endowed with a connection ∇ which satisfies the following:

For each x ∈M , there exists an affine map sx : M →M
such that:

sx (γ(t)) = γ(−t),

where γ : (−ε, ε)→M is a geodesic of ∇ with γ(0) = x.

The affine map sx : M →M is called the geodesic symmetry
about x.
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sx : M →M , sx (γ(t)) = γ(−t).

Clearly a geodesic symmetry sx is different from IdM and
admits x as an isolated fixed point.
Moreover, if γ : (−ε, ε)→M is a geodesic of ∇ with
γ(0) = x and ux = γ̇(0), then

Txsx(ux) =
d

dt |t=0

sx (γ(t))

=
d

dt |t=0

γ(−t)

= −ux.

Thus
Txsx = − IdTxM .
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Furthermore, using the following Lemma

Lemma

Let M be a connected smooth manifold, and ∇ a connection
on it. If F1, F2 : M →M are two affine maps such that:

F1(x0) = F2(x0), and Tx0F1 = Tx0F2.

Then F1 = F2.

We deduce that

sx ◦ sx = IdM , ∀x ∈M ;

sx ◦ sy ◦ sx = ssx(y), ∀x, y ∈M .
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Properties

Proposition

Let (M,∇) be an affine symmetric space.

If ∇′ a connection on M such that the geodesic
symmetries of ∇ also preserve the connection ∇′, then
∇′ = ∇.

The torsion T of ∇ is 0, and the curvature tensor R is
parallel (i.e. ∇R = 0).
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Proof. Let D ∈ Γ
(
T (1,2)M

)
be the difference tensor between

∇ and ∇′, i.e

D(X, Y ) := ∇′XY −∇XY, ∀X, Y ∈ X(M).

Let x ∈M and sx its associated geodesic symmetry, then for
any u, v ∈ TxM we have

Dx(u, v) = Dx

(
Txsx(u), Txsx(v)

)
= Txsx

(
Dx(u, v)

)
= −Dx(u, v).

Hence Dx(u, v) = 0 and therefore D ≡ 0.
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Properties

Proposition

Let (M,∇) be an affine symmetric space, then we have

1. ∇ is complete.

2. Aff(M,∇) acts transitively on M , and the same is true
for its identity component Aff0(M,∇).

Proof. For the first assertion, if γ : [0, `]→M is a geodesic
segment, then it can be extended to [0, 2`] by reflecting γ
about the point γ(`):

γ̃(t) :=

{
γ(t) for t ∈ [0, `]
sγ(`) (γ(2`− t)) for t ∈ [`, 2`].
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Proof. ∇ is complete
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Proof. ∇ is complete
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Proof. Aff(M,∇) acts transitively on M
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Proof. Aff(M,∇) acts transitively on M
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Proof. Aff(M,∇) acts transitively on M
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Proof. Aff(M,∇) acts transitively on M
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Proof. Aff(M,∇) acts transitively on M
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Symmetric Pair associated to Affine
Symmetric Space

If (M,∇) is an affine symmetric space, then we can write

M ∼= Aff0(M,∇)/Hx0 ,

where Hx0 denotes the isotropy group of a point x0 ∈M in
Aff0(M,∇). Let s0 be the geodesic symmetry about x0, and
define a homomorphism

σ∇ : Aff0(M,∇)→ Aff0(M,∇), written F 7→ s0 ◦ F ◦ s0.

In fact σ∇ is an involutive automorphism of Aff0(M,∇).
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Symmetric Pair associated to Affine
Symmetric Space

Proposition

With the notations above, the triple
(
Aff0(M,∇), Hx0 , σ

∇) is
a symmetric pair.

Proof. It only remains to check that

Fix0(σ∇) ⊆ Hx0 ⊆ Fix(σ∇).

For the first inclusion, let w ∈ Lie
(
Fix(σ∇)

)
and put

βt := exp
Aff(M,∇)

(tw), ∀ t ∈ R.

Since β lies in Fix0(σ∇), we have s0 ◦ βt ◦ s0 = βt.
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Thus
s0 (βt(x0)) = βt(x0).

Using the fact that x0 is an isolated fixed point of s0 we get
that βt(x0) = x0 for t lies in a small enough neighborhood of
0. Hence βt lies in H0

x0
for t sufficiently small, which implies by

taking the derivative of βt with respect to t = 0 that w ∈ hx0 .

For the second inclusion, let F ∈ Hx0 be an element of Hx0 ,
then a direct computation yields

Tx0

(
s0 ◦ F ◦ s0

)
= Tx0F.

Since M is connected it follows that s0 ◦ F ◦ s0 = F and
hence Hx0 ⊆ Fix(σ∇).
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