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A Symmetric Space

(M/ {Sx }xeM)

1. 5.(x) = x;
2. sy0s, = ldyg;
3' Sx °© Sy °© S‘x = S5x(]/);

4. AU, € M, such that:
{Sx(y) =Y N

= X.

ye U,



A Symmetric Space

(M/ {Sx}xeM) @ (M, y)
1. 5.(x) = x;

1. x-x=Xx;
2. sy0s, = ldyg;

2. x-(x-y) =y
3. x-(y-2)=(x-y)(x-2)
4. AU, € M, such that:

) =y; _ XY=y _
{yeux z Y= {ye u, = y=x

3' Sx © Sy °© Sx = Ssx(y);

4. AU, € M, such that:



E. Cartan Theorem

Theorem

A pseudo-Riemannian manifold (M, g) is locally pseudo-
Riemannian symmetric if and only if VR = 0, where V is the
Levi-Civita connection of g and R its curvature tensor field.
If M is simply-connected and complete, then (M, g) is
pseudo-Riemannian symmetric if and only if VR = 0.



Ambrose-Singer Theorem

Theorem

Let (M, g) be a simply-connected and complete
pseudo-Riemannian manifold. The following properties are
equivalent:

Q (M, g) is reductive homogeneous pseudo-Riemannian
manifold.

Q (M, g) admits a linear connection V' satisfying
Vig=0, V'R=0, V'S=0,

where S .=V — V', V the Levi-Civita connection of g,
and R its curvature tensor field.

For a proof and other similar theorems, one can see Calvaruso,
G., & Lépez, M. C. (2019). Pseudo-Riemannian Homogeneous

Structures (Vol. 59). New York, NY, USA: Springer.
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B. Kostant Theorem !

Theorem

Let V be a connection on a simply-connected manifold M.
The following properties are equivalent:

Q M is reductive with respect to a connected Lie subgroup
G C Aff(M,V).
Q There exists a complete connection V' satisfying

V'T=0, VR=0, VS=0,

where S :=V — V', T the torsion of V, and R its
curvature tensor field.

IKostant, Bertram. " A characterization of invariant affine
connections.” Nagoya Mathematical Journal 16 (1960): 35-50.
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Jordan algebras

A Jordan algebras A is a finite dimensional vector space with a
bilinear multiplication zy satisfying
0 — 2y (20 — 2( e
vy =y,  z(r7y) =z (zy),

and has a unit element e.
Proposition

The set M of inversible elements of A is open in A and
becomes a symmetric space with the product

5:(y) = 2a(y~ ') — 2y~



Main Examples: Symmetric Pairs and
Affine Symmetric Spaces

(G, H, o) asymmetric pair
e 0 € Aut(G) such that:
ogoo=1dg,

and Fix%(c) € H C Fix(0).



Main Examples: Symmetric Pairs and
Affine Symmetric Spaces

(G, H, 0) asymmetric pair
e 0 € Aut(G) such that:
ogoo=1dg,

and Fix%(c) € H C Fix(0).

|

(G/H, ts)

is a symmetric space, where

a-b:= ao‘(a_lb), Ya,beG.
Q



Main Examples: Symmetric Pairs and
Affine Symmetric Spaces

(G, H, 0) asymmetric pair (M, V) an affine symmetric space
e 0 € Aut(G) such that: e V is a connection and
goo =1Idg, VxeM, Al's, € Aff(M, V)
and Fix%(c) € H C Fix(0). such that:  sx(y(£) = (1),

where y : (—¢, €) > M is a geodesic of V

“ and y(0) = x.

(G/H, ts)

is a symmetric space, where

a-b:= ao‘(a_lb), Ya,beG.
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Main Examples: Symmetric Pairs and
Affine Symmetric Spaces

(G, H, 0) asymmetric pair (M, V) an affine symmetric space
e 0 € Aut(G) such that: e V is a connection and
goo =1Idg, VxeM, Al's, € Aff(M, V)
and Fix%(c) € H C Fix(0). such that:  sx(y(£) = (1),

where y : (—¢, €) > M is a geodesic of V

“ and y(0) = x.

(G/H, u,) H

is a symmetric space, where (M, {Sx}xeM)

a-b:=ac(a'b), VabeG is a symmetric space.
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From Affine Symmetric Spaces to
Symmetric Pairs

Let (M, V) be an affine symmetric space. Then we have:

o Aff°(M,V) acts transitively on M.

@ Let xg € M fixed, and denote by H,, the isotropy group
of xg in Aff°(M, V).

@ Define an involutive automorphism of Aff®(M, V) by:

oV A (M, V) — AO(M, V), F s, 0Fos,),

where s, : M — M is the geodesic symmetry about z.
@ The following inclusions hold

Fix’(¢V) C H,, C Fix(c").
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In summary:

MV) (Aff°(M, V), Hy,, 0V)

An affine symmetric space A symmetric pair

e The next step: Expression of the canonical connection V
associated to a symmetric pair (G, H,0)? i.e. G-invariant
connection on G/H for which @ : G/H — G/H is an affine

map.
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Reductive homogeneous G-spaces
A homogeneous G-space G/ H is called reductive if there
exists a vector subspace m C g such that:
g=mdh, and Ad(H)(m)Cm,

where g and b are the Lie algebras of G and H respectively.

Remark. Not all homogeneous spaces are reductive.
For example:

G :=GL"(2,R), and H::{(é z) ]y>0,x€R}.

One can easily check that G/H = R?\{0} is not reductive.
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Similarly, not all reductive homogeneous spaces are symmetric.
For example the Stiefel manifolds SO(n)/SO(n — k) are not
symmetric spaces for 2 < k < n — 2. To see why, consider the
matrices I, , and J, defined by:

I, 0 0 —Iy
lpq = (5 —[q>’ and - Ju = (In/ 0 )

where p + g =n and J, is defined only if n is even, in which

case n’ = 5
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It is known (cf. S. Helgason pp. 453) that up to conjugation,
the only involutive automorphisms of so(n) are given by:

o 7,,X):=1,,XI,,, in which case we have

ker(7,, — Id) = so(p) x so(q) # so(n — k).

e 0(X):=J,XJL, in which case we have

ker(6 —Id) = u(n') # so(n — k).
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Nomizu Theorem

Theorem

Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition, i.e

g=mdbh, and Ad(H)(m)C m.

Then there exists a one-to-one correspondence between the
set of G-invariant connections on M and the set of bilinear
maps « : m X m — m which are Ad(H)-invariant, i.e

Adpa(u,v) = a (Adyu, Adyw),

foru,v € m and h € H.
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Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition g =m @ h. For each u € g, we
define a vector field u* € X(M), called the fundamental vector
field associated to wu by:

d -
ur = —  expg(tu)a, Vaec M.

dt|,—o
Moreover, we have a linear isomorphism between m and T:M,
given by:

Ig m —:—) TgM
U UL

If V is a G-invariant connection on M, then its associated
bilinear map a : m x m — m is defined as follows?:

au,v) =11 ( (Vuw*)€> + [, V] -

2For w € g, we denote by wy, the projection of w on m.
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Further, the torsion TV of the G-invariant connection V gives
rise to a bilinear map 7 : m X m — m written as

T (u,v) == a(u,v) — a(v,u) — [, V]y.

Hence

Corollary

10



Particular GG-invariant connections on M

@ The natural connection V° given by:

a(u,v) = §[u,v]m, Vu,vem.

It is torsion-free.

@ The canonical connection V¢ given by:
af(u,v) =0, Yu,v€m.

It is invariant under parallelism i.e the torsion and the
curvature tensors of V¢ are both parallel.

Remark. V¢ = V" if and only if [m,m] C b.
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Nomizu's Theorem allows us to transfer geometric conditions
to algebra, or algebraic conditions to geometry.

Proposition

Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition g = m @ b and V a G-invariant
connection on M with o : m X m — m its associated bilinear
map. For each u € m, we have

a(u,u) =0 & t — expg(tu) is a geodesic of V.

Proof. Let u €¢ mand v : R — M, t — expq(tu). Since
A(t) = u’ ;) then a direct computation yields

Vi (t) = Aexpgtn)), a(u,u)s. =

21



Notice that if V is a G-invariant connection on M whose
geodesics through € are exactly the curves ¢ — exp(tu) for
any u € m, then the geodesics through another point @ of M
are exactly the curves t — expg(tAd,u)a, with u € m.

Corollary

On a reductive homogeneous G-space M := G /H with a fixed
reductive decomposition g = m & b, the natural connection
VY is the only G-invariant torsion-free connection whose
geodesics are exactly the curves t — expq(tAd,u)a, with
uemanda e M.

Example.
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From Symmetric Pairs to Affine Symmetric
Spaces

Theorem
Let (G, H,o) be a symmetric pair, then M := G /H is an
affine symmetric space.

Proof. Let g = m & b be the canonical decomposition of g
and V° the natural torsion-free G-invariant connection on M
associated to the bilinear map o” = 0. Consider the following
smooth map on M

s M — M, @~ o(a).
This is well defined because H C Fix(c), and satisfies
50 o 50 = IdM .
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Proof. s’ € Aff(M, V")

Define a connection V on M by:
ViV =g (V,Oxg ) VX,V € X(M).

Let us show that V = V. First, for each a € G, we have the
following commutative diagram

M— M

)\al J{Aa(a)
0

M———M .

Thus V is G-invariant. Let « be its associated bilinear map.

2



Proof. s’ € Aff(M, V")

For each © € m and a € G we have

A I C o)

d ——
= %hzoexpG(—tu)a

Thus
sty = —u*, Yuem.
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Proof. s’ € Aff(M, V")

Hence for u,v € m we have

a(u,v) = IZ ( Vo v") >
)

which implies that V = V and therefore s° € Aff (M, V?).
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Proof. s is a geodesic symmetry about ¢

Now it only remains to check that s° is a geodesic symmetry
about €. Let t — exp(tu) be a geodesic through € with
u € m, then

5" (eXpG(tu)> = o (expqs(tu))
= expq(—tu).

Thus s° is a geodesic symmetry about e.
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Finally, for any @ € M we define the geodesic symmetry about
a as follow
M—= M

e

M—" M.

One can check easily that s; satisfies all the conditions
required for a geodesic symmetry. m

28



(G, H, 0) — (G/H,V°)

A symmetric pair An affine symmetric space
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Invariant Pseudo-Riemannian Metrics on a
Reducitve Homogeneous (GG-space

Theorem

Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition g = m & h. There is a natural
one-to-one correspondence between the set of GG-invariant
pseudo-Riemannian metrics on M and the set of Ad(H)-
invariant non-degenerate symmetric bilinear forms on m.

For the sake of simplicity, we shall use the same notation (-, -)
to denote both the G-invariant pseudo-Riemannian metric on
M, and its associated Ad(H )-invariant non-degenerate
symmetric bilinear form on m.

20



Proposition

Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition g = m @ b, and let (- ,-) be a
G-invariant pseudo-Riemannian metric on M. The Levi-Civita
connection VYC of (- -} is G-invariant and its associated
bilinear map o*© : m x m — m is given by:

1
0¥ (u,v) = Sl vl + 0L (1,0),
where aSLy(fn :m X m — m s the symmetric bilinear map
defined by:

(a8, 0),10) = 5 { G, i) + G [, 1)

for all u,v,w € m.

21



Proof. A direct computation using Koszul’s formula shows
that V€ is G-invariant. Moreover, for u, v, w € m we have

(™ (u,v),w) = (VECo* we + ([u, v]*, w*)e

= S{ (ol w0+ (e o)+ G 0]
= {40 vl )+ (0wl ) + o, o, 0])
= (5t + 0L, (0,0),w),

2

where

(kS ), ) = o { G ) + (o ) ) m

D



Corollary

With the notations of the previous proposition, The Levi-Civita
connection V'C of (- ,-) coincides with the natural connection
VY associated to the decomposition g = m @ b if and only if

([u, V]m, w) + (v, [u, w]n) =0, YVu,v,w € m.

Corollary

Let (G, H, o) be a symmetric pair. A G-invariant pseudo-
Riemannian metric on G/H, if there exists any, induces the
canonical connection.

3



Semi-simple Lie Algebras

Definition
Let (g,[,]) be a Lie algebra.
@ g is simple if it is nonabelian and does not contain any
ideal distinct from {0} and g.

@ g is semi-simple if does not contain any nonzero solvable
ideal. ( a is solvable i.e. there exists n s.t. D™(a) = {0}).

Let (g,[,]) be a Lie algebra. Then the following statements
are equivalent:
1. g is semi-simple.
2. 9=¢1D - Dg,, where the g;'s are ideals of g which are
simple (as Lie algebras).
3. g has no nonzero abelian ideal.

. The Killing form By : g x g — R of g is non-degenerate.
34



Cartan involution

Let 7 : g — g be an automorphism with 72 = Id,. Then, the
bilinear form
BT(“? U) = _Bg(u7 T(U>)

is symmetric, where By is the Killing form of g. 7 is called a
Cartan involution if B” is an inner product on g.

)

Proposition

6(A) := —A" is an involution of M,(IR). Ifg C M,(IR) is a
subalgebra such that

0(g) Cg, and Z(g) = {0},

then, T := 9|g is a Cartan involution of g.

It is the case, for example, of the subalgebras sl(n, R) and

so(p, q).
2E



Proof. We have to show that for any X € g, s.t. X #0
BT(X,X)=tr(ady oadxt) >0 7
Consider the canonical inner product on g:
(X)Y) = tr(X'Y),
this induces an inner product on End(g):

((fi, f2)) = tr(f) 0 fo),

where fI': g — g is the transpose defined through (-, ).
A small computation shows that adx: = (adx)”. =
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Theorem

Let (G, H,o) be a symmetric pair such that G is semi-simple.
Then the canonical connection on G /H is induced by a
G-invariant pseudo-Riemannian metric. If moreover o’ is a
Cartan involution, then the canonical connection on G/H is
induced by a G-invariant Riemannian metric.

Proof. Define an Ad(H )-invariant symmetric bilinear form on
m by:

(-,):mxm— R, written (u,v):=—DBy(u,v),
where By : g x g — R is the Killing form of g. Furthermore,

since g is semi-simple and By(h, m) = 0, we deduce that (-, )
is non-degenerate.

7



Irreducible Symmetric Spaces

In what follows, (G, H, o) will be a symmetric pair, g =m @ b
the canonical decomposition of g corresponding to o, and

ad™ : h — End(m), w— [u, -],

the adjoint representation of h in m. Moreover, we put

M := G/H and we assume that the action of G on M is
almost effective, i.e. the representation ad™ : h — End(m) is
injective.

Definition

M is called irreducible if ad™ : h — End(m) is irreducible.
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Proposition (1)
If M is irreducible, then either

g is semi-simple, or [m, m] = {0}.
Proof. Let m’ := rad(B,) Nm. It is clear that m’ is an

h-submodule of m and hence either m’ = {0} or m’ = m.

L. If m" = {0}: We shall prove that g is semi-simple. Let
u € rad(By), then write u = uy + uy for u, € m and
up € . Since By(h,m) =0, we have for v € m

By(um,v) = By(u,v) = 0.

Thus uy, € m" = {0} and therefore v € h Nrad(B,).
Hence [u,v] = 0 for all v € m. Now, using the fact that
ad™ : h — End(m) is injective we deduce that u = 0, and
it follows that g is semi-simple.

20



2. If m" = m: In this case we have m C rad(B,). Recall that
a nil ideal of g is an ideal n of g such that ad, is nilpotent
for all w € n. We denote by nilrad(g) the unique maximal
nil ideal of g, then the following inclusion holds?

[g,rad(g)] C nilrad(g).
Hence, we have
= [h, m] C [h,rad(By)] C [g,rad(g)] C nilrad(g).

Since nilrad(g) is nilpotent, there exists a positive integer
k such that nilrad(g)* = {0} and therefore m* = {0}. If
k =1 then we are done. Suppose that £ > 2 and k is
odd, then it is clear that m*~! is an h-submodule of m.

3For more details about rad(g) and nilrad(g), we refer the interested
reader to the book of V.S. Varadarajan (Ref.).
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Thus either

mFl=m, o mwm"'={0}.

In the first case, we get

[m, m] = [m,m"!] = m* = {0}.
In the second case, we have
,m] =m"! = {0}.

Since m*~2 C b and ad™ : h — End(m) is injective we
get that m*~2 = {0}. This argument shows that

m,m| ={0}. m

a1



Proposition (2)

If g is semi-simple, then [m, m| = b.

Proof. It is straightforward to see that [m, m] # {0}, because
otherwise m will be an abelian ideal of g. Moreover, we can
easily check that m & [m, m] is an ideal of g and therefore
since g is semi-simple, there exists a supplementary ideal a C g
such that

g=m®[mm|Pa.

We will prove that a = {0}. Using that ad™ : h — End(m) is
injective, it is sufficient to show that a is contained in . Let
u € a, then write © = uy + uy for uy € m and uy € b.

40



For v € m one has

[u, V] = [tm, V] + [ug, v] .
—— e N
ca €[m,m] em
Thus [un,v] = [u,v] = [uy, v] = 0. Similarly, for v € [m, m] we

have
[, V] = [tm, V] + [ug, v] .
—~— N
ca ecm e[m7m]
Hence [um,v] = [u,v] = [uy,v] = 0. Let v € g and write
U = U + Vmm] + Va fOr U € M, Vpm) € [m,m], v, € a, then

[uma U] = [uma Um] + [un'u v[m,m]] + [uma Ua] =0.

Thus uy, € Z(g) = {0}, and it follows that u = u, €. =

43



Irreducible Symmetric Spaces

Theorem

Let M := G/H be an irreducible symmetric space where the
action of G on M is effective and g is semi-simple. Then
A (M, V%) =G.

Proof. First, since the action is effective, we can identify GG
and H with their images under the homogeneous action A:

G = \G) C G = AR (M, V),
then H C H' := G, the isotropy group of € in G'. Let

g* = m! @ h' be the canonical decomposition of the
symmetric pair (G1, 0!, H'), where ¢'(f) =G0 foa.
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Moreover, we have the following commutative diagram:

Gl

G—2—G,

where ¢ : G — G' is the canonical injection. This implies

m Cm! and h C h'. But since M = G/H = G'/H' we have
m =m!. Then, h! — End(m!) is irreducible because h C h'.
Now, g is semi-simple, then h = [m, m| = [m', m!], which
implies (Proposition (1)) g' is semi-simple, and therefore
[m, m] = h' (Proposition (2)). Thus h = h', which proves that
gl =gandfinally Gl =G. =

Corollary

Let (M := G/H,(-,-)) be an irreducible (pseudo)Riemannian
symmetric space where G is effective on M and g is
semi-simple. Then G = Iso®(M, (-,-)) = Aff®(M, V).
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Now we return to our question:

Given a symmetric space ()M, 1), how can we define
directly from ;. a torsion-free connection on M such
that it becomes an affine symmetric space?

The answer is complicated, so we will just sketch out the idea.

46



Starting from a symmetric space (M, i), we will construct a
torsion-free connection on M. But first we need to introduce
some constructions.

Let £ € C°°(M x M) be a smooth function. For each x € M
we define two smooth functions F*, F" € C>*(M) by:

Fy(y) :== F(z,y), and F](y):=F(y,z).

We can use this to associated to each vector field X € X(M),
two vector fields X,, X, € X(M x M), defining they action on
an arbitrary smooth fuction F' € C*°(M x M) by:

(XeF)(2,y) = (XF)(y), and (X.F)(x,y) = (XF})(x).

47



Let X,Y € X(M), the construction above allows as to define

an operator
XY :C®(M) = C®(M),

by setting
(X-Y)f =X, Yo(fou)oA,
where p: M x M — M is the multiplication map and

A:M—>MxM, zw— (z,z),

is the diagonal mapping.
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The Canonical Connection on Symmetric
Spaces

Theorem

Let (M, {s.}zem) be a symmetric space, then there exists a
unique torsion-free connection on M such that each involution
s, IS a geodesic symmetry about x.

Sketch of the Proof. For X,Y € X(M), we define

1
VLY =XY 45XV .

For a full proof one can see Loos, Ottmar. Symmetric spaces:
General theory. Vol. 1. WA Benjamin, 1969.
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(M, p)

A symmetric space

% Y

(G, H,0) = (M, V°)

A symmetric pair An affine symmetric space
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Example: Lie groups

Let G be a connected Lie group and g its Lie algebra. Then

(G, w)

a-b:=abla

\/! Vabe G x

(GXG,AG,0) = (G V°

1
_[u+’v+]
2

Yuve g

o(a, b) := (b,a) Vot =
Vabe G
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