An Introduction to the Geometry of Symmetric Spaces - II -

Abdelhak Abouqateb and Othmane Dani

Cadi Ayyad University
Faculty of Sciences and Technologies, Marrakesh, Morocco

Interuniversity Geometry Seminar (IGS)

26th March 2022

A Symmetric Space

$$(M, \{\mathfrak{s}_x\}_{x\in M})$$

- 1. $s_x(x) = x$;
- 2. $\mathfrak{s}_x \circ \mathfrak{s}_x = Id_M$;
- 3. $\mathfrak{s}_x \circ \mathfrak{s}_y \circ \mathfrak{s}_x = \mathfrak{s}_{\mathfrak{s}_x(y)}$;
- 4. $\exists U_x \subseteq M$, such that:

$$\begin{cases} \mathfrak{s}_x(y) = y; \\ y \in U_x \end{cases} \Rightarrow y = x.$$

A Symmetric Space

$$(M, \{\mathfrak{s}_x\}_{x\in M})$$

- 1. $s_x(x) = x$;
- 2. $\mathfrak{s}_x \circ \mathfrak{s}_x = Id_M$;
- 3. $\mathfrak{s}_{\chi} \circ \mathfrak{s}_{y} \circ \mathfrak{s}_{\chi} = \mathfrak{s}_{\mathfrak{s}_{\chi}(y)};$
- **4**. $\exists U_r \subseteq M$, such that:

$$\begin{cases} s_x(y) = y; \\ y \in U_x \end{cases} \Rightarrow y = x.$$

(M, μ)

- 1. $x \cdot x = x$;
- $2. \ x \cdot (x \cdot y) = y;$
- 3. $x \cdot (y \cdot z) = (x \cdot y) \cdot (x \cdot z);$
- **4**. $\exists U_x \subseteq M$, such that:

$$\begin{cases} x \cdot y = y; \\ y \in U_x \end{cases} \Rightarrow y = x.$$

É. Cartan Theorem

Theorem

A pseudo-Riemannian manifold (M,g) is locally pseudo-Riemannian symmetric if and only if $\nabla R=0$, where ∇ is the Levi-Civita connection of g and R its curvature tensor field. If M is simply-connected and complete, then (M,g) is pseudo-Riemannian symmetric if and only if $\nabla R=0$.

Ambrose-Singer Theorem

Theorem

Let (M,g) be a simply-connected and complete pseudo-Riemannian manifold. The following properties are equivalent:

- (M,g) is reductive homogeneous pseudo-Riemannian manifold.
- $oldsymbol{0}$ (M,g) admits a linear connection ∇' satisfying

$$\nabla' g = 0, \quad \nabla' R = 0, \quad \nabla' S = 0,$$

where $S := \nabla - \nabla'$, ∇ the Levi-Civita connection of g, and R its curvature tensor field.

For a proof and other similar theorems, one can see Calvaruso, G., & López, M. C. (2019). Pseudo-Riemannian Homogeneous Structures (Vol. 59). New York, NY, USA: Springer.

B. Kostant Theorem ¹

Theorem

Let ∇ be a connection on a simply-connected manifold M. The following properties are equivalent:

- ① M is reductive with respect to a connected Lie subgroup $G \subset \mathrm{Aff}(M,\nabla)$.
- **2** There exists a complete connection ∇' satisfying

$$\nabla' T = 0, \quad \nabla' R = 0, \quad \nabla' S = 0,$$

where $S := \nabla - \nabla'$, T the torsion of ∇ , and R its curvature tensor field.

6

¹Kostant, Bertram. "A characterization of invariant affine connections." Nagoya Mathematical Journal 16 (1960): 35-50.

Jordan algebras

A Jordan algebras $\mathcal A$ is a finite dimensional vector space with a bilinear multiplication xy satisfying

$$xy = yx, \qquad x(x^2y) = x^2(xy),$$

and has a unit element e.

Proposition

The set M of inversible elements of $\mathcal A$ is open in $\mathcal A$ and becomes a symmetric space with the product

$$\mathfrak{s}_x(y) := 2x(y^{-1}x) - x^2y^{-1}.$$

```
(G, H, \sigma) a symmetric pair
```

• $\sigma \in Aut(G)$ such that:

$$\sigma \circ \sigma = Id_G,$$

and $\operatorname{Fix}^0(\sigma) \subseteq H \subseteq \operatorname{Fix}(\sigma)$.

(G, H, σ) a symmetric pair

• $\sigma \in Aut(G)$ such that:

$$\sigma\circ\sigma=Id_G,$$

and $\operatorname{Fix}^0(\sigma) \subseteq H \subseteq \operatorname{Fix}(\sigma)$.

$$(G/H, \mu_{\sigma})$$

is a symmetric space, where

$$\overline{a} \cdot \overline{b} := \overline{a\sigma(a^{-1}b)}, \quad \forall a, b \in G.$$

(G, H, σ) a symmetric pair

• $\sigma \in \operatorname{Aut}(G)$ such that:

$$\sigma\circ\sigma=Id_G,$$

and $\operatorname{Fix}^0(\sigma) \subseteq H \subseteq \operatorname{Fix}(\sigma)$.

$$(G/H, \mu_{\sigma})$$

is a symmetric space, where

$$\overline{a} \cdot \overline{b} := \overline{a\sigma(a^{-1}b)}, \quad \forall a, b \in G.$$

(M,
abla) an affine symmetric space

 ▼ is a connection and

$$\forall x \in M, \exists ! \, \mathfrak{s}_x \in \mathrm{Aff}(M, \nabla)$$

such that:
$$\mathfrak{s}_x(\gamma(t)) = \gamma(-t)$$
,

where $\gamma: (-\varepsilon, \varepsilon) \to M$ is a geodesic of ∇ and $\gamma(0) = x$.

(G, H, σ) a symmetric pair

• $\sigma \in \operatorname{Aut}(G)$ such that:

$$\sigma\circ\sigma=Id_G,$$

and $\operatorname{Fix}^0(\sigma) \subseteq H \subseteq \operatorname{Fix}(\sigma)$.

 $(G/H, \mu_{\sigma})$

is a symmetric space, where

$$\overline{a} \cdot \overline{b} := \overline{a\sigma(a^{-1}b)}, \quad \forall a, b \in G.$$

(M,
abla) an affine symmetric space

 ▼ is a connection and

and $\gamma(0) = x$.

$$\forall \ x \in M, \ \exists! \ \mathfrak{s}_x \in \mathrm{Aff}(M, \nabla)$$

such that: $\mathfrak{s}_x(\gamma(t)) = \gamma(-t)$, where $\gamma: (-\varepsilon, \varepsilon) \to M$ is a geodesic of ∇

 $(M, \{\mathfrak{s}_x\}_{x\in M})$

is a symmetric space.

From Affine Symmetric Spaces to Symmetric Pairs

Let (M, ∇) be an affine symmetric space. Then we have:

- $\operatorname{Aff}^0(M, \nabla)$ acts transitively on M.
- Let $x_0 \in M$ fixed, and denote by H_{x_0} the isotropy group of x_0 in $\mathrm{Aff}^0(M,\nabla)$.
- Define an involutive automorphism of $\mathrm{Aff}^0(M,\nabla)$ by:

$$\sigma^{\nabla}: \mathrm{Aff}^0(M, \nabla) \to \mathrm{Aff}^0(M, \nabla), \quad F \mapsto \mathfrak{s}_{x_0} \circ F \circ \mathfrak{s}_{x_0},$$

where $\mathfrak{s}_{x_0}:M\to M$ is the geodesic symmetry about x_0 .

• The following inclusions hold

$$\operatorname{Fix}^0(\sigma^{\nabla}) \subset H_{x_0} \subset \operatorname{Fix}(\sigma^{\nabla}).$$

In summary:

$$(M, \nabla)$$
An affine symmetric space
$$(Aff^0(M, \nabla), H_{x_0}, \sigma^{\nabla})$$
A symmetric pair

• The next step: Expression of the canonical connection ∇ associated to a symmetric pair (G,H,σ) ? i.e. G-invariant connection on G/H for which $\overline{\sigma}:G/H\to G/H$ is an affine map.

Reductive homogeneous G-spaces

A homogeneous G-space G/H is called *reductive* if there exists a vector subspace $\mathfrak{m}\subset\mathfrak{g}$ such that:

$$\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}$$
, and $Ad(H)(\mathfrak{m}) \subseteq \mathfrak{m}$,

where ${\mathfrak g}$ and ${\mathfrak h}$ are the Lie algebras of G and H respectively.

Remark. Not all homogeneous spaces are reductive. For example:

$$G:=\mathrm{GL}^+(2,\mathbb{R}),\quad \text{and}\quad H:=\bigg\{\begin{pmatrix}1&x\\0&y\end{pmatrix}\mid y>0,\,x\in\mathbb{R}\bigg\}.$$

One can easily check that $G/H \cong \mathbb{R}^2 \setminus \{0\}$ is not reductive.

Similarly, not all reductive homogeneous spaces are symmetric. For example the Stiefel manifolds SO(n)/SO(n-k) are not symmetric spaces for $2 \le k \le n-2$. To see why, consider the matrices $I_{p,q}$ and $J_{n'}$ defined by:

$$I_{p,q} := \begin{pmatrix} I_p & 0 \\ 0 & -I_q \end{pmatrix}, \quad ext{and} \quad J_{n'} := \begin{pmatrix} 0 & -I_{n'} \\ I_{n'} & 0 \end{pmatrix},$$

where p+q=n and $J_{n'}$ is defined only if n is even, in which case $n':=\frac{n}{2}$.

It is known (cf. S. Helgason pp. 453) that up to conjugation, the only involutive automorphisms of $\mathfrak{so}(n)$ are given by:

• $au_{p,q}(X):=I_{p,q}XI_{p,q}$, in which case we have $\ker(au_{p,q}-\operatorname{Id})\cong\mathfrak{so}(p)\times\mathfrak{so}(q)\neq\mathfrak{so}(n-k).$

•
$$\theta(X) := J_{n'}XJ_{n'}^T$$
, in which case we have

$$\ker(\theta - \mathrm{Id}) \cong \mathfrak{u}(n') \neq \mathfrak{so}(n-k).$$

Nomizu Theorem

Theorem

Let M:=G/H be a reductive homogeneous G-space with a fixed reductive decomposition, i.e

$$\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}$$
, and $Ad(H)(\mathfrak{m}) \subseteq \mathfrak{m}$.

Then there exists a one-to-one correspondence between the set of G-invariant connections on M and the set of bilinear maps $\alpha:\mathfrak{m}\times\mathfrak{m}\to\mathfrak{m}$ which are $\mathrm{Ad}(H)$ -invariant, i.e

$$Ad_h\alpha(u,v) = \alpha (Ad_hu, Ad_hv),$$

for $u, v \in \mathfrak{m}$ and $h \in H$.

Let M:=G/H be a reductive homogeneous G-space with a fixed reductive decomposition $\mathfrak{g}=\mathfrak{m}\oplus\mathfrak{h}$. For each $u\in\mathfrak{g}$, we define a vector field $u^*\in\mathfrak{X}(M)$, called the *fundamental vector field* associated to u by:

$$u_{\overline{a}}^* := \frac{d}{dt} \operatorname{exp}_G(tu)a, \quad \forall \, \overline{a} \in M.$$

Moreover, we have a linear isomorphism between $\mathfrak m$ and $T_{\overline e}M$, given by:

$$I_{\overline{e}} : \mathfrak{m} \xrightarrow{\cong} T_{\overline{e}}M$$

$$u \longmapsto u_{\overline{e}}^*.$$

If ∇ is a G-invariant connection on M, then its associated bilinear map $\alpha:\mathfrak{m}\times\mathfrak{m}\to\mathfrak{m}$ is defined as follows²:

$$\alpha(u,v) := \mathrm{I}_{\overline{e}}^{-1} \left(\left(\nabla_{u^*} v^* \right)_{\overline{e}} \right) + [u,v]_{\mathfrak{m}}.$$

 $^{^2 \}text{For } w \in \mathfrak{g} \text{, we denote by } w_{\mathfrak{m}} \text{ the projection of } w \text{ on } \mathfrak{m}.$

Further, the torsion T^{∇} of the G-invariant connection ∇ gives rise to a bilinear map $T^{\alpha}:\mathfrak{m}\times\mathfrak{m}\to\mathfrak{m}$ written as

$$T^{\alpha}(u,v) := \alpha(u,v) - \alpha(v,u) - [u,v]_{\mathfrak{m}}.$$

Hence

Corollary

Let ∇ be a G-invariant connection on M and α its associated bilinear map. Then ∇ is torsion-free if and only if for any $u,v\in\mathfrak{m}$

$$\alpha(u,v) = \frac{\alpha(u,v) + \alpha(v,u)}{2} + \frac{1}{2}[u,v]_{\mathfrak{m}},$$

i.e. the bilinear map $\alpha_{\mathrm{sym}}(u,v):=\alpha(u,v)-\frac{1}{2}[u,v]_{\mathfrak{m}}$ is symmetric.

Particular G-invariant connections on M

• The natural connection ∇^0 given by:

$$\alpha^0(u,v) = \frac{1}{2}[u,v]_{\mathfrak{m}}, \quad \forall u,v \in \mathfrak{m}.$$

It is torsion-free.

• The canonical connection ∇^c given by:

$$\alpha^c(u,v) = 0, \quad \forall u, v \in \mathfrak{m}.$$

It is invariant under parallelism i.e the torsion and the curvature tensors of ∇^c are both parallel.

Remark. $\nabla^c = \nabla^0$ if and only if $[\mathfrak{m}, \mathfrak{m}] \subseteq \mathfrak{h}$.

Nomizu's Theorem allows us to transfer geometric conditions to algebra, or algebraic conditions to geometry.

Proposition

Let M:=G/H be a reductive homogeneous G-space with a fixed reductive decomposition $\mathfrak{g}=\mathfrak{m}\oplus\mathfrak{h}$ and ∇ a G-invariant connection on M with $\alpha:\mathfrak{m}\times\mathfrak{m}\to\mathfrak{m}$ its associated bilinear map. For each $u\in\mathfrak{m}$, we have

$$\alpha(u,u)=0 \qquad \Leftrightarrow \qquad t\mapsto \overline{\exp_G(tu)} \ \ \text{is a geodesic of } \nabla.$$

Proof. Let $u\in\mathfrak{m}$ and $\gamma:\mathbb{R}\to M,\,t\mapsto\overline{\exp_G(tu)}.$ Since $\dot{\gamma}(t)=u^*_{\gamma(t)}$, then a direct computation yields

$$\nabla_{\dot{\gamma}}\dot{\gamma}(t) = \left(\lambda_{\exp_G(tu)}\right)_* \alpha(u, u)_{\overline{e}}^*. \quad \blacksquare$$

Notice that if ∇ is a G-invariant connection on \underline{M} whose geodesics through \overline{e} are exactly the curves $t\mapsto \overline{\exp_G(tu)}$ for any $u\in \mathfrak{m}$, then the geodesics through another point \overline{a} of M are exactly the curves $t\mapsto \overline{\exp_G(t\mathrm{Ad}_au)a}$, with $u\in \mathfrak{m}$.

Corollary

On a reductive homogeneous G-space M:=G/H with a fixed reductive decomposition $\mathfrak{g}=\mathfrak{m}\oplus\mathfrak{h}$, the natural connection ∇^0 is the only G-invariant torsion-free connection whose geodesics are exactly the curves $t\mapsto \overline{\exp_G(t\mathrm{Ad}_a u)a}$, with $u\in\mathfrak{m}$ and $\overline{a}\in M$.

Example. A connected Lie group G, viewed as a reductive homogeneous $(G \times G)$ -space, endowed with its natural bi-invariant connection!

From Symmetric Pairs to Affine Symmetric Spaces

Theorem

Let (G, H, σ) be a symmetric pair, then M := G/H is an affine symmetric space.

Proof. Let $\mathfrak{g}=\mathfrak{m}\oplus\mathfrak{h}$ be the canonical decomposition of \mathfrak{g} and ∇^0 the natural torsion-free G-invariant connection on M associated to the bilinear map $\alpha^0\equiv 0$. Consider the following smooth map on M

$$\mathfrak{s}^0: M \to M, \qquad \overline{a} \mapsto \overline{\sigma(a)}.$$

This is well defined because $H \subseteq Fix(\sigma)$, and satisfies

$$\mathfrak{s}^0 \circ \mathfrak{s}^0 = \mathrm{Id}_M$$
.

Proof. $\mathfrak{s}^0 \in \mathrm{Aff}(M, \nabla^0)$

Define a connection ∇ on M by:

$$\nabla_X Y := \mathfrak{s}^0_* \left(\nabla^0_{\mathfrak{s}^0_* X} \mathfrak{s}^0_* Y \right), \qquad \forall \, X, Y \in \mathfrak{X}(M).$$

Let us show that $\nabla = \nabla^0$. First, for each $a \in G$, we have the following commutative diagram

$$\begin{array}{ccc} M & & \mathfrak{s}^0 & \to M \\ \lambda_a & & & \downarrow \lambda_{\sigma(a)} \\ M & & & \to M \end{array}.$$

Thus ∇ is G-invariant. Let α be its associated bilinear map.

Proof. $\mathfrak{s}^0 \in \mathrm{Aff}(M, \nabla^0)$

For each $u \in \mathfrak{m}$ and $a \in G$ we have

$$(\mathfrak{s}_*^0 u^*)_{\overline{a}} = \frac{d}{dt}_{|_{t=0}} \mathfrak{s}^0 \left(\overline{\exp_G(tu)\sigma(a)} \right)$$
$$= \frac{d}{dt}_{|_{t=0}} \overline{\exp_G(-tu)a}$$
$$= -u_{\overline{a}}^*.$$

Thus

$$\mathfrak{s}_*^0 u^* = -u^*, \qquad \forall \, u \in \mathfrak{m}.$$

Proof. $\mathfrak{s}^0 \in \mathrm{Aff}(M, \nabla^0)$

Hence for $u, v \in \mathfrak{m}$ we have

$$\alpha(u,v) = I_{\overline{e}}^{-1} \left((\nabla_{u^*} v^*)_{\overline{e}} \right)$$

$$= I_{\overline{e}}^{-1} \left(s_*^0 \left(\nabla_{u^*}^0 v^* \right)_{\overline{e}} \right)$$

$$= -I_{\overline{e}}^{-1} \left(\alpha^0 (u,v)_{\overline{e}}^* \right)$$

$$= 0,$$

which implies that $\nabla = \nabla^0$ and therefore $\mathfrak{s}^0 \in \mathrm{Aff}(M, \nabla^0)$.

Proof. \mathfrak{s}^0 is a geodesic symmetry about \overline{e}

Now it only remains to check that \mathfrak{s}^0 is a geodesic symmetry about \overline{e} . Let $t\mapsto \overline{\exp_G(tu)}$ be a geodesic through \overline{e} with $u\in\mathfrak{m}$, then

$$\mathfrak{s}^{0}\left(\overline{\exp_{G}(tu)}\right) = \overline{\sigma\left(\exp_{G}(tu)\right)}$$
$$= \overline{\exp_{G}(-tu)}.$$

Thus \mathfrak{s}^0 is a geodesic symmetry about \overline{e} .

Finally, for any $\overline{a} \in M$ we define the geodesic symmetry about \overline{a} as follow

One can check easily that $\mathfrak{s}_{\overline{a}}$ satisfies all the conditions required for a geodesic symmetry. \blacksquare

$$(G, H, \sigma)$$
 \longrightarrow $(G/H, \nabla^0)$ An affine symmetric space

Invariant Pseudo-Riemannian Metrics on a Reducitve Homogeneous G-space

Theorem

Let M:=G/H be a reductive homogeneous G-space with a fixed reductive decomposition $\mathfrak{g}=\mathfrak{m}\oplus\mathfrak{h}$. There is a natural one-to-one correspondence between the set of G-invariant pseudo-Riemannian metrics on M and the set of Ad(H)-invariant non-degenerate symmetric bilinear forms on \mathfrak{m} .

For the sake of simplicity, we shall use the same notation $\langle \cdot \, , \cdot \rangle$ to denote both the G-invariant pseudo-Riemannian metric on M, and its associated $\operatorname{Ad}(H)$ -invariant non-degenerate symmetric bilinear form on $\mathfrak m$.

Proposition

Let M:=G/H be a reductive homogeneous G-space with a fixed reductive decomposition $\mathfrak{g}=\mathfrak{m}\oplus\mathfrak{h}$, and let $\langle\cdot\,,\cdot\rangle$ be a G-invariant pseudo-Riemannian metric on M. The Levi-Civita connection ∇^{LC} of $\langle\cdot\,,\cdot\rangle$ is G-invariant and its associated bilinear map $\alpha^{\mathrm{LC}}:\mathfrak{m}\times\mathfrak{m}\to\mathfrak{m}$ is given by:

$$\alpha^{\mathrm{LC}}(u,v) := \frac{1}{2}[u,v]_{\mathfrak{m}} + \alpha^{\mathrm{LC}}_{\mathrm{sym}}(u,v),$$

where $\alpha_{\mathrm{sym}}^{\mathrm{LC}}:\mathfrak{m}\times\mathfrak{m}\to\mathfrak{m}$ is the symmetric bilinear map defined by:

$$\langle \alpha_{\mathrm{sym}}^{\mathrm{LC}}(u,v),w\rangle = \frac{1}{2} \Big\{ \langle [w,u]_{\mathfrak{m}},v\rangle + \langle u,[w,v]_{\mathfrak{m}}\rangle \Big\},$$

for all $u, v, w \in \mathfrak{m}$.

Proof. A direct computation using Koszul's formula shows that ∇^{LC} is G-invariant. Moreover, for $u,v,w\in\mathfrak{m}$ we have

$$\begin{split} \langle \alpha^{\mathrm{LC}}(u,v),w\rangle &= \langle \nabla^{\mathrm{LC}}_{u^*}v^*,w^*\rangle_{\overline{e}} + \langle [u,v]^*,w^*\rangle_{\overline{e}} \\ &= \frac{1}{2} \Big\{ \langle [u,v]^*,w^*\rangle_{\overline{e}} + \langle [w,u]^*,v^*\rangle_{\overline{e}} + \langle u^*,[w,v]^*\rangle_{\overline{e}} \Big\} \\ &= \frac{1}{2} \Big\{ \langle [u,v]_{\mathfrak{m}},w\rangle + \langle [w,u]_{\mathfrak{m}},v\rangle + \langle u,[w,v]_{\mathfrak{m}}\rangle \Big\} \\ &= \langle \frac{1}{2} [u,v]_{\mathfrak{m}} + \alpha^{\mathrm{LC}}_{\mathrm{sym}}(u,v),w\rangle, \end{split}$$

where

$$\langle \alpha_{\text{sym}}^{\text{LC}}(u,v), w \rangle := \frac{1}{2} \Big\{ \langle [w,u]_{\mathfrak{m}}, v \rangle + \langle u, [w,v]_{\mathfrak{m}} \rangle \Big\}.$$

Corollary

With the notations of the previous proposition, The Levi-Civita connection ∇^{LC} of $\langle \cdot \, , \cdot \rangle$ coincides with the natural connection ∇^0 associated to the decomposition $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}$ if and only if

$$\langle [u, v]_{\mathfrak{m}}, w \rangle + \langle v, [u, w]_{\mathfrak{m}} \rangle = 0, \qquad \forall u, v, w \in \mathfrak{m}.$$

Corollary

Let (G, H, σ) be a symmetric pair. A G-invariant pseudo-Riemannian metric on G/H, if there exists any, induces the canonical connection.

Semi-simple Lie Algebras

Definition

Let $(\mathfrak{g},[\,,])$ be a Lie algebra.

- \mathfrak{g} is *simple* if it is nonabelian and does not contain any ideal distinct from $\{0\}$ and \mathfrak{g} .
- \mathfrak{g} is *semi-simple* if does not contain any nonzero solvable ideal. (\mathfrak{a} is solvable i.e. there exists n s.t. $\mathcal{D}^n(\mathfrak{a}) = \{0\}$).

Let $(\mathfrak{g},[\,,])$ be a Lie algebra. Then the following statements are equivalent:

- 1. g is semi-simple.
- 2. $\mathfrak{g} = \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_r$, where the \mathfrak{g}_i 's are ideals of \mathfrak{g} which are simple (as Lie algebras).
- 3. g has no nonzero abelian ideal.
- 4. The Killing form $B_{\mathfrak{g}}: \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ of \mathfrak{g} is non-degenerate.

Cartan involution

Let $\tau: \mathfrak{g} \to \mathfrak{g}$ be an automorphism with $\tau^2 = \mathrm{Id}_{\mathfrak{g}}$. Then, the bilinear form

$$B^{\tau}(u,v) := -B_{\mathfrak{g}}(u,\tau(v)),$$

is symmetric, where $B_{\mathfrak{g}}$ is the Killing form of \mathfrak{g} . τ is called a *Cartan involution* if B^{τ} is an inner product on \mathfrak{g} .

Proposition

 $\theta(A):=-A^t$ is an involution of $M_n(\mathbb{R})$. If $\mathfrak{g}\subset M_n(\mathbb{R})$ is a subalgebra such that

$$\theta(\mathfrak{g})\subset\mathfrak{g},\quad\text{and}\quad Z(\mathfrak{g})=\{0\},$$

then, $\tau := \theta_{|_{\mathfrak{g}}}$ is a Cartan involution of \mathfrak{g} .

It is the case, for example, of the subalgebras $\mathfrak{sl}(n,\mathbb{R})$ and $\mathfrak{so}(p,q)$.

Proof. We have to show that for any $X \in \mathfrak{g}$, s.t. $X \neq 0$

$$B^{\tau}(X,X) = \operatorname{tr}(\operatorname{ad}_X \circ \operatorname{ad}_{X^t}) > 0$$
 ?

Consider the canonical inner product on \mathfrak{g} :

$$\langle X, Y \rangle := \operatorname{tr}(X^t Y),$$

this induces an inner product on $\operatorname{End}(\mathfrak{g})$:

$$\langle \langle f_1, f_2 \rangle \rangle := \operatorname{tr}(f_1^T \circ f_2),$$

where $f_1^T: \mathfrak{g} \to \mathfrak{g}$ is the transpose defined through $\langle \cdot , \cdot \rangle$. A small computation shows that $\operatorname{ad}_{X^t} = (\operatorname{ad}_X)^T$.

Theorem

Let (G,H,σ) be a symmetric pair such that G is semi-simple. Then the canonical connection on G/H is induced by a G-invariant pseudo-Riemannian metric. If moreover σ' is a Cartan involution, then the canonical connection on G/H is induced by a G-invariant Riemannian metric.

Proof. Define an $\mathrm{Ad}(H)$ -invariant symmetric bilinear form on \mathfrak{m} by:

$$\langle \cdot, \cdot \rangle : \mathfrak{m} \times \mathfrak{m} \to \mathbb{R}, \quad \text{written} \quad \langle u, v \rangle := -B_{\mathfrak{g}}(u, v),$$

where $B_{\mathfrak{g}}: \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ is the Killing form of \mathfrak{g} . Furthermore, since \mathfrak{g} is semi-simple and $B_{\mathfrak{g}}(\mathfrak{h},\mathfrak{m})=0$, we deduce that $\langle \cdot\,,\cdot \rangle$ is non-degenerate.

Irreducible Symmetric Spaces

In what follows, (G, H, σ) will be a symmetric pair, $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}$ the canonical decomposition of \mathfrak{g} corresponding to σ , and

$$\operatorname{ad}^{\mathfrak{m}}:\mathfrak{h}\to\operatorname{End}(\mathfrak{m}),\qquad u\mapsto [u,\cdot],$$

the adjoint representation of $\mathfrak h$ in $\mathfrak m$. Moreover, we put M:=G/H and we assume that the action of G on M is almost effective, i.e. the representation $\mathrm{ad}^{\mathfrak m}:\mathfrak h\to\mathrm{End}(\mathfrak m)$ is injective.

Definition

M is called *irreducible* if $\mathrm{ad}^{\mathfrak{m}}:\mathfrak{h}\to\mathrm{End}(\mathfrak{m})$ is irreducible.

Proposition (1)

If M is irreducible, then either

$$\mathfrak{g}$$
 is semi-simple, or $[\mathfrak{m},\mathfrak{m}] = \{0\}.$

Proof. Let $\mathfrak{m}' := \operatorname{rad}(B_{\mathfrak{g}}) \cap \mathfrak{m}$. It is clear that \mathfrak{m}' is an \mathfrak{h} -submodule of \mathfrak{m} and hence either $\mathfrak{m}' = \{0\}$ or $\mathfrak{m}' = \mathfrak{m}$.

1. If $\mathfrak{m}'=\{0\}$: We shall prove that \mathfrak{g} is semi-simple. Let $u\in \mathrm{rad}(B_{\mathfrak{g}})$, then write $u=u_{\mathfrak{m}}+u_{\mathfrak{h}}$ for $u_{\mathfrak{m}}\in \mathfrak{m}$ and $u_{\mathfrak{h}}\in \mathfrak{h}$. Since $B_{\mathfrak{g}}(\mathfrak{h},\mathfrak{m})=0$, we have for $v\in \mathfrak{m}$

$$B_{\mathfrak{g}}(u_{\mathfrak{m}}, v) = B_{\mathfrak{g}}(u, v) = 0.$$

Thus $u_{\mathfrak{m}} \in \mathfrak{m}' = \{0\}$ and therefore $u \in \mathfrak{h} \cap \operatorname{rad}(B_{\mathfrak{g}})$. Hence [u,v] = 0 for all $v \in \mathfrak{m}$. Now, using the fact that $\operatorname{ad}^{\mathfrak{m}} : \mathfrak{h} \to \operatorname{End}(\mathfrak{m})$ is injective we deduce that u = 0, and it follows that \mathfrak{g} is semi-simple. 2. If $\mathfrak{m}'=\mathfrak{m}$: In this case we have $\mathfrak{m}\subseteq \operatorname{rad}(B_{\mathfrak{g}})$. Recall that a nil ideal of \mathfrak{g} is an ideal \mathfrak{n} of \mathfrak{g} such that ad_u is nilpotent for all $u\in\mathfrak{n}$. We denote by $\operatorname{nilrad}(\mathfrak{g})$ the unique maximal nil ideal of \mathfrak{g} , then the following inclusion holds³

$$[\mathfrak{g}, \operatorname{rad}(\mathfrak{g})] \subseteq \operatorname{nilrad}(\mathfrak{g}).$$

Hence, we have

$$\mathfrak{m} = [\mathfrak{h}, \mathfrak{m}] \subseteq [\mathfrak{h}, \operatorname{rad}(B_{\mathfrak{g}})] \subseteq [\mathfrak{g}, \operatorname{rad}(\mathfrak{g})] \subseteq \operatorname{nilrad}(\mathfrak{g}).$$

Since $\operatorname{nilrad}(\mathfrak{g})$ is nilpotent, there exists a positive integer k such that $\operatorname{nilrad}(\mathfrak{g})^k = \{0\}$ and therefore $\mathfrak{m}^k = \{0\}$. If k = 1 then we are done. Suppose that $k \geq 2$ and k is odd, then it is clear that \mathfrak{m}^{k-1} is an \mathfrak{h} -submodule of \mathfrak{m} .

 $^{^3}$ For more details about $\mathrm{rad}(\mathfrak{g})$ and $\mathrm{nilrad}(\mathfrak{g})$, we refer the interested reader to the book of V.S. Varadarajan (Ref.).

Thus either

$$\mathfrak{m}^{k-1} = \mathfrak{m}, \qquad \text{or} \qquad \mathfrak{m}^{k-1} = \{0\}.$$

In the first case, we get

$$[\mathfrak{m},\mathfrak{m}]=[\mathfrak{m},\mathfrak{m}^{k-1}]=\mathfrak{m}^k=\{0\}.$$

In the second case, we have

$$[\mathfrak{m}^{k-2},\mathfrak{m}]=\mathfrak{m}^{k-1}=\{0\}.$$

Since $\mathfrak{m}^{k-2} \subset \mathfrak{h}$ and $\mathrm{ad}^{\mathfrak{m}} : \mathfrak{h} \to \mathrm{End}(\mathfrak{m})$ is injective we get that $\mathfrak{m}^{k-2} = \{0\}$. This argument shows that

$$[\mathfrak{m},\mathfrak{m}] = \{0\}.$$

Proposition (2)

If \mathfrak{g} is semi-simple, then $[\mathfrak{m}, \mathfrak{m}] = \mathfrak{h}$.

Proof. It is straightforward to see that $[\mathfrak{m},\mathfrak{m}] \neq \{0\}$, because otherwise \mathfrak{m} will be an abelian ideal of \mathfrak{g} . Moreover, we can easily check that $\mathfrak{m} \oplus [\mathfrak{m},\mathfrak{m}]$ is an ideal of \mathfrak{g} and therefore since \mathfrak{g} is semi-simple, there exists a supplementary ideal $\mathfrak{a} \subset \mathfrak{g}$ such that

$$\mathfrak{g}=\mathfrak{m}\oplus [\mathfrak{m},\mathfrak{m}]\oplus \mathfrak{a}.$$

We will prove that $\mathfrak{a} = \{0\}$. Using that $\mathrm{ad}^{\mathfrak{m}} : \mathfrak{h} \to \mathrm{End}(\mathfrak{m})$ is injective, it is sufficient to show that \mathfrak{a} is contained in \mathfrak{h} . Let $u \in \mathfrak{a}$, then write $u = u_{\mathfrak{m}} + u_{\mathfrak{h}}$ for $u_{\mathfrak{m}} \in \mathfrak{m}$ and $u_{\mathfrak{h}} \in \mathfrak{h}$.

For $v \in \mathfrak{m}$ one has

$$\underbrace{[u,v]}_{\in\mathfrak{a}} = \underbrace{[u_{\mathfrak{m}},v]}_{\in[\mathfrak{m},\mathfrak{m}]} + \underbrace{[u_{\mathfrak{h}},v]}_{\in\mathfrak{m}}.$$

Thus $[u_{\mathfrak{m}},v]=[u,v]=[u_{\mathfrak{h}},v]=0$. Similarly, for $v\in [\mathfrak{m},\mathfrak{m}]$ we have

$$\underbrace{[u,v]}_{\in\mathfrak{a}} = \underbrace{[u_{\mathfrak{m}},v]}_{\in\mathfrak{m}} + \underbrace{[u_{\mathfrak{h}},v]}_{\in[\mathfrak{m},\mathfrak{m}]}.$$

Hence $[u_{\mathfrak{m}},v]=[u,v]=[u_{\mathfrak{h}},v]=0.$ Let $v\in\mathfrak{g}$ and write $v=v_{\mathfrak{m}}+v_{[\mathfrak{m},\mathfrak{m}]}+v_{\mathfrak{a}}$ for $v_{\mathfrak{m}}\in\mathfrak{m},\,v_{[\mathfrak{m},\mathfrak{m}]}\in[\mathfrak{m},\mathfrak{m}],\,v_{\mathfrak{a}}\in\mathfrak{a}$, then

$$[u_{\mathfrak{m}}, v] = [u_{\mathfrak{m}}, v_{\mathfrak{m}}] + [u_{\mathfrak{m}}, v_{[\mathfrak{m},\mathfrak{m}]}] + [u_{\mathfrak{m}}, v_{\mathfrak{a}}] = 0.$$

Thus $u_{\mathfrak{m}} \in Z(\mathfrak{g}) = \{0\}$, and it follows that $u = u_h \in \mathfrak{h}$.

Irreducible Symmetric Spaces

Theorem

Let M:=G/H be an irreducible symmetric space where the action of G on M is effective and $\mathfrak g$ is semi-simple. Then $\mathrm{Aff}^0(M,\nabla^0)=G.$

Proof. First, since the action is effective, we can identify G and H with their images under the homogeneous action λ :

$$G \cong \lambda(G) \subseteq G^1 := \text{Aff}^0(M, \nabla^0),$$

then $H\subseteq H^1:=G^1_{\overline{e}}$, the isotropy group of \overline{e} in G^1 . Let $\mathfrak{g}^1=\mathfrak{m}^1\oplus\mathfrak{h}^1$ be the canonical decomposition of the symmetric pair (G^1,σ^1,H^1) , where $\sigma^1(f)=\overline{\sigma}\circ f\circ \overline{\sigma}$.

Moreover, we have the following commutative diagram:

where $\iota:G\hookrightarrow G^1$ is the canonical injection. This implies $\mathfrak{m}\subseteq\mathfrak{m}^1$ and $\mathfrak{h}\subseteq\mathfrak{h}^1$. But since $M=G/H=G^1/H^1$ we have $\mathfrak{m}=\mathfrak{m}^1$. Then, $\mathfrak{h}^1\to\mathrm{End}(\mathfrak{m}^1)$ is irreducible because $\mathfrak{h}\subseteq\mathfrak{h}^1$. Now, \mathfrak{g} is semi-simple, then $\mathfrak{h}=[\mathfrak{m},\mathfrak{m}]=[\mathfrak{m}^1,\mathfrak{m}^1]$, which implies (Proposition (1)) \mathfrak{g}^1 is semi-simple, and therefore $[\mathfrak{m},\mathfrak{m}]=\mathfrak{h}^1$ (Proposition (2)). Thus $\mathfrak{h}=\mathfrak{h}^1$, which proves that $\mathfrak{g}^1=\mathfrak{g}$ and finally $G^1=G$.

Corollary

Let $(M:=G/H,\langle\cdot\,,\cdot\rangle)$ be an irreducible (pseudo)Riemannian symmetric space where G is effective on M and $\mathfrak g$ is semi-simple. Then $G=\mathrm{Iso}^0(M,\langle\cdot\,,\cdot\rangle)=\mathrm{Aff}^0(M,\nabla^0)$.

Now we return to our question:

Given a symmetric space (M,μ) , how can we define directly from μ a torsion-free connection on M such that it becomes an affine symmetric space?

The answer is complicated, so we will just sketch out the idea.

Starting from a symmetric space (M,μ) , we will construct a torsion-free connection on M. But first we need to introduce some constructions.

Let $F \in C^{\infty}(M \times M)$ be a smooth function. For each $x \in M$ we define two smooth functions $F_x^{\ell}, F_x^r \in C^{\infty}(M)$ by:

$$F_x^\ell(y) := F(x,y), \quad \text{and} \quad F_x^r(y) := F(y,x).$$

We can use this to associated to each vector field $X \in \mathfrak{X}(M)$, two vector fields $X_{\ell}, X_r \in \mathfrak{X}(M \times M)$, defining they action on an arbitrary smooth fuction $F \in C^{\infty}(M \times M)$ by:

$$(X_{\ell}F)(x,y) := (XF_x^{\ell})(y), \text{ and } (X_rF)(x,y) := (XF_y^{r})(x).$$

Let $X,Y\in\mathfrak{X}(M),$ the construction above allows as to define an operator

$$X \cdot Y : C^{\infty}(M) \to C^{\infty}(M),$$

by setting

$$(X \cdot Y)f := X_r Y_{\ell}(f \circ \mu) \circ \Delta,$$

where $\mu: M \times M \to M$ is the multiplication map and

$$\Delta: M \to M \times M, \quad x \mapsto (x, x),$$

is the diagonal mapping.

Lemma

Let (U, x^i) be a local chart of M centered at $x_0 \in M$, and $X, Y \in \mathfrak{X}(M)$ two vector fields on M. Then if we write $X = X^i \partial_{x^i}$ and $Y = Y^j \partial_{x^j}$ on U, we have

$$XY = X^iY^j\frac{\partial^2}{\partial x^i\partial x^j} + X^i\frac{\partial Y^j}{\partial x^i}\frac{\partial}{\partial x^j},$$

and

$$\frac{1}{2}X \cdot Y = -X^i Y^j \frac{\partial^2}{\partial x^i \partial x^j} + \Gamma^k_{ij} \frac{\partial}{\partial x^k},$$

where Γ_{ij}^k are smooth functions defined on U.

The Canonical Connection on Symmetric Spaces

Theorem

Let $(M, \{\mathfrak{s}_x\}_{x\in M})$ be a symmetric space, then there exists a unique torsion-free connection on M such that each involution \mathfrak{s}_x is a geodesic symmetry about x.

Sketch of the Proof. For $X,Y\in\mathfrak{X}(M)$, we define

$$\nabla^0_X Y := XY + \frac{1}{2} X \cdot Y. \quad \blacksquare$$

For a full proof one can see Loos, Ottmar. *Symmetric spaces: General theory.* Vol. 1. WA Benjamin, 1969.

$$(M,\mu)$$
A symmetric space
$$(G,H,\sigma)$$
A symmetric pair
$$(M,\nabla^0)$$
An affine symmetric space

Example: Lie groups

Let G be a connected Lie group and $\mathfrak g$ its Lie algebra. Then

$$(G, \mu)$$

$$a \cdot b := ab^{-1}a$$

$$\forall a, b \in G$$

$$(G \times G, \Delta G, \sigma) \iff (G, \nabla^{0})$$

$$\sigma(a, b) := (b, a)$$

$$\forall a, b \in G$$

$$\nabla_{u^{+}}^{0} v^{+} := \frac{1}{2} [u^{+}, v^{+}]$$

$$\forall u, v \in \mathfrak{g}$$

References

- Michel Cahen, and Monique Parker. *Pseudo-Riemannian symmetric spaces*. Vol. 229. American Mathematical Soc, 1980.
- Alberto Elduque. Reductive homogeneous spaces and nonassociative algebras. Communications in Mathematics 28 (2020): 199.229.
- Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces. Academic press, 1979.
- Shoshichi Kobayashi, and Katsumi Nomizu. Foundations of Differential Geometry. Vol. II. Wiley, New York 1969.
- Ottmar Loos. Symmetric spaces: General theory. Vol. 1 & Vol. 2 WA Benjamin, 1969.

References

- Katsumi Nomizu. *Invariant affine connections on homogeneous spaces*. American Journal of Mathematics 76.1 (1954): 33-65.
- Walter A Poor. *Differential geometric structures*. Courier Corporation, 2007.
- Mikhail Mikhailovich Postnikov. *Geometry VI: Riemannian Geometry*. Vol. 91. Springer Science & Business Media, 2013.
- Veeraualli Seshadri Varadarajan. *Lie groups, Lie algebras, and their representations*. Vol. 102. Springer Science & Business Media, 2013.