
An Introduction to the Geometry of
Symmetric Spaces - II -

Abdelhak Abouqateb and Othmane Dani

Cadi Ayyad University

Faculty of Sciences and Technologies, Marrakesh, Morocco

Interuniversity Geometry Seminar (IGS)

26th March 2022

1



A Symmetric Space

2



A Symmetric Space

3



É. Cartan Theorem

Theorem

A pseudo-Riemannian manifold (M, g) is locally pseudo-
Riemannian symmetric if and only if ∇R = 0, where ∇ is the
Levi-Civita connection of g and R its curvature tensor field.
If M is simply-connected and complete, then (M, g) is
pseudo-Riemannian symmetric if and only if ∇R = 0.
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Ambrose-Singer Theorem

Theorem

Let (M, g) be a simply-connected and complete
pseudo-Riemannian manifold. The following properties are
equivalent:

1 (M, g) is reductive homogeneous pseudo-Riemannian
manifold.

2 (M, g) admits a linear connection ∇′ satisfying

∇′g = 0, ∇′R = 0, ∇′S = 0,

where S := ∇−∇′, ∇ the Levi-Civita connection of g,
and R its curvature tensor field.

For a proof and other similar theorems, one can see Calvaruso,
G., & López, M. C. (2019). Pseudo-Riemannian Homogeneous
Structures (Vol. 59). New York, NY, USA: Springer.
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B. Kostant Theorem 1

Theorem

Let ∇ be a connection on a simply-connected manifold M .
The following properties are equivalent:

1 M is reductive with respect to a connected Lie subgroup
G ⊂ Aff(M,∇).

2 There exists a complete connection ∇′ satisfying

∇′T = 0, ∇′R = 0, ∇′S = 0,

where S := ∇−∇′, T the torsion of ∇, and R its
curvature tensor field.

1Kostant, Bertram. ”A characterization of invariant affine
connections.” Nagoya Mathematical Journal 16 (1960): 35-50.
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Jordan algebras

A Jordan algebras A is a finite dimensional vector space with a
bilinear multiplication xy satisfying

xy = yx, x(x2y) = x2(xy),

and has a unit element e.

Proposition

The set M of inversible elements of A is open in A and
becomes a symmetric space with the product

sx(y) := 2x(y−1x)− x2y−1.
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Main Examples: Symmetric Pairs and
Affine Symmetric Spaces
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From Affine Symmetric Spaces to
Symmetric Pairs

Let (M,∇) be an affine symmetric space. Then we have:

Aff0(M,∇) acts transitively on M .

Let x0 ∈M fixed, and denote by Hx0 the isotropy group
of x0 in Aff0(M,∇).

Define an involutive automorphism of Aff0(M,∇) by:

σ∇ : Aff0(M,∇)→ Aff0(M,∇), F 7→ sx0 ◦ F ◦ sx0 ,

where sx0 : M →M is the geodesic symmetry about x0.

The following inclusions hold

Fix0(σ∇) ⊆ Hx0 ⊆ Fix(σ∇).
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In summary:

• The next step: Expression of the canonical connection ∇
associated to a symmetric pair (G,H, σ)? i.e. G-invariant
connection on G/H for which σ : G/H → G/H is an affine
map.
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Reductive homogeneous G-spaces

A homogeneous G-space G/H is called reductive if there
exists a vector subspace m ⊂ g such that:

g = m⊕ h, and Ad(H)(m) ⊆ m,

where g and h are the Lie algebras of G and H respectively.

Remark. Not all homogeneous spaces are reductive.
For example:

G := GL+(2,R), and H :=

{(
1 x
0 y

)
| y > 0, x ∈ R

}
.

One can easily check that G/H ∼= R2\{0} is not reductive.
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Similarly, not all reductive homogeneous spaces are symmetric.
For example the Stiefel manifolds SO(n)/SO(n− k) are not
symmetric spaces for 2 ≤ k ≤ n− 2. To see why, consider the
matrices Ip,q and Jn′ defined by:

Ip,q :=

(
Ip 0
0 −Iq

)
, and Jn′ :=

(
0 −In′
In′ 0

)
,

where p+ q = n and Jn′ is defined only if n is even, in which
case n′ := n

2
.
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It is known (cf. S. Helgason pp. 453) that up to conjugation,
the only involutive automorphisms of so(n) are given by:

• τp,q(X) := Ip,qXIp,q, in which case we have

ker(τp,q − Id) ∼= so(p)× so(q) 6= so(n− k).

• θ(X) := Jn′XJ
T
n′ , in which case we have

ker(θ − Id) ∼= u(n′) 6= so(n− k).
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Nomizu Theorem

Theorem

Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition, i.e

g = m⊕ h, and Ad(H)(m) ⊆ m.

Then there exists a one-to-one correspondence between the
set of G-invariant connections on M and the set of bilinear
maps α : m×m→ m which are Ad(H)-invariant, i.e

Adhα(u, v) = α (Adhu,Adhv),

for u, v ∈ m and h ∈ H.

17



Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition g = m⊕ h. For each u ∈ g, we
define a vector field u∗ ∈ X(M), called the fundamental vector
field associated to u by:

u∗a :=
d

dt |t=0

expG(tu)a, ∀ a ∈M.

Moreover, we have a linear isomorphism between m and TeM ,
given by:

Ie : m
∼=−−→ TeM

u 7−→ u∗e.

If ∇ is a G-invariant connection on M , then its associated
bilinear map α : m×m→ m is defined as follows2:

α(u, v) := I−1e

(
(∇u∗v

∗)e

)
+ [u, v]m.

2For w ∈ g, we denote by wm the projection of w on m.
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Further, the torsion T∇ of the G-invariant connection ∇ gives
rise to a bilinear map Tα : m×m→ m written as

Tα(u, v) := α(u, v)− α(v, u)− [u, v]m.

Hence

Corollary

Let ∇ be a G-invariant connection on M and α its associated
bilinear map. Then ∇ is torsion-free if and only if for any
u, v ∈ m

α(u, v) =
α(u, v) + α(v, u)

2
+

1

2
[u, v]m,

i.e. the bilinear map αsym(u, v) := α(u, v)− 1
2
[u, v]m is

symmetric.
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Particular G-invariant connections on M

The natural connection ∇0 given by:

α0(u, v) =
1

2
[u, v]m, ∀u, v ∈ m.

It is torsion-free.

The canonical connection ∇c given by:

αc(u, v) = 0, ∀u, v ∈ m.

It is invariant under parallelism i.e the torsion and the
curvature tensors of ∇c are both parallel.

Remark. ∇c = ∇0 if and only if [m,m] ⊆ h.
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Nomizu’s Theorem allows us to transfer geometric conditions
to algebra, or algebraic conditions to geometry.

Proposition

Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition g = m⊕ h and ∇ a G-invariant
connection on M with α : m×m→ m its associated bilinear
map. For each u ∈ m, we have

α(u, u) = 0 ⇔ t 7→ expG(tu) is a geodesic of ∇.

Proof. Let u ∈ m and γ : R→M, t 7→ expG(tu). Since
γ̇(t) = u∗γ(t), then a direct computation yields

∇γ̇ γ̇(t) =
(
λexpG(tu)

)
∗ α(u, u)∗e.
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Notice that if ∇ is a G-invariant connection on M whose
geodesics through e are exactly the curves t 7→ expG(tu) for
any u ∈ m, then the geodesics through another point a of M
are exactly the curves t 7→ expG(tAdau)a, with u ∈ m.

Corollary

On a reductive homogeneous G-space M := G/H with a fixed
reductive decomposition g = m⊕ h, the natural connection
∇0 is the only G-invariant torsion-free connection whose
geodesics are exactly the curves t 7→ expG(tAdau)a, with
u ∈ m and a ∈M .

Example. A connected Lie group G, viewed as a reductive
homogeneous (G×G)-space, endowed with its natural
bi-invariant connection!
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From Symmetric Pairs to Affine Symmetric
Spaces

Theorem

Let (G,H, σ) be a symmetric pair, then M := G/H is an
affine symmetric space.

Proof. Let g = m⊕ h be the canonical decomposition of g
and ∇0 the natural torsion-free G-invariant connection on M
associated to the bilinear map α0 ≡ 0. Consider the following
smooth map on M

s0 : M →M, a 7→ σ(a).

This is well defined because H ⊆ Fix(σ), and satisfies

s0 ◦ s0 = IdM .
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Proof. s0 ∈ Aff(M,∇0)

Define a connection ∇ on M by:

∇XY := s0∗

(
∇0

s0∗X
s0∗Y

)
, ∀X, Y ∈ X(M).

Let us show that ∇ = ∇0. First, for each a ∈ G, we have the
following commutative diagram

M
s0 //

λa
��

M

λσ(a)
��

M
s0 //M .

Thus ∇ is G-invariant. Let α be its associated bilinear map.
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Proof. s0 ∈ Aff(M,∇0)

For each u ∈ m and a ∈ G we have(
s0∗u
∗)
a

=
d

dt |t=0

s0
(

expG(tu)σ(a)
)

=
d

dt |t=0

expG(−tu)a

= −u∗a.

Thus
s0∗u
∗ = −u∗, ∀u ∈ m.
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Proof. s0 ∈ Aff(M,∇0)

Hence for u, v ∈ m we have

α(u, v) = I−1e

(
(∇u∗v

∗)e

)
= I−1e

(
s0∗
(
∇0
u∗v
∗)
e

)
= −I−1e

(
α0(u, v)∗e

)
= 0,

which implies that ∇ = ∇0 and therefore s0 ∈ Aff(M,∇0).
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Proof. s0 is a geodesic symmetry about e

Now it only remains to check that s0 is a geodesic symmetry
about e. Let t 7→ expG(tu) be a geodesic through e with
u ∈ m, then

s0
(

expG(tu)
)

= σ (expG(tu))

= expG(−tu).

Thus s0 is a geodesic symmetry about e.
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Finally, for any a ∈M we define the geodesic symmetry about
a as follow

M
s0 //M

λa
��

M

λa−1

OO

sa //M.

One can check easily that sa satisfies all the conditions
required for a geodesic symmetry.

28



29



Invariant Pseudo-Riemannian Metrics on a
Reducitve Homogeneous G-space

Theorem

Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition g = m⊕ h. There is a natural
one-to-one correspondence between the set of G-invariant
pseudo-Riemannian metrics on M and the set of Ad(H)-
invariant non-degenerate symmetric bilinear forms on m.

For the sake of simplicity, we shall use the same notation 〈· , ·〉
to denote both the G-invariant pseudo-Riemannian metric on
M , and its associated Ad(H)-invariant non-degenerate
symmetric bilinear form on m.
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Proposition

Let M := G/H be a reductive homogeneous G-space with a
fixed reductive decomposition g = m⊕ h, and let 〈· , ·〉 be a
G-invariant pseudo-Riemannian metric on M . The Levi-Civita
connection ∇LC of 〈· , ·〉 is G-invariant and its associated
bilinear map αLC : m×m→ m is given by:

αLC(u, v) :=
1

2
[u, v]m + αLC

sym(u, v),

where αLC
sym : m×m→ m is the symmetric bilinear map

defined by:

〈αLC
sym(u, v), w〉 =

1

2

{
〈[w, u]m, v〉+ 〈u, [w, v]m〉

}
,

for all u, v, w ∈ m.
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Proof. A direct computation using Koszul’s formula shows
that ∇LC is G-invariant. Moreover, for u, v, w ∈ m we have

〈αLC(u, v), w〉 = 〈∇LC
u∗ v

∗, w∗〉e + 〈[u, v]∗, w∗〉e

=
1

2

{
〈[u, v]∗, w∗〉e + 〈[w, u]∗, v∗〉e + 〈u∗, [w, v]∗〉e

}
=

1

2

{
〈[u, v]m, w〉+ 〈[w, u]m, v〉+ 〈u, [w, v]m〉

}
= 〈1

2
[u, v]m + αLC

sym(u, v), w〉,

where

〈αLC
sym(u, v), w〉 :=

1

2

{
〈[w, u]m, v〉+ 〈u, [w, v]m〉

}
.
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Corollary

With the notations of the previous proposition, The Levi-Civita
connection ∇LC of 〈· , ·〉 coincides with the natural connection
∇0 associated to the decomposition g = m⊕ h if and only if

〈[u, v]m, w〉+ 〈v, [u,w]m〉 = 0, ∀u, v, w ∈ m.

Corollary

Let (G,H, σ) be a symmetric pair. A G-invariant pseudo-
Riemannian metric on G/H, if there exists any, induces the
canonical connection.
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Semi-simple Lie Algebras

Definition

Let (g, [ , ]) be a Lie algebra.

g is simple if it is nonabelian and does not contain any
ideal distinct from {0} and g.

g is semi-simple if does not contain any nonzero solvable
ideal. ( a is solvable i.e. there exists n s.t. Dn(a) = {0}).

Let (g, [ , ]) be a Lie algebra. Then the following statements
are equivalent:

1. g is semi-simple.

2. g = g1 ⊕ · · · ⊕ gr, where the gi’s are ideals of g which are
simple (as Lie algebras).

3. g has no nonzero abelian ideal.

4. The Killing form Bg : g× g→ R of g is non-degenerate.
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Cartan involution

Let τ : g→ g be an automorphism with τ 2 = Idg. Then, the
bilinear form

Bτ (u, v) := −Bg(u, τ(v)),

is symmetric, where Bg is the Killing form of g. τ is called a
Cartan involution if Bτ is an inner product on g.

Proposition

θ(A) := −At is an involution of Mn(IR). If g ⊂Mn(IR) is a
subalgebra such that

θ(g) ⊂ g, and Z(g) = {0},

then, τ := θ|g is a Cartan involution of g.

It is the case, for example, of the subalgebras sl(n, IR) and
so(p, q).
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Proof. We have to show that for any X ∈ g, s.t. X 6= 0

Bτ (X,X) = tr(adX ◦ adXt) > 0 ?

Consider the canonical inner product on g:

〈X, Y 〉 := tr(X tY ),

this induces an inner product on End(g):

〈〈f1, f2〉〉 := tr(fT1 ◦ f2),

where fT1 : g→ g is the transpose defined through 〈· , ·〉.
A small computation shows that adXt = (adX)T .
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Theorem

Let (G,H, σ) be a symmetric pair such that G is semi-simple.
Then the canonical connection on G/H is induced by a
G-invariant pseudo-Riemannian metric. If moreover σ′ is a
Cartan involution, then the canonical connection on G/H is
induced by a G-invariant Riemannian metric.

Proof. Define an Ad(H)-invariant symmetric bilinear form on
m by:

〈· , ·〉 : m×m→ R, written 〈u, v〉 := −Bg(u, v),

where Bg : g× g→ R is the Killing form of g. Furthermore,
since g is semi-simple and Bg(h,m) = 0, we deduce that 〈· , ·〉
is non-degenerate.
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Irreducible Symmetric Spaces

In what follows, (G,H, σ) will be a symmetric pair, g = m⊕ h
the canonical decomposition of g corresponding to σ, and

adm : h→ End(m), u 7→ [u, · ],

the adjoint representation of h in m. Moreover, we put
M := G/H and we assume that the action of G on M is
almost effective, i.e. the representation adm : h→ End(m) is
injective.

Definition

M is called irreducible if adm : h→ End(m) is irreducible.
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Proposition (1)

If M is irreducible, then either

g is semi-simple, or [m,m] = {0}.

Proof. Let m′ := rad(Bg) ∩m. It is clear that m′ is an
h-submodule of m and hence either m′ = {0} or m′ = m.

1. If m′ = {0}: We shall prove that g is semi-simple. Let
u ∈ rad(Bg), then write u = um + uh for um ∈ m and
uh ∈ h. Since Bg(h,m) = 0, we have for v ∈ m

Bg(um, v) = Bg(u, v) = 0.

Thus um ∈ m′ = {0} and therefore u ∈ h ∩ rad(Bg).
Hence [u, v] = 0 for all v ∈ m. Now, using the fact that
adm : h→ End(m) is injective we deduce that u = 0, and
it follows that g is semi-simple.
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2. If m′ = m: In this case we have m ⊆ rad(Bg). Recall that
a nil ideal of g is an ideal n of g such that adu is nilpotent
for all u ∈ n. We denote by nilrad(g) the unique maximal
nil ideal of g, then the following inclusion holds3

[g, rad(g)] ⊆ nilrad(g).

Hence, we have

m = [h,m] ⊆ [h, rad(Bg)] ⊆ [g, rad(g)] ⊆ nilrad(g).

Since nilrad(g) is nilpotent, there exists a positive integer
k such that nilrad(g)k = {0} and therefore mk = {0}. If
k = 1 then we are done. Suppose that k ≥ 2 and k is
odd, then it is clear that mk−1 is an h-submodule of m.

3For more details about rad(g) and nilrad(g), we refer the interested
reader to the book of V.S. Varadarajan (Ref.).
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Thus either

mk−1 = m, or mk−1 = {0}.

In the first case, we get

[m,m] = [m,mk−1] = mk = {0}.

In the second case, we have

[mk−2,m] = mk−1 = {0}.

Since mk−2 ⊂ h and adm : h→ End(m) is injective we
get that mk−2 = {0}. This argument shows that

[m,m] = {0}.
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Proposition (2)

If g is semi-simple, then [m,m] = h.

Proof. It is straightforward to see that [m,m] 6= {0}, because
otherwise m will be an abelian ideal of g. Moreover, we can
easily check that m⊕ [m,m] is an ideal of g and therefore
since g is semi-simple, there exists a supplementary ideal a ⊂ g
such that

g = m⊕ [m,m]⊕ a.

We will prove that a = {0}. Using that adm : h→ End(m) is
injective, it is sufficient to show that a is contained in h. Let
u ∈ a, then write u = um + uh for um ∈ m and uh ∈ h.
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For v ∈ m one has

[u, v]︸︷︷︸
∈a

= [um, v]︸ ︷︷ ︸
∈[m,m]

+ [uh, v]︸ ︷︷ ︸
∈m

.

Thus [um, v] = [u, v] = [uh, v] = 0. Similarly, for v ∈ [m,m] we
have

[u, v]︸︷︷︸
∈a

= [um, v]︸ ︷︷ ︸
∈m

+ [uh, v]︸ ︷︷ ︸
∈[m,m]

.

Hence [um, v] = [u, v] = [uh, v] = 0. Let v ∈ g and write
v = vm + v[m,m] + va for vm ∈ m, v[m,m] ∈ [m,m], va ∈ a, then

[um, v] = [um, vm] + [um, v[m,m]] + [um, va] = 0.

Thus um ∈ Z(g) = {0}, and it follows that u = uh ∈ h.
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Irreducible Symmetric Spaces

Theorem

Let M := G/H be an irreducible symmetric space where the
action of G on M is effective and g is semi-simple. Then
Aff0(M,∇0) = G.

Proof. First, since the action is effective, we can identify G
and H with their images under the homogeneous action λ:

G ∼= λ(G) ⊆ G1 := Aff0(M,∇0),

then H ⊆ H1 := G1
e, the isotropy group of e in G1. Let

g1 = m1 ⊕ h1 be the canonical decomposition of the
symmetric pair (G1, σ1, H1), where σ1(f) = σ ◦ f ◦ σ.
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Moreover, we have the following commutative diagram:

G1 σ1
// G1

G

ι

OO

σ // G,

ι

OO

where ι : G ↪→ G1 is the canonical injection. This implies
m ⊆ m1 and h ⊆ h1. But since M = G/H = G1/H1 we have
m = m1. Then, h1 → End(m1) is irreducible because h ⊆ h1.
Now, g is semi-simple, then h = [m,m] = [m1,m1], which
implies (Proposition (1)) g1 is semi-simple, and therefore
[m,m] = h1 (Proposition (2)). Thus h = h1, which proves that
g1 = g and finally G1 = G.

Corollary

Let (M := G/H, 〈· , ·〉) be an irreducible (pseudo)Riemannian
symmetric space where G is effective on M and g is
semi-simple. Then G = Iso0(M, 〈· , ·〉) = Aff0(M,∇0).
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Now we return to our question:

Given a symmetric space (M,µ), how can we define
directly from µ a torsion-free connection on M such

that it becomes an affine symmetric space?

The answer is complicated, so we will just sketch out the idea.
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Starting from a symmetric space (M,µ), we will construct a
torsion-free connection on M . But first we need to introduce
some constructions.

Let F ∈ C∞(M ×M) be a smooth function. For each x ∈M
we define two smooth functions F `

x, F
r
x ∈ C∞(M) by:

F `
x(y) := F (x, y), and F r

x (y) := F (y, x).

We can use this to associated to each vector field X ∈ X(M),
two vector fields X`, Xr ∈ X(M ×M), defining they action on
an arbitrary smooth fuction F ∈ C∞(M ×M) by:

(X`F )(x, y) := (XF `
x)(y), and (XrF )(x, y) := (XF r

y )(x).

47



Let X, Y ∈ X(M), the construction above allows as to define
an operator

X · Y : C∞(M)→ C∞(M),

by setting

(X · Y )f := XrY`(f ◦ µ) ◦∆,

where µ : M ×M →M is the multiplication map and

∆ : M →M ×M, x 7→ (x, x),

is the diagonal mapping.
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Lemma

Let (U, xi) be a local chart of M centered at x0 ∈M , and
X, Y ∈ X(M) two vector fields on M . Then if we write
X = X i∂xi and Y = Y j∂xj on U , we have

XY = X iY j ∂2

∂xi∂xj
+X i∂Y

j

∂xi
∂

∂xj
,

and
1

2
X · Y = −X iY j ∂2

∂xi∂xj
+ Γkij

∂

∂xk
,

where Γkij are smooth functions defined on U .
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The Canonical Connection on Symmetric
Spaces

Theorem

Let (M, {sx}x∈M) be a symmetric space, then there exists a
unique torsion-free connection on M such that each involution
sx is a geodesic symmetry about x.

Sketch of the Proof. For X, Y ∈ X(M), we define

∇0
XY := XY +

1

2
X · Y .

For a full proof one can see Loos, Ottmar. Symmetric spaces:
General theory. Vol. 1. WA Benjamin, 1969.
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Example: Lie groups

Let G be a connected Lie group and g its Lie algebra. Then
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