Introduction to affine geometry

Mohamed Boucetta

Cadi-Ayyad University

12-12-2020

Seminar Algebra, Geometry, Topology and Applications

・ロン ・回 と ・ ヨン ・ ヨン

E

Definition of an affine manifold Affine Developments Left invariant affine structures on Lie groups

Outline

・ロン ・回 と ・ ヨン ・ ヨン

E

Let M denote an n-dimensional connected manifold, $n \ge 1$. An affine atlas Φ on M is a covering of M by coordinate charts $\{U_i, \phi_i\}_{i \in S}$ such that, for any $i, j \in S$ with $U_i \cap U_j \neq \emptyset$,

$$\phi_i \circ \phi_i^{-1}(x) = A_{ij}x + b_{ij}, \quad A_{ij} \in \mathrm{GL}(n,\mathbb{R}), b_{ij} \in \mathbb{R}^n.$$

A maximal affine atlas is an affine structure on *M*, and *M* together with an affine structure is an affine manifold. Each chart in the affine structure defines affine coordinates.

・ロト ・ 同ト ・ ヨト ・ ヨト

Let M denote an n-dimensional connected manifold, $n \ge 1$. An affine atlas Φ on M is a covering of M by coordinate charts $\{U_i, \phi_i\}_{i \in S}$ such that, for any $i, j \in S$ with $U_i \cap U_j \neq \emptyset$,

$$\phi_i \circ \phi_j^{-1}(x) = A_{ij}x + b_{ij}, \quad A_{ij} \in \mathrm{GL}(n,\mathbb{R}), b_{ij} \in \mathbb{R}^n.$$

A maximal affine atlas is an affine structure on M, and M together with an affine structure is an affine manifold. Each chart in the affine structure defines affine coordinates.

・ロト ・ 同ト ・ ヨト ・ ヨト

Given an affine structure on M, we define on M a covariant connection by putting for any vector fields X, Y and any $m \in M$

$$(\nabla_X Y)(m) = \sum_{i,j} X_i(m) \frac{\partial Y_j}{\partial x_i}(m) \partial_{x_j}$$
(1)

where $X = \sum_{i=1}^{n} X_i \partial_{x_i}$ and $Y = \sum_{i=1}^{n} X_i \partial_{x_i}$ are the expressions of X and Y in an affine chart (x_1, \ldots, x_n) in an open neighborhood U of m.

Definition of an affine manifold Affine Developments Left invariant affine structures on Lie groups

If (y_1, \ldots, y_n) is another affine chart in an open neighborhood V of m, we have on $U \cap V$

$$\begin{pmatrix} y_1\\ \vdots\\ y_n \end{pmatrix} = A \begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix} + b,$$

where $A \in GL(n, \mathbb{R})$ and $b \in \mathbb{R}^n$. So the components of X in the local frame $(\partial_{y_1}, \ldots, \partial_{y_n})$ are given by

$$\begin{pmatrix} \widetilde{X}_1 \\ \vdots \\ \widetilde{X}_n \end{pmatrix} = \begin{pmatrix} X(y_1) \\ \vdots \\ X(y_n) \end{pmatrix} = A \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$

On the other hand the passage matrix from $(\partial_{x_1}, \ldots, \partial_{x_n})$ to $(\partial_{y_1}, \ldots, \partial_{y_n})$ is A^{-1} . Hence

$$\sum_{i,j} X_i(m) \frac{\partial Y_j}{\partial x_i}(m) \partial_{x_j} = \sum_{i,j} \widetilde{X}_i(m) \frac{\partial \widetilde{Y}_j}{\partial y_i}(m) \partial_{y_j}.$$

Mohamed Boucetta

Introduction to affine geometry

Thus ∇ is well defined. Since $\nabla_{\partial_{x_i}} \partial_{x_j} = 0$, we deduce that ∇ is torsion free and its curvature vanishes.

Let us study the converse. At first, we have the following result.

Proposition

Let (M, ∇) be a manifold endowed with a torsion free and flat connection. Then for any $m \in M$ and $v \in T_m M$ there exists an open neighborhood U of m and a unique vector field X^v defined on U such that

$$\nabla X^{\nu} = 0 \quad and \quad X^{\nu}(m) = \nu. \tag{2}$$

(a)

Thus ∇ is well defined. Since $\nabla_{\partial_{x_i}}\partial_{x_j} = 0$, we deduce that ∇ is torsion free and its curvature vanishes.

Let us study the converse. At first, we have the following result.

Proposition

Let (M, ∇) be a manifold endowed with a torsion free and flat connection. Then for any $m \in M$ and $v \in T_m M$ there exists an open neighborhood U of m and a unique vector field X^v defined on U such that

$$\nabla X^{\nu} = 0 \quad and \quad X^{\nu}(m) = \nu. \tag{2}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Proof.

The problem is local so we can suppose that $M = \mathbb{R}^n$ and m = 0. Denote by (x_1, \ldots, x_n) the canonical coordinates of \mathbb{R}^n and put

$$X^{\mathsf{v}} = \sum_{i=1}^{n} \alpha_i \partial_{x_i}$$
 and $\nabla_{\partial_{x_i}} \partial_{x_j} = \sum_{k=1}^{n} \Gamma_{ij}^k \partial_{x_k}.$

The vanishing of the curvature is equivalent to

$$\partial_{j}\left(\Gamma_{jl}^{h}\right) - \partial_{i}\left(\Gamma_{jl}^{h}\right) = \sum_{k=1}^{n} \left(\Gamma_{jl}^{k}\Gamma_{ik}^{h} - \Gamma_{il}^{k}\Gamma_{jk}^{h}\right), \quad i, j, l, h = 1, \dots, n, \ i \neq j.$$
(3)

・ロト ・回ト ・ヨト ・ヨト

Definition of an affine manifold Affine Developments Left invariant affine structures on Lie groups

Proof Continued.

The equation (2) is equivalent to

$$abla_{\lambda_j}X^{
u}=0, \quad j=1,\ldots,n \quad ext{and} \quad X^{
u}(0)=
u$$

thus

$$\frac{\partial \alpha}{\partial x_j} = F_j(x, \alpha(x)), \quad i, j = 1, \dots, n,$$
(4)

イロン イヨン イヨン イヨン

Э

where

$$\alpha = (\alpha_1, \dots, \alpha_n)$$
 and $F_j^k(x, \alpha) = -\sum_{l=1}^n \alpha_l \Gamma_{jl}^k(x).$ (*)

Definition of an affine manifold Affine Developments Left invariant affine structures on Lie groups

Theorem (See Spivak volume I. pp.187) Let $U \times V \subset \mathbb{R}^m \times \mathbb{R}^n$ be open, where U is a neighborhood of 0 in \mathbb{R}^m , and let $F_i : U \times V \longrightarrow \mathbb{R}^n$ be C^{∞} functions, for i = 1, ..., m. Then for every $x_0 \in V$ there is at most one function

$$\alpha: W \longrightarrow V$$

defined in a neighborhood of 0 in \mathbb{R}^m , satisfying

$$rac{\partial lpha}{\partial x^j} = \mathsf{F}_j(x, lpha(x)) \quad \textit{for all } x \in W \quad \textit{and} \quad lpha(0) = x_0.$$

Moreover, such a function exists and automatically C^{∞} in some neighborhood W if and only if there is a neighborhood of $(0, x) \in U \times V$ on which

$$\frac{\partial F_j}{\partial x^i} - \frac{\partial F_i}{\partial x^j} + \sum_{k=1}^n \frac{\partial F_j}{\partial \alpha^k} F_i^k - \sum_{k=1}^n \frac{\partial F_i}{\partial \alpha^k} F_j^k = 0.$$

According to this theorem, to complete the proof one needs to show that F_1, \ldots, F_n given by (*) satisfy the conditions of the theorem. Indeed, we have

$$\frac{\partial F_j^h}{\partial x_i} - \frac{\partial F_i^h}{\partial x_j} = -\sum_{l=1} \alpha_l \left(\frac{\partial \Gamma_{jl}^h}{\partial x_i} - \frac{\partial \Gamma_{il}^h}{\partial x_j} \right),$$
$$\sum_{k=1}^n \left(\frac{\partial F_j^h}{\partial \alpha^k} F_i^k - \frac{\partial F_i^h}{\partial \alpha^k} F_j^k \right) = \sum_{k,l=1}^n \alpha_l \left(\Gamma_{jk}^h \Gamma_{ll}^k - \Gamma_{ik}^h \Gamma_{jl}^k \right).$$

By using (3) we can conclude.

| |

Definition of an affine manifold Affine Developments Left invariant affine structures on Lie groups

Let (M, ∇) be a manifold endowed with a torsion free and flat connection. For any $m \in M$, choose a basis (v_1, \ldots, v_n) of $T_m M$. According to Proposition 1.1, there exists an open set Ucontaining m and (X^1, \ldots, X^n) a family of vector fields such that $\nabla X^i = 0$ and $X^i(m) = v_i$ for $i = 1, \ldots, n$. Since ∇ is torsion free, we have, for any $i, j = 1, \ldots, n$,

$$[X^i, X^j] = \nabla_{X^i} X^j - \nabla_{X^j} X^i = 0.$$

Moreover, since $(X^1(m), \ldots, X^n(m))$ are linearly independent, we can choose U such that $(X^1(x), \ldots, X^n(x))$ are linearly independent for any $x \in U$. By applying Frobenius's Theorem, we get a coordinate system (x_1, \ldots, x_n) around m such that

$$\partial_{x_i} = X^i, \quad i = 1, \ldots, n.$$

(ロ) (同) (E) (E) (E)

Theorem (Frobenius's Theorem)

Let *M* be a n-dimensional smooth manifold and X^1, \ldots, X^p $(1 \le p \le n)$ a family of linearly independent vector fields on a neighborhood of a point $m \in M$. Then there exists a coordinates system (x_1, \ldots, x_n) around *m* such that

$$\partial_{x_i} = X^i, \quad i = 1, \ldots, p.$$

イロト イヨト イヨト イヨト

By varying the point *m* on the construction above we get a differential atlas Φ of *M* such that, for any chart (x_1, \ldots, x_n) in Φ ,

$$abla \partial_{x_i} = 0, \quad i = 1, \dots, n.$$

Let us show that Φ is an affine atlas. Let (x_1, \ldots, x_n) and (y_1, \ldots, y_n) two charts in Φ over, respectively, two open sets U and V such that $U \cap V \neq 0$. On $U \cap V$, we have

$$\partial_{y_i} = \sum_{k=1}^n \frac{\partial y_i}{\partial x_k} \partial_{x_k} \quad i = 1, \dots, n$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition of an affine manifold Affine Developments Left invariant affine structures on Lie groups

Since both $(\partial_{x_1}, \ldots, \partial_{x_n})$ $(\partial_{y_1}, \ldots, \partial_{y_n})$ are parallel with respect to ∇ we get that

$$\frac{\partial y_i}{\partial x_h \partial x_k} = 0, \quad i, k, h = 1, \dots, n.$$

This show that, for any $i = 1, \ldots, n$,

$$y_i = \sum_{k=1}^n a_{ik} x_k + b_i,$$

where $A = (a_i j)$ is an invertible matrix and $(b_1, \ldots, b_n) \in \mathbb{R}^n$. This shows that the change of coordinates from (x_1, \ldots, x_n) to (y_1, \ldots, y_n) is given by an affine map of \mathbb{R}^n .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

To summarize all what above, we have proved the following theorem.

Theorem

Let M be a smooth manifold. Then the following assertions are equivalent:

- **1** There exists on M and affine atlas Φ .
- 2 M carries a torsion free flat linear connection.

・ロト ・ 同ト ・ ヨト ・ ヨト

A variation of curves is a smooth map $\Gamma = (-\varepsilon, \varepsilon) \times [a, b] \longrightarrow M$. Any variation of curves defines two collections of curves: the **main curves** $\Gamma_s(t) = \Gamma(s, t)$ defined on [a, b] by setting s = constantand the **transverse curves** $\Gamma^{(t)}(s) = \Gamma(s, t)$ defined on $(-\varepsilon, \varepsilon)$ by setting t = constant.

・ロン ・回 と ・ヨン ・ヨン

A variation of curves is a smooth map $\Gamma = (-\varepsilon, \varepsilon) \times [a, b] \longrightarrow M$. Any variation of curves defines two collections of curves: the **main curves** $\Gamma_s(t) = \Gamma(s, t)$ defined on [a, b] by setting s = constant and the **transverse curves** $\Gamma^{(t)}(s) = \Gamma(s, t)$ defined on $(-\varepsilon, \varepsilon)$ by setting t = constant.

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・ ・

A variation of curves is a smooth map $\Gamma = (-\varepsilon, \varepsilon) \times [a, b] \longrightarrow M$. Any variation of curves defines two collections of curves: the **main curves** $\Gamma_s(t) = \Gamma(s, t)$ defined on [a, b] by setting s = constant and the **transverse curves** $\Gamma^{(t)}(s) = \Gamma(s, t)$ defined on $(-\varepsilon, \varepsilon)$ by setting t = constant.

イロン イヨン イヨン イヨン

A variation of curves is a smooth map $\Gamma = (-\varepsilon, \varepsilon) \times [a, b] \longrightarrow M$. Any variation of curves defines two collections of curves: the **main curves** $\Gamma_s(t) = \Gamma(s, t)$ defined on [a, b] by setting s = constant and the **transverse curves** $\Gamma^{(t)}(s) = \Gamma(s, t)$ defined on $(-\varepsilon, \varepsilon)$ by setting t = constant.

イロン イヨン イヨン イヨン

A vector field along Γ is a map $V:(-\varepsilon,\varepsilon)\times [a,b]\longrightarrow TM$ such that

$$V(s,t) \in T_{\Gamma(s,t)}M.$$

The tangent vectors to these two families of curves are examples of vector fields along $\Gamma,$ we denote them by

$$T(s,t) = \partial_t \Gamma(s,t) = rac{d}{dt} \Gamma_s(t), \quad S(s,t) = \partial_s \Gamma(s,t) = rac{d}{ds} \Gamma^{(t)}(s).$$

・ロン ・回 と ・ ヨ と ・ ヨ と

э

If V is a vector field along Γ , we can compute the covariant derivative of V either along the main curves or along the transverse curves, the resulting vector fields along Γ are denoted by $D_t V$ and $D_s V$. The following lemma is classical.

Lemma

With the notation above, we have

$$D_s T - D_t S = T^{\nabla}(S, T).$$
(5)

and

$$D_{s}D_{t}Y - D_{t}D_{s}Y = -R^{\nabla}(S,T)Y,$$

$$T^{\nabla}(X,Y) = \nabla_{X}Y - \nabla_{Y}X - [X,Y]$$

$$R(X,Y) = \nabla_{[X,Y]} - \nabla_{X}\nabla_{Y} + \nabla_{Y}\nabla_{X}.$$
(6)

Let (M, ∇) be an affine manifold. Let $H : [0,1] \times [0,1]$ a smooth homotopy with fixed end, i.e., H(s,0) = x and H(s,1) = y for any $s \in [0,1]$. Fix $v \in T_x M$. For any $s \in [0,1]$ there exists an unique $V(s,.) : [0,1] \longrightarrow TM$ such that

 $V(s,t) \in T_{H(s,t)}M$ and V(s,0) = v

and V(s, .) is parallel along H(s, .). From (6) we get

 $\nabla_S \nabla_T V - \nabla_T \nabla_S V = 0,$

where $S = \frac{\partial H}{\partial s}$ and $T = \frac{\partial H}{\partial t}$.

・ロン ・四 と ・ ヨ と ・ ヨ と

Let (M, ∇) be an affine manifold. Let $H : [0,1] \times [0,1]$ a smooth homotopy with fixed end, i.e., H(s,0) = x and H(s,1) = y for any $s \in [0,1]$. Fix $v \in T_x M$. For any $s \in [0,1]$ there exists an unique $V(s,.) : [0,1] \longrightarrow TM$ such that

 $V(s,t) \in T_{H(s,t)}M$ and V(s,0) = v

and V(s,.) is parallel along H(s,.). From (6) we get

$$\nabla_S \nabla_T V - \nabla_T \nabla_S V = 0,$$

where $S = \frac{\partial H}{\partial s}$ and $T = \frac{\partial H}{\partial t}$.

(ロ) (同) (E) (E) (E)

Let (M, ∇) be an affine manifold. Let $H : [0,1] \times [0,1]$ a smooth homotopy with fixed end, i.e., H(s,0) = x and H(s,1) = y for any $s \in [0,1]$. Fix $v \in T_x M$. For any $s \in [0,1]$ there exists an unique $V(s,.) : [0,1] \longrightarrow TM$ such that

 $V(s,t) \in T_{H(s,t)}M$ and V(s,0) = v

and V(s,.) is parallel along H(s,.). From (6) we get

$$\nabla_S \nabla_T V - \nabla_T \nabla_S V = 0,$$

where $S = \frac{\partial H}{\partial s}$ and $T = \frac{\partial H}{\partial t}$.

(ロ) (同) (E) (E) (E)

Since $\nabla_T V = 0$ we deduce that $\nabla_S V$ is parallel. But H(s, 0) = xand V(s, 0) = v so $(\nabla_S V)(0, 0) = 0$ and hence $\nabla_S V = 0$. Moreover, H(s, 1) = y and hence V(s, 1) is constant.

Proposition

Let M be an affine manifold. Then the parallel displacement along a smooth curve γ depends only on the homotopy class of γ .

イロト イポト イヨト イヨト

Let $\mathbf{p}: \widetilde{M} \longrightarrow M$ be an universal covering of M and $\operatorname{Aut}(\mathbf{p})$ the group of deck transformations of \mathbf{p} . A diffeomorphism $F: \widetilde{M} \longrightarrow \widetilde{M}$ is an element of $\operatorname{Aut}(\mathbf{p})$ if $\mathbf{p} \circ F = \mathbf{p}$. It is well-known that $\operatorname{Aut}(\mathbf{p})$ is isomorphic to $\pi_1(M)$. Indeed, $\widetilde{M} = \{[c], c: [0, 1] \longrightarrow M, c(0) = x_0\}$ and $\mathbf{p}: \widetilde{M} \longrightarrow M, [c] \mapsto c(1)$ and if $[\gamma] \in \pi_1(M, x_0)$ then $F_{\gamma}: \widetilde{M} \longrightarrow \widetilde{M}, [c] \mapsto [\gamma].[c]$ is a deck transformation and the map $[\gamma] \longrightarrow F_{\gamma}$ is an isomorphism.

(ロ) (同) (E) (E) (E)

For any vector field X on M there exists a unique vector field X^{ℓ} on \widetilde{M} such that, for any $m \in \widetilde{M}$,::

 $T_m \mathbf{p}(X^{\ell}(m)) = X(\mathbf{p}(m)).$

We define on \widetilde{M} a linear connection $\widetilde{\nabla}$ which is the lift of ∇ by the following formula:

 $\widetilde{\nabla}_{X^{\ell}}Y^{\ell} = (\nabla_X Y)^{\ell},$

where X, Y are vector fields on M. This connection defines on Man affine structure for which the elements of $\pi_1(M)$ are affine transformations. Because, for any $X \in \Gamma(TM)$, and for any $F \in \pi_1(M)$

 $F_*X^\ell=X^\ell.$

Moreover, since \widetilde{M} is simply connected, for any $m, m' \in \widetilde{M}$, the parallel displacement defines an isomorphism

$$\tau_{mm'}: T_m M \longrightarrow T_{m'} M.$$

Fix a point $m \in \widetilde{M}$ and a basis $\mathbf{b} = (v_1, \dots, v_n)$ of $T_m \widetilde{M}$. We can build from **b** a family

$$\mathbb{B} = (X_1^{\mathbf{b}}, \dots, X_n^{\mathbf{b}})$$

of parallel vector fields on \widetilde{M} linearly independent and satisfying $X_i^{\mathbf{b}}(m) = v_i$ for any *i*.

Moreover, since \widetilde{M} is simply connected, for any $m, m' \in \widetilde{M}$, the parallel displacement defines an isomorphism

$$\tau_{mm'}: T_m M \longrightarrow T_{m'} M.$$

Fix a point $m \in \widetilde{M}$ and a basis $\mathbf{b} = (v_1, \dots, v_n)$ of $T_m \widetilde{M}$. We can build from \mathbf{b} a family

$$\mathbb{B} = (X_1^{\mathbf{b}}, \ldots, X_n^{\mathbf{b}})$$

of parallel vector fields on \widetilde{M} linearly independent and satisfying $X_i^{\mathbf{b}}(m) = v_i$ for any *i*.

(ロ) (同) (E) (E)

The dual basis

$$\Gamma^{\mathbf{b}} = (\alpha_1^{\mathbf{b}}, \dots, \alpha_n^{\mathbf{b}})$$

of \mathbb{B} consists of parallel 1-forms and hence closed. Since \widetilde{M} is simply-connected $H^1(\widetilde{M}, \mathbb{R}) = 0$, so there exists a unique map

 $D^{\mathbf{b}}: \widetilde{M} \longrightarrow \mathbb{R}^n$

such that

$$dD^{\mathbf{b}} = (\alpha_1^{\mathbf{b}}, \dots, \alpha_n^{\mathbf{b}}) \quad \text{and} \quad D^{\mathbf{b}}(m) = 0.$$
(7)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Since $(\alpha_1^{\mathbf{b}}, \ldots, \alpha_n^{\mathbf{b}})$ is parallel, $D^{\mathbf{b}}$ is an affine map. We call it **the** developing map associated to **b**.

The dual basis

$$\Gamma^{\mathbf{b}} = (\alpha_1^{\mathbf{b}}, \dots, \alpha_n^{\mathbf{b}})$$

of \mathbb{B} consists of parallel 1-forms and hence closed. Since \widetilde{M} is simply-connected $H^1(\widetilde{M}, \mathbb{R}) = 0$, so there exists a unique map

 $D^{\mathbf{b}}: \widetilde{M} \longrightarrow \mathbb{R}^n$

such that

$$dD^{\mathbf{b}} = (\alpha_1^{\mathbf{b}}, \dots, \alpha_n^{\mathbf{b}})$$
 and $D^{\mathbf{b}}(m) = 0.$ (7)

・ロン ・回 と ・ ヨ と ・ ヨ と …

Since $(\alpha_1^{\mathbf{b}}, \ldots, \alpha_n^{\mathbf{b}})$ is parallel, $D^{\mathbf{b}}$ is an affine map. We call it **the developing map** associated to **b**.

Proposition

() If **b** and **b**' are two basis, respectively, of $T_m \widetilde{M}$ and $T_{m'} \widetilde{M}$ then

$$D^{\mathbf{b}'} = A \circ D^{\mathbf{b}},$$

where $A = (P, -P \circ D^{\mathbf{b}}(m')) \in \operatorname{Aff}(\mathbb{R}^n)$ with $P = \operatorname{Mat}(\tau_{mm'}, \mathbf{b}, \mathbf{b'}).$

2 For any affine transformations f of \widetilde{M}

$$D^{\mathbf{b}} \circ f = D^{f_* \mathbf{b}} = \alpha_{\mathbf{b}}(f) \circ D^{\mathbf{b}},$$

where $\alpha_{\mathbf{b}}(f) = (P, -P \circ D^{\mathbf{b}}(f(m))) \in \operatorname{Aff}(\mathbb{R}^n)$ with $P = \operatorname{Mat}(\tau_{mf(m)}, \mathbf{b}, f_*\mathbf{b}).$

Proof.

From (7) we get that

$$d(D^{\mathbf{b}} \circ f) = f^* \Gamma_{\mathbf{b}}.$$

But from the fact that f is affine, one can show that

$$f^*\Gamma_{\mathbf{b}} = A \circ \Gamma_{\mathbf{b}},$$

where $A \in GL(\mathbb{R}^n)$ is the passage matrix from **b** to $\tau_{f(m)m} \circ T_m f(\mathbf{b})$. So we get that

$$d(D^{\mathbf{b}} \circ f) = d(A \circ D^{\mathbf{b}}),$$

and the proposition follows.

According to this proposition, we get a representation

 $\alpha^{\mathbf{b}}:\pi_1(M)\longrightarrow \operatorname{Aff}(\mathbb{R}^n)$

 $\alpha_{\mathbf{b}}(f) = (P, -P \circ D^{\mathbf{b}}(f(m))) \in \operatorname{Aff}(\mathbb{R}^n) \quad \text{and} \quad P = \operatorname{Mat}(\tau_{mf(m)}, \mathbf{b}, f_*\mathbf{b})$

called holonomy affine representation associated to $D^{\mathbf{b}}$.

(日) (同) (E) (E) (E)

Theorem

There exists an affine local diffeomorphism $D: \widetilde{M} \longrightarrow \mathbb{R}^n$ called the **developing map** of (M, ∇) and a group homomorphism $\alpha : \pi_1(M) \longrightarrow \operatorname{Aff}(\mathbb{R}^n)$ called the **holonomy representation** of (M, ∇) such that, for any $f \in \pi_1(M)$,

$$D \circ f = \alpha(f) \circ D.$$

Proposition

For any $m' \in \widetilde{M}$ and any curve $\gamma : [a, b] \longrightarrow \widetilde{M}$ such that $\gamma(a) = m$ and $\gamma(b) = m'$, we have

$$D^{\mathbf{b}}(m') = \left(\int_{a}^{b} \alpha_{1}^{\mathbf{b}}(\dot{\gamma}(t))dt, \dots, \int_{a}^{b} \alpha_{1}^{\mathbf{b}}(\dot{\gamma}(t))dt\right)$$
$$= \left(\int_{a}^{b} x_{1}(t)dt, \dots, \int_{a}^{b} x_{n}(t)dt\right),$$

where, for any $t \in [a, b]$,

$$\dot{\gamma}(t) = \sum_{i=1}^{n} x_i(t) X_i^{\mathbf{b}}(\gamma(t)).$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Let
$$\gamma : [a, b] \longrightarrow \widetilde{M}$$
 a geodesic. Then
$$\frac{d}{dt} \alpha_i^{\mathbf{b}}(\dot{\gamma}(t)) = \alpha_i^{\mathbf{b}}(\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t)) =$$

Thus

$$D^{\mathbf{b}}(\gamma(t)) = D^{\mathbf{b}}(\gamma(a)) + \left(\int_{a}^{b} \alpha_{1}^{\mathbf{b}}(\dot{\gamma}(t))dt, \dots, \int_{a}^{b} \alpha_{n}^{\mathbf{b}}(\dot{\gamma}(t))dt\right)$$
$$= D^{\mathbf{b}}(\gamma(a)) + tv.$$

0.

(ロ) (部) (E) (E) =

So the image of a geodesic is a line in \mathbb{R}^n .

In particular, if
$$\exp_m : \mathcal{E} \subset T_m \widetilde{M} \longrightarrow \widetilde{M}$$
 then

$$D^{\mathbf{b}} \circ \exp_m : T_m \widetilde{M} \longrightarrow \mathbb{R}^n, v \mapsto (\alpha_1^{\mathbf{b}}(v), \dots, \alpha_n^{\mathbf{b}}(v)).$$

Thus exp_m is injective.

Theorem

If ∇ is complete then $D^{\mathbf{b}} : \widetilde{M} \longrightarrow \mathbb{R}^n$ is a diffeomorphism.

(日) (四) (E) (E) (E)

In particular, if
$$\exp_m : \mathcal{E} \subset T_m \widetilde{M} \longrightarrow \widetilde{M}$$
 then

$$D^{\mathbf{b}} \circ \exp_m : T_m \widetilde{M} \longrightarrow \mathbb{R}^n, v \mapsto (\alpha_1^{\mathbf{b}}(v), \dots, \alpha_n^{\mathbf{b}}(v)).$$

Thus exp_m is injective.

Theorem

If ∇ is complete then $D^{\mathbf{b}}: \widetilde{M} \longrightarrow \mathbb{R}^n$ is a diffeomorphism.

・ロン ・回 と ・ ヨ と ・ ヨ と

Now consider a Lie group G with a left-invariant affine structure, i.e., G has an affine structure such that all the left translations ℓ_g , $g \in G$ are affine. By passing to the universal covering group, we will assume G is simply connected, if necessary, so that the existence of developing map is guaranteed. Then G has a developing map $D: G \longrightarrow \mathbb{R}^n$. Since the affine structure is left-invariant, for each ℓ_g , $g \in G$, there exists a unique $\phi(g) \in \operatorname{Aff}(\mathbb{R}^n)$ such that

$$D \circ \ell_g = \phi(g) \circ D.$$

Since

$$\phi(gh) \circ D = D \circ \ell_{gh} = D \circ \ell_g \circ \ell_h = \phi(g) \circ D \circ \ell_h = \phi(g)\phi(h) \circ D$$

 $\phi(gh)$ and $\phi(g) \circ \phi(h)$ agree on an open set D(G) and hence are equal. Hence we obtain a Lie group homomorphism

$$\phi_D = \phi : G \longrightarrow \operatorname{Aff}(\mathbb{R}^n).$$

(ロ) (同) (E) (E) (E)

For a given point $x \in \mathbb{R}^n$, let

$$Ev_{x}: \operatorname{Aff}(\mathbb{R}^{n}) \longrightarrow \mathbb{R}^{n}$$

be the evaluation map given by $Ev_x(a) = a(x) = a.x$, and $ev_x : G \longrightarrow \mathbb{R}^n$ be the composition given by $ev_x = Ev_x \circ \phi$. Now observe that $D = ev_x$, where x = D(e). Indeed,

$$D(g) = D(g.e) = \phi(g).D(e) = \phi(g).x = Ev_x(\phi(g)) = ev_x(g).$$

Furthermore, $d(ev_x)_{|e}$ should be non-singular since D is a local diffeomorphism.

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・ ・

From this observation, we immediately obtain:

Proposition

 $D: G \longrightarrow \Omega = D(G) \subset \mathbb{R}^n$ is a overing map.

Proof. G acts on \mathbb{R}^n as affine map through the representation $\phi : G \longrightarrow \operatorname{Aff}(\mathbb{R}^n)$. Since $D = ev_x$ where x = D(e),

$$\Omega = D(G) = ev_x(G) = G.x =$$
the orbit of x ,

and Ω can be canonically identified with G/G_x , where

$$G_x = \{g \in G | g.x = x\}$$

is discrete since $D = ev_x$ is a local diffeomorphism. This shows that the projection $p: G \longrightarrow G/G_x$ is a covering map and so is $D: G \longrightarrow G/G_x \simeq \Omega$. \Box

Let's examine what happens if we choose a different developing map $D' = a \circ D, a \in \operatorname{Aff}(\mathbb{R}^n)$. If we denote the corresponding representation by $\phi' = \phi \circ D'$, then $\phi'(g).D' = D' \circ \ell_g$. From

$$\phi'(g) \circ a \circ D = a \circ D \circ \ell_g = a \circ \phi(g) \circ D,$$

we have $\phi'(g) = a \circ \phi(g) \circ a^{-1}$ and hence $\phi' = ca \circ \phi$, where *ca* is the conjugation by *a*. If we denote x' = D'(e) = aD(e) = a(x), then $D' = ev_{x'}$.

We can now conclude that a left-invariant affine structure on G gives rise to a class of representations $[\phi] \in \operatorname{Aff}(\mathbb{R}^n)/\operatorname{Hom}(G,\operatorname{Aff}(\mathbb{R}^n))$, where $\operatorname{Aff}(\mathbb{R}^n)$ acts on $\operatorname{Hom}(G,\operatorname{Aff}(\mathbb{R}^n))$ by composition with conjugation. And the representation ϕ has the property that $d(ev_x)|_e$ is a linear isomorphism for some $x \in \mathbb{R}^n$.

Conversely, suppose we have a Lie group homomorphism $\phi: G \longrightarrow \operatorname{Aff}(\mathbb{R}^n)$ with the property that $d(ev_x)_{|e}$ is a linear isomorphism for some $x \in \mathbb{R}^n$. Observe that $ev_x \circ \ell_g = \phi(g) \circ ev_x$ for all $g \in G$. Taking differential at $e \in G$ on both sides, we see that $d(ev_x)_{|g}$ is a linear isomorphism for all $g \in G$ and hence that ev_x is an immersion. In fact, non-singularity of $d(ev_x)_{|e}$ implies that the isotropy group G_x is discrete and the orbit map ev_x is a covering map onto its image.

Now the pull back affine structure under $D = ev_x$ is left-invariant since

$$D \circ \ell_g = ev_x \circ \ell_g = \phi(g) \circ ev_x = \phi(g) \circ D$$

and so $I_g, g \in G$, becomes an (affine map. Alternatively we can see as follows: Since ev_x is a covering projection and $ev_x \circ I_g = \phi(g) \circ ev_x$ holds, I_g is a lifting of $\phi(g)$ and hence I_g should be an affine map. Notice that if ϕ has the property that $d(ev_x)|_e$ has rank k for some $x \in \mathbb{R}^n$, then the above argument shows that $d(ev_x)|_g$ also has rank k for all $g \in G$, and hence the orbit map ev_x becomes a submersion onto its image which is just a quotient map: $G \longrightarrow G/G_x \simeq G.x$.

Theorem

Let G be a simply connected (hence connected) Lie group. Then the followings are equivalent.

- G admits a left-invariant affine structure.
- 2 There is a Lie group homomorphism $\phi : G \longrightarrow Aff(\mathbb{R}^n)$ such that $d(ev_x)|_e$ is an isomorphism for some $x \in \mathbb{R}^n$.

イロン イヨン イヨン イヨン

Proposition

Let G be a Lie group with a left-invariant affine structure determined by a developing map D. Let $\phi : G \longrightarrow \operatorname{Aff}(\mathbb{R}^n)$ be the associated representation with $ev_x = Ev_x \circ \phi, x \in \mathbb{R}^n$. Then the followings are equivalent.

- $D: G \longrightarrow \mathbb{R}^n$ is a diffeomorphism, i.e, the affine structure is complete.
- **2** G action on \mathbb{R}^n determined by ϕ is transitive.
- 3 $d(ev_x)|_e$ is a linear isomorphism for all $x \in \mathbb{R}^n$.