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Outline
A Poisson algebra is a (finite dimensional) Lie algebra
(g, [ , ]) endowed with a commutative and associative
product ◦ such that, for any u, v, w ∈ g,

[u, v ◦ w] = [u, v] ◦ w + v ◦ [u,w]. (1)

In this case the product given by

u.v =
1

2
[u, v] + u ◦ v

is Lie admissible, i.e.,

[u, v] = u.v − v.u,
and satisfies

[u, v.w] = [u, v].w + v.[u,w].
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An algebra (A, .) is called Poisson admissible if (A, [ , ], ◦)
is a Poisson algebra, where

[u, v] = u.v − v.u and u ◦ v =
1

2
(u.v + v.u). (2)

Note that u.v = 1
2
[u, v] + u ◦ v.

Proposition.
(A, .) is Poisson admissible iff

1 (A, [ , ]) is a Lie algebra and (A, ◦) is an associative
commutative algebra.

2 [u, v.w] = [u, v].w + v.[u,w].
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Remark.
1 For any Poisson admissible algebra (A, .) we denote by

gA the associated Lie algebra.

2 Any Lie algebra is Poisson admissible. In this case
(A, ◦) is trivial.

3 Any associative commutative algebra is Poisson
admissible. In this case gA is abelian.

Denote by P the set of Poisson admissible algebras and AP
the set of associative Poisson admissible algebras.
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The purpose of this talk is:
1 To give a correspondence between the set of real

Poisson admissible algebras and a subclass of
bi-invariant connections on Lie groups,

2 based on this correspondence, to introduce two
subclasses Pp (parallel admissible Poisson algebras)
and Ps (strong admissible Poisson algebras) such that

AP ⊂ Pp ⊂ Ps ⊂ P ,

3 to show that the set SL of symmetric Leibniz algebras
satisfies

SL ⊂ Pp,

4 to introduce a subclass SYP ⊂ AP we call symplectic
Poisson admissible algebras and give some geometric
properties of this subclass.
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Proposition.

Let (A, .) be an algebra. Then
1 the following conditions are equivalent:

1 (A, .) is a Poisson admissible algebra.
2 For any u, v ∈ A,

[Ru,Rv] + L[u,v] + 3[Lu,Rv] = 0.

2 If (A, .) is associative then (A, .) is a Poisson
admissible algebra iff gA is a 2-nilpotent Lie algebra

.

In particular, any Poisson admissible algebra is flexible.
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The proofs and details can be found in:
S. Benayadi M. Boucetta, Special bi-invariant linear connections on

Lie groups and finite dimensional Poisson structures, Journal of

Differential Geometry and its Applications, Volume 36, October 2014,

Pages 66-89.
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Geometric interpretation of finite dimensional
Poisson structures
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Connections, holonomy Lie algebra and parallel
connections

Recall that a linear connection ∇ on a smooth manifold M
is a R-bilinear map

∇ : X (M)×X (M) −→ X (M)

satisfying

∇fXY = f∇XY and ∇XfY = f∇XY +X(f)Y.

Let T∇ and K∇ be, respectively, the torsion and the
curvature of ∇ given by

T∇(X, Y ) = ∇XY −∇YX − [X, Y ],

K∇(X, Y ) = [∇X ,∇Y ]−∇[X,Y ].
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For any closed curve τ at p ∈M , there exists an
isomorphism hτ : TpM −→ TpM called the parallel
displacement along τ .

The totality of these hτ for all closed curves forms the
holonomy group H(p) ⊂ GL(TpM).
The restricted holonomy group H(p)0 is the subgroup
consisting of hτ with τ homotopic to zero. Its Lie algebra is
called holonomy Lie algebra.
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On the other hand, consider linear endomorphisms of TpM
of the form K∇(X, Y ), (∇ZK

∇)(X, Y ), (∇W∇ZK
∇)(X, Y ),

. . . (all covariant derivatives), where X, Y, Z,W, . . . are
arbitrary tangent vectors at p. They span a subalgebra h∇p
of End(TpM,R) called infinitesimal holonomy Lie
algebra.

The Lie subgroup Exp(h∇p ) of GL(TpM,R) generated by h∇p
is the infinitesimal holonomy group at p.
The main result in this theory is that:

Theorem.

Exp(h∇p ) = H(p)0.
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A connection ∇ is called invariant under parallelism if

∇T∇ = 0 and ∇K∇ = 0.

Another connection ∇ is rigid with respect to ∇ if
S = ∇−∇ is parallel with respect to ∇, i.e., ∇S = 0.
In this case, we have the following formula

K∇(X, Y ) = K∇(X, Y ) + [SX , SY ] + ST∇(X,Y ). (3)
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Theorem.
(Kostant) Let ∇ be an affine connection on a simply
connected manifold M . Then M is a reductive
homogeneous space with respect to a connected Lie group G
whose action leaves ∇ invariant if and only if there exists
an affine connection ∇0 on M such that:

1 ∇0 is invariant under parallelism,
2 ∇ is rigid with respect to ∇0,
3 M is complete with respect to ∇0.
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The case of a Lie group considered as a
reductive homogeneous space

Let G be a connected Lie group considered as a reductive
homogeneous space.

An invariant connection on G is just a bi-invariant
connection.
If g = TeG is the Lie algebra, for any u ∈ g we denote by ul
(resp. ur) the left invariant (resp. the right invariant)
vector field associated to u.
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Proposition.
The linear connection ∇0 on G given by

∇0
ulv

l =
1

2
[ul, vl],

for any u, v ∈ g, is bi-invariant, torsion free, parallel,
complete and its curvature and holonomy Lie algebra are
given by

K∇
0

(ul, vl)wl = −1

4
[[ul, vl], wl], u, v, w ∈ g. (4)

h∇
0

e = ad[g,g]. (5)
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Lemma.

Let ∇ be a linear connection on G. Then the following
assertions are equivalent:

1 ∇ is a bi-invariant linear connection.
2 ∇ is left invariant and rigid with respect to ∇0.
3 For any X, Y ∈ X `(G), ∇XY ∈ X `(G) and the product

g× g −→ g given by

u.v = (∇u`v
`)(e)

satisfies

[u, v.w] = [u, v].w + v.[u,w]. (6)
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Let (A, .) be a real Lie admissible algebra, (gA, [ , ]) its
associated Lie algebra and GA the associated Lie group.
The product on A defines a left invariant connection ∇ on
GA by ∇ulv

l = (u.v)l.

The relation [u, v.w] = [u, v].w + v.[u,w] is equivalent to ∇
is bi-invariant and hence ∇ is rigid with respect to ∇0. So,
if S = ∇−∇0 then

K∇(u, v) = K∇
0

(u, v) + [Su, Sv].

(A, ◦) is associative and commutative iff [Su, Sv] = 0.
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Proposition.
(A, .) is Poisson admissible iff (A, [ , ]) is a Lie algebra, ∇
is bi-invariant and K∇ = K∇

0.

Definition.
We call special a torsion free bi-invariant linear
connection on G which has the same curvature as ∇0.

Proposition.
Let G be a connected Lie group, g its Lie algebra and ∇ be
a left invariant torsion free linear connection on G. Define
on g the product given by

u.v = (∇ulv
l)(e).

Then (g, .) is Poisson admissible iff ∇ is special.

40



Proposition.
(A, .) is Poisson admissible iff (A, [ , ]) is a Lie algebra, ∇
is bi-invariant and K∇ = K∇

0.

Definition.
We call special a torsion free bi-invariant linear
connection on G which has the same curvature as ∇0.

Proposition.
Let G be a connected Lie group, g its Lie algebra and ∇ be
a left invariant torsion free linear connection on G. Define
on g the product given by

u.v = (∇ulv
l)(e).

Then (g, .) is Poisson admissible iff ∇ is special.

41



Proposition.
(A, .) is Poisson admissible iff (A, [ , ]) is a Lie algebra, ∇
is bi-invariant and K∇ = K∇

0.

Definition.
We call special a torsion free bi-invariant linear
connection on G which has the same curvature as ∇0.

Proposition.
Let G be a connected Lie group, g its Lie algebra and ∇ be
a left invariant torsion free linear connection on G. Define
on g the product given by

u.v = (∇ulv
l)(e).

Then (g, .) is Poisson admissible iff ∇ is special.

42



Proposition.

Any special connection ∇ on G is semi-symmetric, i.e.,

K.K(X, Y ) := ∇X∇YK
∇−∇Y∇XK

∇−∇[X,Y ]K
∇ = 0.

(7)

Lemma.

Let ∇ be a special connection on G. Then the holonomy Lie
algebra of ∇ is given by

h∇e = ad[g,g] + L[[g,g],g] = ad[g,g] + R[[g,g],g],

where L,R : g −→ End(g) are given by Luv = u.v and
Ruv = v.u and u.v = (∇ulv

l)(e).
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Definition.
Let ∇ be a special connection on a Lie group.

1 We call ∇ flat if K∇ = 0.
2 We call ∇ parallel if ∇K∇ = 0.
3 We call ∇ strongly special if its holonomy Lie algebra

h∇e = h∇
0

e = ad[g,g].

Let (A, .) be a (real) Poisson admissible algebra and ∇ the
corresponding special connection on GA.

1 ∇ is flat iff (A, .) an associative algebra.
2 We call (A, .) parallel Poisson admissible if ∇ is

parallel.
3 We call (A, .) strong Poisson admissible if ∇ is strong.

We have

AP ⊂ Pp ⊂ Ps ⊂ P .
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Leibniz algebras

A left Leibniz algebra is an algebra (A, .) such that for
any u ∈ A, the left multiplication Lu is a derivation, i.e., for
any v, w ∈ A,

u.(v.w) = (u.v).w + v.(u.w).

A right Leibniz algebra is an algebra (A, .) such that,
for any u ∈ A, the right multiplication Ru is a derivation,
i.e., for any v, w ∈ A,

(v.w).u = (v.u).w + v.(w.u).

An algebra which is left and right Leibniz is called
symmetric Leibniz algebra.
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Remark.
Any Lie algebra is a symmetric Leibniz algebra and any
symmetric Leibniz algebra is Lie-admissible. However, the
class of symmetric Leibniz algebras contains strictly the
class of Lie algebras. Leibniz algebras were introduced by
Loday in [20].

We can state now one of our main results.

Theorem.

Let (A, .) be a symmetric Leibniz algebra. Then

(A, .) ∈ Pp.
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By using the geometric interpretation of Poisson structures,
we get the following interesting corollary.

Corollary.
Let (A, .) be a real symmetric Leibniz algebra which is not a
Lie algebra and G any connected Lie group associated to
(gA, [ , ]). Then the left invariant connection on G given by

∇ulv
l = (u.v)l

is different from ∇0, strongly special and its curvature is
parallel.
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Example.
A = R4 with the symmetric Leibniz product

e1.e1 = e4, e2.e1 = e3, e3.e1 = e4, e1.e2 = −e3, e1.e3 = −e4.

The underlying Lie algebra say g = R4 has its
non-vanishing Lie brackets given by

[e1, e2] = −2e3 and [e1, e3] = −2e4.

The associated connected and simply connected Lie group
is G = R4 with the multiplication given by
Campbell-Baker-Hausdorff formula

xy = x+ y +
1

2
[x, y] +

1

12
[x, [x, y]] +

1

12
[y, [y, x]].
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[x, [x, y]] +

1

12
[y, [y, x]].
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Example.
We consider the two torsion free linear connections on G
defined by the formulas

∇0
xly

l =
1

2
[xl, yl] and ∇xly

l = (x.y)l. (8)

The dot here is the symmetric Leibniz product.

We get that
the only non-vanishing Christoffel symbols are given by

∇0
∂

∂x1

∂

∂x1
= −2

3
x2

∂

∂x4
and ∇0

∂
∂x1

∂

∂x2
=

1

3
x1

∂

∂x4
,

and

∇ ∂
∂x1

∂

∂x1
= (1− 2

3
x2)

∂

∂x4
and ∇ ∂

∂x1

∂

∂x2
=

1

3
x1

∂

∂x4
.
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Example.
We consider the two torsion free linear connections on G
defined by the formulas

∇0
xly

l =
1

2
[xl, yl] and ∇xly

l = (x.y)l. (8)

The dot here is the symmetric Leibniz product. We get that
the only non-vanishing Christoffel symbols are given by

∇0
∂

∂x1

∂

∂x1
= −2

3
x2

∂

∂x4
and ∇0

∂
∂x1

∂

∂x2
=

1

3
x1

∂

∂x4
,

and

∇ ∂
∂x1

∂

∂x1
= (1− 2

3
x2)

∂

∂x4
and ∇ ∂

∂x1

∂

∂x2
=

1

3
x1

∂

∂x4
.
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Theorem.

Let (A, .) be a Poisson admissible algebra and U an
associative LR-algebra. Then the product on A⊗U given by

(u⊗ a) ? (v ⊗ b) =
1

2
[u, v]⊗ (ab+ ba) +

1

2
u.v ⊗ (3ab+ ba)

induces on A⊗ U a Poisson admissible algebra structure.
Moreover, if (A, .) ∈ Ps then (A⊗ U, ?) ∈ Ps.
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Theorem.

1 Let g be a perfect Lie algebra, i.e., g = [g, g]. Then the
product u.v = 1

2
[u, v] is the only strongly Poisson

admissible product on g whose underline Lie algebra is
g.

2 Let g be a semi-simple Lie algebra. Then the product
u.v = 1

2
[u, v] is the only Poisson admissible product on

g whose underline Lie algebra is g.
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Theorem.
Let G be a Lie group, g its Lie algebra and ∇ a torsion free
bi-invariant connection on G. Then:

1 If g = [g, g] then ∇ has the same curvature and
holonomy as ∇0 if and only if ∇ = ∇0.

2 If g is semi-simple then ∇ has the same curvature as
∇0 if and only if ∇ = ∇0.
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Proposition.

Let (A, .) ∈ Ps and g its underlining Lie algebra. Then
g3 = [g, [g, g]] is two sided ideal of (A, .), (g3, .) is a
symmetric Leibniz algebra, (g/g3, .) is associative and the
sequence

0 −→ (g3, .) −→ (A, .) −→ (A/g3, .) −→ 0

is an exact sequence of Poisson admissible algebras.
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In dimension 2, the only non trivial Poisson admissible
algebras are the associative commutative algebras.

In dimension 3, the only non trivial Poisson admissible
algebras are:

1 The associative commutative algebras,
2 Two associative non commutative algebras whose

underlying Lie algebra is the 3-dimensional Heisenberg
Lie algebra,

3 One Poisson admissible algebra which is not strong
whose underlying Lie algebra is E(2).

4 One Poisson admissible algebra which is parallel and
not Leibniz symmetric whose underlying Lie algebra is
E(2).

5 One Leibniz symmetric algebra whose underlying Lie
algebra is E(2).
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In dimension 2, the only non trivial Poisson admissible
algebras are the associative commutative algebras.
In dimension 3, the only non trivial Poisson admissible
algebras are:

1 The associative commutative algebras,
2 Two associative non commutative algebras whose

underlying Lie algebra is the 3-dimensional Heisenberg
Lie algebra,

3 One Poisson admissible algebra which is not strong
whose underlying Lie algebra is E(2).

4 One Poisson admissible algebra which is parallel and
not Leibniz symmetric whose underlying Lie algebra is
E(2).

5 One Leibniz symmetric algebra whose underlying Lie
algebra is E(2).
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Example.
Let n ∈ N∗ and λ = (λ1, . . . , λn) ∈ Rn with 0 < λ1 ≤ . . . ≤ λn.
The oscillator Lie algebra denoted by gλ, admits a basis
B = {e−1, e0, ei, ěi, }i=1,...,n where the non vanishing brackets are
given by

[e−1, ej ] = λj ěj , [e−1, ěj ] = −λjej , [ej , ěj ] = e0.

The Poisson structures on gλ are of three types:

1 e−1.e−1 = be−1 + ae0, e−1.v = 1
2 [e−1, v] + bv,

v.e−1 = 1
2 [v, e−1] + bv, u.v = 1

2 [u, v], b 6= 0,
u, v ∈ span{e0, ei, ěi},

2 e−1.e−1 = be−1 + ae0,e−1.v = 1
2 [e−1, v], v.e−1 = 1

2 [v, e−1],
u.v = 1

2 [u, v], b 6= 0, u, v ∈ span{e0, ei, ěi},

3 e−1.e−1 = ae0, e−1.v = 1
2 [e−1, v], v.e−1 = 1

2 [v, e−1],
e0.w = w.e0 = 0, u.v = 1

2 [u, v] + 〈u, v〉e0,
u, v ∈ span{ei, ěi}, w ∈ gλ,
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Symplectic Poisson algebras
Let (G,Ω) be a symplectic Lie group. It is well-known that
the linear connection given by the formula

Ω(∇a
ulv

l, wl) = −Ω(vl, [ul, wl]), (9)

where u, v, w ∈ g, defines a left invariant flat and torsion
free connection ∇a. Moreover, ∇aΩ never vanishes unless G
is abelian.

So we can define a tensor field N by the relation

∇a
ulΩ(vl, wl) = Ω(N(ul, vl), wl).

The linear connection given by

∇s
ulv

l = ∇a
ulv

l +
1

3
N(ul, vl) +

1

3
N(vl, ul)

is left invariant torsion free and symplectic, i.e., ∇sΩ = 0.
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Symplectic Poisson algebras
Let (G,Ω) be a symplectic Lie group. It is well-known that
the linear connection given by the formula

Ω(∇a
ulv

l, wl) = −Ω(vl, [ul, wl]), (9)

where u, v, w ∈ g, defines a left invariant flat and torsion
free connection ∇a. Moreover, ∇aΩ never vanishes unless G
is abelian.
So we can define a tensor field N by the relation

∇a
ulΩ(vl, wl) = Ω(N(ul, vl), wl).

The linear connection given by

∇s
ulv

l = ∇a
ulv

l +
1

3
N(ul, vl) +

1

3
N(vl, ul)

is left invariant torsion free and symplectic, i.e., ∇sΩ = 0.
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A straightforward computation gives that ∇s can be
defined by the following formula

Ω(∇s
ulv

l, wl) =
1

3
Ω([ul, vl], wl) +

1

3
Ω([ul, wl], vl). (10)

Let (g, ω) be the Lie algebra of G endowed with the value
of Ω at e. We denote by αa and αs the product on g
induced, respectively, by ∇a and ∇s. We have, for any
u, v ∈ g,

αa(u, v) = −ad∗uv and αs(u, v) =
1

3
(aduv − ad∗uv) ,

(11)

where ad∗u is the adjoint of adu with respect to ω.
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A straightforward computation gives that ∇s can be
defined by the following formula

Ω(∇s
ulv

l, wl) =
1

3
Ω([ul, vl], wl) +

1

3
Ω([ul, wl], vl). (10)

Let (g, ω) be the Lie algebra of G endowed with the value
of Ω at e. We denote by αa and αs the product on g
induced, respectively, by ∇a and ∇s. We have, for any
u, v ∈ g,

αa(u, v) = −ad∗uv and αs(u, v) =
1

3
(aduv − ad∗uv) ,

(11)

where ad∗u is the adjoint of adu with respect to ω.
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Proposition.

Let (g, ω) be a symplectic Lie algebra and αa, αs the
products given by (11). Then the following assertions are
equivalent:

1 αa is special.
2 αs is special.
3 g is 2-nilpotent and, for any u, v ∈ g, [adu, ad∗v] = 0.

Moreover, if one of the conditions above holds then (g, αa)
and (g, αs) are both associative LR-algebras.
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Definition.
A symplectic Poisson algebra is a 2-nilpotent
symplectic Lie algebra (g, ω) satisfying, for any u, v ∈ g,

[adu, ad∗v] = 0. (12)
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Proposition.
Let (g, ω) be 2-nilpotent symplectic Lie algebra which
carries a bi-invariant pseudo-Euclidean product B. Then
(g, ω) is a symplectic Poisson algebra.

Let (g, ω) be a non abelian real symplectic Poisson algebra
and G a connected Lie group having g as its Lie algebra.
The symplectic form ω defines on G a symplectic left
invariant form Ω. Consider the two linear connections ∇a

and ∇s defined on G by (9)-(10). These two connections
are bi-invariant, flat, complete and ∇sΩ = 0. It was shown
in [3] that Ω is polynomial of degree at most dimG− 1 in
any affine coordinates chart associated to ∇a. The
following result gives a more accurate statement on the
polynomial nature of Ω.
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Proposition.
Let (g, ω) be 2-nilpotent symplectic Lie algebra which
carries a bi-invariant pseudo-Euclidean product B. Then
(g, ω) is a symplectic Poisson algebra.

Let (g, ω) be a non abelian real symplectic Poisson algebra
and G a connected Lie group having g as its Lie algebra.
The symplectic form ω defines on G a symplectic left
invariant form Ω. Consider the two linear connections ∇a

and ∇s defined on G by (9)-(10). These two connections
are bi-invariant, flat, complete and ∇sΩ = 0. It was shown
in [3] that Ω is polynomial of degree at most dimG− 1 in
any affine coordinates chart associated to ∇a. The
following result gives a more accurate statement on the
polynomial nature of Ω.
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Theorem.

With the hypothesis and the notations above we have

(∇a)3Ω = 0.

In particular, Ω is polynomial of degree at least one and at
most 2 in any affine coordinates chart associated to ∇a.
Moreover, if the restriction of ω to [g, g] does not vanish
then the degree is 2.
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Theorem.

Let (g, ω) be a symplectic Lie algebra. Then (g, ω) is a
symplectic Poisson algebra if and only if it is a symplectic
double extension of a symplectic Poisson algebra (H, ω) of
dimension dim g− 2 by the one dimensional Lie algebra by
means of an admissible element (D, z) ∈ Der(H)×H.
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