Supra-Flat Riemannian manifolds

Mohamed Boucetta-Hasna Essoufi

Cadi-Ayyad University

27-02-2021

Seminar Algebra, Geometry, Topology and Applications

・ロン ・四 と ・ ヨ と ・ ヨ と

3

Outline

- 1 The supra-curvature of weighted Riemannian manifolds
- 2 Supra-flat weighted Riemannian manifolds
- 3 Preparation of the proof of the theorem
 - A breve presentation of symmetric Riemannian manifolds
 - The supra-curvature of symmetric spaces
 - Supra-curvature of complex projective spaces

・ロト ・同ト ・ヨト ・ヨト

Let $(M, \langle , \rangle_{TM})$ be a Riemannian manifold,

$$\operatorname{so}(TM) = \bigcup_{x \in M} \operatorname{so}(T_x M)$$

where so($T_x M$) is the vector space of skew-symmetric endomorphisms of $T_x M$ and k > 0. The Levi-Civita connection ∇^M of $(M, \langle , \rangle_{TM})$ defines a connection on the vector bundle so(TM) which we will denote in the same way and it is given, for any $X \in \Gamma(TM)$ and $F \in \Gamma(so(TM))$, by

$$\nabla^M_X F(Y) = \nabla^M_X (F(Y)) - F(\nabla^M_X Y).$$

 R^M is the curvature tensor of ∇^M given by

$$R^M(X,Y) =
abla^M_{[X,Y]} - \left(
abla^M_X
abla^M_Y -
abla^M_Y
abla^M_X
ight)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Let k > 0. The Atiyah Euclidean vector bundle associated to $(M, \langle , \rangle_{TM}, k)$ is the triple $(E(M, k), \langle , \rangle_k, \nabla^E)$ where

 $\bullet E(M,k) = TM \oplus so(TM) \longrightarrow M,$

where

 $H_X Y = -\frac{1}{2} R^M(X, Y) \quad \text{and} \quad \langle H_X F, Y \rangle_{TM} = -\frac{1}{2} k \operatorname{tr}(F \circ R^M(X, Y)).$ (1)

We have

 $\nabla^{E}(\langle , \rangle_{k})=0.$

Let k > 0. The Atiyah Euclidean vector bundle associated to $(M, \langle , \rangle_{TM}, k)$ is the triple $(E(M, k), \langle , \rangle_k, \nabla^E)$ where • $E(M, k) = TM \oplus so(TM) \longrightarrow M$,

$$(X + F, Y + G)_k = \langle X, Y \rangle_{TM} - k \operatorname{tr}(F \circ G),$$

where

$$H_X Y = -\frac{1}{2} R^M(X, Y) \quad \text{and} \quad \langle H_X F, Y \rangle_{TM} = -\frac{1}{2} k \operatorname{tr}(F \circ R^M(X, Y)).$$
(1)

We have

$$\nabla^E(\langle \ , \ \rangle_k)=0.$$

Let k > 0. The Atiyah Euclidean vector bundle associated to $(M, \langle , \rangle_{TM}, k)$ is the triple $(E(M, k), \langle , \rangle_k, \nabla^E)$ where $E(M, k) = TM \oplus so(TM) \longrightarrow M$, $\nabla_X^E Y = \nabla_X^M Y + H_X Y, \ \nabla_X^E F = H_X F + \nabla_X^M F$, $\langle X + F, Y + G \rangle_k = \langle X, Y \rangle_{TM} - k \operatorname{tr}(F \circ G)$,

$$H_X Y = -\frac{1}{2} R^M(X, Y) \quad \text{and} \quad \langle H_X F, Y \rangle_{TM} = -\frac{1}{2} k \operatorname{tr}(F \circ R^M(X, Y)).$$
(1)
We have

$$\nabla^E(\langle \ , \ \rangle_k)=0.$$

Let k > 0. The Atiyah Euclidean vector bundle associated to $(M, \langle , \rangle_{TM}, k)$ is the triple $(E(M, k), \langle , \rangle_k, \nabla^E)$ where **1** $E(M, k) = TM \oplus so(TM) \longrightarrow M$, **2** $\nabla^E_X Y = \nabla^M_X Y + H_X Y, \ \nabla^E_X F = H_X F + \nabla^M_X F$, **3** $\langle X + F, Y + G \rangle_k = \langle X, Y \rangle_{TM} - k \operatorname{tr}(F \circ G)$,

where

$$H_X Y = -\frac{1}{2} R^M(X, Y) \quad \text{and} \quad \langle H_X F, Y \rangle_{TM} = -\frac{1}{2} k \operatorname{tr}(F \circ R^M(X, Y)).$$
(1)
We have

イロン イ団ン イヨン イヨン 三日

Let k > 0. The Atiyah Euclidean vector bundle associated to $(M, \langle , \rangle_{TM}, k)$ is the triple $(E(M, k), \langle , \rangle_k, \nabla^E)$ where **1** $E(M, k) = TM \oplus so(TM) \longrightarrow M$, **2** $\nabla^E_X Y = \nabla^M_X Y + H_X Y, \ \nabla^E_X F = H_X F + \nabla^M_X F$, **3** $\langle X + F, Y + G \rangle_k = \langle X, Y \rangle_{TM} - k \operatorname{tr}(F \circ G)$,

where

$$H_X Y = -\frac{1}{2} R^M(X, Y) \quad \text{and} \quad \langle H_X F, Y \rangle_{TM} = -\frac{1}{2} k \operatorname{tr}(F \circ R^M(X, Y)).$$
(1)
We have

$$\nabla^{E}(\langle \ , \ \rangle_{k})=0.$$

イロン イ団ン イヨン イヨン 三日

Definition 1.1 The supra-curvature¹ of $(M, \langle , \rangle_{TM}, k)$ is the curvature of $(E(M, k), \nabla^{E})$ given by

$$R^{\nabla^{E}}(X,Y) = \nabla^{E}_{[X,Y]} - \left(\nabla^{E}_{X}\nabla^{E}_{Y} - \nabla^{E}_{Y}\nabla^{E}_{X}\right).$$

Remark 1

The Atiyah vector bundle doesn't depend on k. However, the metric and the connection do. We will see that for different values of k the situation can change drastically.

¹This notion has been introduced in the PhD thesis of H_aEssoufi. (=) = 990

Definition 1.1 The supra-curvature¹ of $(M, \langle , \rangle_{TM}, k)$ is the curvature of $(E(M, k), \nabla^{E})$ given by

$$R^{\nabla^{E}}(X,Y) = \nabla^{E}_{[X,Y]} - \left(\nabla^{E}_{X}\nabla^{E}_{Y} - \nabla^{E}_{Y}\nabla^{E}_{X}\right).$$

Remark 1

The Atiyah vector bundle doesn't depend on k. However, the metric and the connection do. We will see that for different values of k the situation can change drastically.

¹This notion has been introduced in the PhD thesis of Halfssoufi.

Proposition 1.1

$$R^{\nabla^{E}}(X,Y)Z = \left\{ R^{M}(X,Y)Z + H_{Y}H_{X}Z - H_{X}H_{Y}Z \right\} \\ + \left\{ -\frac{1}{2}\nabla^{M}_{Z}(K^{M})(X \wedge Y) \right\}, \\ R^{\nabla^{E}}(X,Y)F = \left\{ (R^{\nabla^{E}}(X,Y)F)_{TM} \right\} \\ + \left\{ [R^{M}(X,Y),F] + H_{Y}H_{X}F - H_{X}H_{Y}F \right\} \\ \langle (R^{\nabla^{E}}(X,Y)F)_{TM},Z \rangle_{k} = -\langle R^{\nabla^{E}}(X,Y)Z,F \rangle_{k},$$

・ロン ・回 と ・ ヨン ・ ヨン

 $X, Y, Z \in \Gamma(TM), F \in \Gamma(so(TM)), K^M : so(TM) \longrightarrow so(TM)$ be the curvature operator given by $K^M(X \wedge Y) = R^M(X, Y)$ where $X \wedge Y(Z) = \langle Y, Z \rangle_{TM} X - \langle X, Z \rangle_{TM} Y$. It is obvious that if the curvature of M vanishes then its supra-curvature vanishes. Hence it is natural to ask of there is non flat Riemannian manifolds with are supra-flat.

Proposition 2.1

Suppose that $(M, \langle , \rangle_{TM})$ has constant sectional curvature c, i.e,

$$R^M(X,Y) = -cX \wedge Y$$

and put $\varpi = \frac{1}{4}c(2 - ck)$. Then, for any $X, Y \in \Gamma(TM)$ and $F \in \Gamma(\operatorname{so}(TM))$,

 $R^{\nabla^{E}}(X,Y)Z = -2\varpi X \wedge Y(Z)$ and $R^{\nabla^{E}}(X,Y)F = -2\varpi [X \wedge Y,F].$

(日) (종) (종) (종) (종)

So if c > 0 then the supra-curvature of $(M, \langle \ , \ \rangle_{TM}, rac{2}{c})$ vanishes.

It is obvious that if the curvature of M vanishes then its supra-curvature vanishes. Hence it is natural to ask of there is non flat Riemannian manifolds with are supra-flat.

Proposition 2.1

Suppose that (M, $\langle \;,\;\rangle_{TM})$ has constant sectional curvature c, i.e,

$$R^M(X,Y)=-cX\wedge Y$$

and put $\varpi = \frac{1}{4}c(2-ck)$. Then, for any $X, Y \in \Gamma(TM)$ and $F \in \Gamma(so(TM))$,

 $R^{
abla^E}(X,Y)Z = -2arpi X \wedge Y(Z)$ and $R^{
abla^E}(X,Y)F = -2arpi [X \wedge Y,F].$

(ロ) (同) (E) (E) (E)

So if c > 0 then the supra-curvature of $(M, \langle , \rangle_{TM}, \frac{2}{c})$ vanishes.

Corollary 2.1

Any sphere has an Euclidean vector bundle with a flat metric connection.

This defines a cohomology on the differential forms on the sphere with values in the sections of this vector bundle. It will be interesting to study this cohomology.

・ロン ・回 と ・ ヨ と ・ ヨ と

One can ask if there are other supra-flat Riemannian manifolds.

Theorem 2.1 (M. Boucetta-H. Essoufi, Mediterr. J. Math. (2020).)

Let $(M, \langle , \rangle_{TM})$ be a connected Riemannian manifold. Then the supra-curvature of $(M, \langle , \rangle_{TM}, k)$ vanishes if and only if the Riemannian universal covering of $(M, \langle , \rangle_{TM})$ is isometric to the

Riemannian product $(\mathbb{R}^n, \langle , \rangle_0) \times \mathbb{S}^{n_1}\left(\sqrt{\frac{k}{2}}\right) \times \ldots \times \mathbb{S}^{n_p}\left(\sqrt{\frac{k}{2}}\right)$

where $\mathbb{S}^{n_i}\left(\sqrt{\frac{k}{2}}\right)$ is the Riemannian sphere of dimension n_i , of radius $\sqrt{\frac{k}{2}}$ and constant curvature $\frac{2}{k}$.

・ロン ・回 と ・ ヨ と ・ ヨ と

One can ask if there are other supra-flat Riemannian manifolds.

Theorem 2.1 (M. Boucetta-H. Essoufi, Mediterr. J. Math. (2020).)

Let $(M, \langle , \rangle_{TM})$ be a connected Riemannian manifold. Then the supra-curvature of $(M, \langle , \rangle_{TM}, k)$ vanishes if and only if the Riemannian universal covering of $(M, \langle , \rangle_{TM})$ is isometric to the Riemannian product $(\mathbb{R}^n, \langle , \rangle_0) \times \mathbb{S}^{n_1}\left(\sqrt{\frac{k}{2}}\right) \times \ldots \times \mathbb{S}^{n_p}\left(\sqrt{\frac{k}{2}}\right)$ where $\mathbb{S}^{n_i}\left(\sqrt{\frac{k}{2}}\right)$ is the Riemannian sphere of dimension n_i , of radius $\sqrt{\frac{k}{2}}$ and constant curvature $\frac{2}{k}$.

(日) (종) (종) (종) (종)

Corollary 2.2

Let $(M, \langle , \rangle_{TM})$ be a connected supra-flat Riemannian manifold. Then $M = N/\Gamma$ where

$$N = (\mathbb{R}^n, \langle , \rangle_0) \times \mathbb{S}^{n_1}\left(\sqrt{\frac{k}{2}}\right) \times \ldots \times \mathbb{S}^{n_p}\left(\sqrt{\frac{k}{2}}\right)$$

and

$$\Gamma = \Gamma_0 \times \Gamma_1 \times \ldots \times \Gamma_p,$$

where $\Gamma_0 \subset O(n) \ltimes \mathbb{R}^n$ is a discrete group and $\Gamma_i \subset O(n_i + 1)$ is a finite group, for i = 1, ..., p.

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

(日) (종) (종) (종) (종)

Proposition 3.1

Let $(M, \langle , \rangle_{TM})$ be the Riemannian product of p Riemannian manifolds $(M_1, \langle , \rangle_1), \ldots, (M_p, \langle , \rangle_p)$. Then the supra-curvature of $(M, \langle , \rangle_{TM}, k)$ at a point $x = (x_1, \ldots, x_p)$ is given by

$$\begin{cases} R^{\nabla^{E}}[(X_{1},...,X_{p}),(Y_{1},...,Y_{p})](Z_{1},...,Z_{p}) \\ = \left(R^{\nabla^{E_{1}}}(X_{1},Y_{1})Z_{1},...,R^{\nabla^{E_{p}}}(X_{p},Y_{p})Z_{p}\right), \\ R^{\nabla^{E}}[(X_{1},...,X_{p}),(Y_{1},...,Y_{p})](F) \\ = \left(R^{\nabla^{E_{1}}}(X_{1},Y_{1})F_{1},...,R^{\nabla^{E_{p}}}(X_{p},Y_{p})F_{p}\right), \end{cases}$$

where $X_i, Y_i, Z_i \in T_{x_i}M_i$, $F \in so(T_xM)$, $F_i = pr_i \circ F_{|TM_i}$, $R^{\nabla^{E_i}}$ is the supra-curvature of $(M_i, \langle , \rangle_i, k)$ and i = 1, ..., p.

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロン ・四 と ・ ヨ と ・ ヨ と

Proposition 3.2

If $(M, \langle , \rangle_{TM}, k)$ is supra-flat then $(M, \langle , \rangle_{TM})$ is locally symmetric, i.e., $\nabla^M(R^M) = 0$ and for any $X, Y \in \Gamma(TM)$,

$$\langle R^M(X,Y)X,Y\rangle_{TM} = \langle H_XY,H_XY\rangle_k \geq 0.$$

Thus $(M, \langle , \rangle_{TM})$ has non-negative sectional curvature.

Proof.

It is an immediate consequence of the expression of the supra-curvature given in Proposition 1.1.

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロン ・回 と ・ ヨン ・ ヨン

A Riemannian manifold $(M, \langle , \rangle_{TM})$ is called symmetric if for any $x \in M$ there exists (a unique) an isometry f_x of (M, \langle , \rangle) such that $f_x(x) = x$ and $T_x f_x = -\text{Id}_{T_xM}$. Then

 $T_{x}f_{x}[\nabla_{u_{1}}^{M}(R^{M})(u_{2}, u_{3}, u_{4})] = \nabla_{T_{x}f_{x}(u_{1})}(R^{M})(T_{x}f_{x}(u_{2}), T_{x}f_{x}(u_{3}), T_{x}f_{x}(u_{4}))$

and hence

$$\nabla^M(R^M)=0.$$

Moreover, if we consider the local symmetry $s_x : \exp_x(v) \longrightarrow \exp_x(-v)$ then $s_x(x) = x$ and $T_x s_x = -\operatorname{Id}_{T_xM}$. Then s_x coincides with f_x in a neighborhood of x.

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロン ・回 と ・ ヨ と ・ ヨ と

A Riemannian manifold $(M, \langle , \rangle_{TM})$ is called symmetric if for any $x \in M$ there exists (a unique) an isometry f_x of (M, \langle , \rangle) such that $f_x(x) = x$ and $T_x f_x = -\text{Id}_{T_xM}$. Then

$$T_{x}f_{x}[\nabla_{u_{1}}^{M}(R^{M})(u_{2}, u_{3}, u_{4})] = \nabla_{T_{x}f_{x}(u_{1})}(R^{M})(T_{x}f_{x}(u_{2}), T_{x}f_{x}(u_{3}), T_{x}f_{x}(u_{4}))$$

and hence

$$\nabla^M(R^M)=0.$$

Moreover, if we consider the local symmetry $s_x : \exp_x(v) \longrightarrow \exp_x(-v)$ then $s_x(x) = x$ and $T_x s_x = -\operatorname{Id}_{T_xM}$. Then s_x coincides with f_x in a neighborhood of x.

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロン ・四 と ・ ヨ と ・ ヨ と

A Riemannian manifold $(M, \langle , \rangle_{TM})$ is called symmetric if for any $x \in M$ there exists (a unique) an isometry f_x of (M, \langle , \rangle) such that $f_x(x) = x$ and $T_x f_x = -\text{Id}_{T_xM}$. Then

$$T_{x}f_{x}[\nabla_{u_{1}}^{M}(R^{M})(u_{2}, u_{3}, u_{4})] = \nabla_{T_{x}f_{x}}(u_{1})(R^{M})(T_{x}f_{x}(u_{2}), T_{x}f_{x}(u_{3}), T_{x}f_{x}(u_{4}))$$

and hence

$$\nabla^M(R^M)=0.$$

Moreover, if we consider the local symmetry $s_x : \exp_x(v) \longrightarrow \exp_x(-v)$ then $s_x(x) = x$ and $T_x s_x = -\operatorname{Id}_{T_xM}$. Then s_x coincides with f_x in a neighborhood of x.

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロン ・回 と ・ ヨ と ・ ヨ と

Proposition 3.3

Let $(M, \langle , \rangle_{TM})$ be a Riemannian manifold. Then the following assertions are equivalent:

- for any x ∈ M, the local symmetry s_x, exp_x(v) → exp_x(-v) is an isometry.

A Riemannian manifold $(M, \langle , \rangle_{TM})$ satisfying one of the conditions above is called locally symmetric.

Proposition 3.4

A Riemannian symmetric space is homogeneous.

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Proposition 3.3

Let $(M, \langle , \rangle_{TM})$ be a Riemannian manifold. Then the following assertions are equivalent:

- for any x ∈ M, the local symmetry s_x, exp_x(v) → exp_x(-v) is an isometry.

A Riemannian manifold $(M, \langle , \rangle_{TM})$ satisfying one of the conditions above is called locally symmetric.

Proposition 3.4

A Riemannian symmetric space is homogeneous.

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Proposition 3.3

Let $(M, \langle , \rangle_{TM})$ be a Riemannian manifold. Then the following assertions are equivalent:

- for any x ∈ M, the local symmetry s_x, exp_x(v) → exp_x(-v) is an isometry.

A Riemannian manifold $(M, \langle , \rangle_{TM})$ satisfying one of the conditions above is called locally symmetric.

Proposition 3.4

A Riemannian symmetric space is homogeneous.

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロン ・回 と ・ ヨン ・ ヨン

Let $(M, \langle , \rangle_{TM})$ be a Riemannian symmetric manifold. We denote by *G* the connected component of the identity in the group of isometries of (M, \langle , \rangle) and by *K* the isotropy subgroup at some point *x* (fixed one of all).

The symmetry f_x around x belongs to K and generates an involutive automorphism σ of G

$$\sigma(f)=f_{X}\circ f\circ f_{X}^{-1}.$$

We denote by $G^{\sigma} = \{f \in G, \sigma(f) = f\}$ and G_0^{σ} the connected component of G^{σ} in G.

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Let $(M, \langle , \rangle_{TM})$ be a Riemannian symmetric manifold. We denote by *G* the connected component of the identity in the group of isometries of (M, \langle , \rangle) and by *K* the isotropy subgroup at some point *x* (fixed one of all).

The symmetry f_x around x belongs to K and generates an involutive automorphism σ of G

$$\sigma(f)=f_{x}\circ f\circ f_{x}^{-1}.$$

We denote by $G^{\sigma} = \{f \in G, \sigma(f) = f\}$ and G_0^{σ} the connected component of G^{σ} in G.

・ロン ・四 と ・ ヨ と ・ ヨ と

Let $(M, \langle , \rangle_{TM})$ be a Riemannian symmetric manifold. We denote by *G* the connected component of the identity in the group of isometries of (M, \langle , \rangle) and by *K* the isotropy subgroup at some point *x* (fixed one of all).

The symmetry f_x around x belongs to K and generates an involutive automorphism σ of G

$$\sigma(f)=f_{x}\circ f\circ f_{x}^{-1}.$$

We denote by $G^{\sigma} = \{f \in G, \sigma(f) = f\}$ and G_0^{σ} the connected component of G^{σ} in G.

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

(ロ) (同) (E) (E) (E)

Theorem 3.1 (E. Cartan)

- Given any connected symmetric space (M, ⟨ , ⟩_{TM}) and any x ∈ M, then the corresponding involutive automorphism σ of G satisfies G₀^σ ⊂ K ⊂ G^σ.
- Conversely, if G is a Lie group, σ an involutive automorphism of G and K a compact subgroup of G such that G₀^σ ⊂ K ⊂ G^σ. Then any invariant Riemannian metric in G/K is symmetric.
- A simply-connected complete locally symmetric space is a symmetric space.

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロン ・回 と ・ ヨ と ・ ヨ と …

Let (G, σ, K) be a symmetric space. Let \mathfrak{g} and \mathfrak{k} the Lie algebras of G and K and $\rho = T_e \sigma$ the automorphism of \mathfrak{g} associated to σ . We have $\mathfrak{k} = \{X \in \mathfrak{g}, \rho(X) = X\}$ and let $\mathfrak{p} = \{X \in \mathfrak{g}, \rho(X) = -X\}$.

Lemma 3.1 (Fundamental Lemma)

 $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p},\,\mathfrak{p}$ is $\mathrm{Ad}_G(K)$ -invariant and

$$[\mathfrak{k},\mathfrak{k}] \subset \mathfrak{k}, \ [\mathfrak{k},\mathfrak{p}] \subset \mathfrak{p} \quad and \quad [\mathfrak{p},\mathfrak{p}] \subset \mathfrak{k}.$$

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロン ・回 と ・ ヨ と ・ ヨ と

Let (G, σ, K) be a symmetric space. Let \mathfrak{g} and \mathfrak{k} the Lie algebras of G and K and $\rho = T_e \sigma$ the automorphism of \mathfrak{g} associated to σ . We have $\mathfrak{k} = \{X \in \mathfrak{g}, \rho(X) = X\}$ and let $\mathfrak{p} = \{X \in \mathfrak{g}, \rho(X) = -X\}$. Lemma 3.1 (Fundamental Lemma)

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$, \mathfrak{p} is $\mathrm{Ad}_G(K)$ -invariant and

$$[\mathfrak{k},\mathfrak{k}]\subset\mathfrak{k},\; [\mathfrak{k},\mathfrak{p}]\subset\mathfrak{p} \quad \textit{and} \quad [\mathfrak{p},\mathfrak{p}]\subset\mathfrak{k}.$$

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロン ・回 と ・ ヨン ・ ヨン

The curvature of a symmetric space is easy to compute.

Proposition 3.5

Let G/K be a symmetric space and $X, Y \in T_{\pi(e)}G/K = \mathfrak{p}$. Then

$$\langle R(X, Y)X, Y \rangle = -\langle \operatorname{ad}_X \circ \operatorname{ad}_X Y, Y \rangle,$$

 $\operatorname{ric} = -\frac{1}{2}B_{|\mathfrak{p}},$

where B is the Killing form of \mathfrak{g} .

Corollary 3.1

Let $(G/K, \langle , \rangle)$ be a symmetric space. Then \langle , \rangle is Einstein if and only if the restriction of B to p is

- either identically zero,
- 2) or definite and proportional to \langle , \rangle .

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロン ・回 と ・ ヨ と ・ ヨ と

The curvature of a symmetric space is easy to compute.

Proposition 3.5

Let G/K be a symmetric space and $X, Y \in T_{\pi(e)}G/K = \mathfrak{p}$. Then

$$\langle R(X, Y)X, Y \rangle = -\langle \operatorname{ad}_X \circ \operatorname{ad}_X Y, Y \rangle,$$

 $\operatorname{ric} = -\frac{1}{2}B_{|\mathfrak{p}},$

where B is the Killing form of \mathfrak{g} .

Corollary 3.1

Let $(G/K, \langle , \rangle)$ be a symmetric space. Then \langle , \rangle is Einstein if and only if the restriction of B to p is

- either identically zero,
- 2 or definite and proportional to $\langle \;,\;\rangle.$

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Proposition 3.6

If the adjoint representation $Ad_G(K)$ of K in \mathfrak{p} is irreducible then \langle , \rangle is Einstein.

Definition 3.1

A symmetric space $(G/K, \langle , \rangle)$ is called irreducible if the adjoint representation $Ad_G(K)$ of K in \mathfrak{p} is irreducible.

Theorem 3.2

A simply-connected symmetric space is the Riemannian product of a Euclidean space and a finite number of irreducible Riemannian symmetric spaces.

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロト ・日ト ・ヨト ・ヨト

Proposition 3.6

If the adjoint representation $Ad_G(K)$ of K in \mathfrak{p} is irreducible then \langle , \rangle is Einstein.

Definition 3.1

A symmetric space $(G/K, \langle , \rangle)$ is called irreducible if the adjoint representation $Ad_G(K)$ of K in \mathfrak{p} is irreducible.

Theorem 3.2

A simply-connected symmetric space is the Riemannian product of a Euclidean space and a finite number of irreducible Riemannian symmetric spaces.

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロン ・回 と ・ ヨ と ・ ヨ と

Proposition 3.6

If the adjoint representation $Ad_G(K)$ of K in \mathfrak{p} is irreducible then \langle , \rangle is Einstein.

Definition 3.1

A symmetric space $(G/K, \langle , \rangle)$ is called irreducible if the adjoint representation $Ad_G(K)$ of K in \mathfrak{p} is irreducible.

Theorem 3.2

A simply-connected symmetric space is the Riemannian product of a Euclidean space and a finite number of irreducible Riemannian symmetric spaces.

(ロ) (同) (E) (E) (E)

Let G be a compact connected Lie group with \mathfrak{g} its Lie algebra and K be a closed subgroup of G with \mathfrak{k} its Lie algebra. Denote by $\pi: G \longrightarrow G/K$ the canonical projection. Suppose that:

- $\textbf{0} \hspace{0.2cm} \mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p} \hspace{0.2cm} \text{where} \hspace{0.2cm} \mathfrak{p} \hspace{0.2cm} \text{is} \hspace{0.2cm} \mathrm{Ad}_{\mathcal{K}} \text{-invariant}, \hspace{0.2cm} [\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k},$
- Of the restriction of the Killing form B of g to p is negative definite.

The scalar product $\langle , \rangle_{\mathfrak{p}} = \lambda B_{|\mathfrak{p} \times \mathfrak{p}}$ with $\lambda < 0$ defines a *G*-invariant Riemannian metric $\langle , \rangle_{G/K}$ on *G/K* which is locally symmetric.

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

For any $X \in \mathfrak{k}$, we denote by Φ_X the restriction of ad_X to \mathfrak{p} . $\Phi : \mathfrak{k} \longrightarrow \operatorname{so}(\mathfrak{p}, \langle , \rangle_{\mathfrak{p}})$ is a representation and

$$\mathrm{so}(\mathfrak{p},\langle\;,\;
angle_\mathfrak{p})=\Phi_\mathfrak{k}\oplus(\Phi_\mathfrak{k})^\perp,$$

where $(\Phi_{\mathfrak{k}})^{\perp}$ is the orthogonal with respect to the invariant scalar product on $\operatorname{so}(\mathfrak{p}, \langle , \rangle_{\mathfrak{p}})$, $(A, B) \mapsto -\operatorname{tr}(AB)$.

Remark 2 [p, p] is an ideal of t and hence

$$[\Phi_{[\mathfrak{p},\mathfrak{p}]},\Phi_{\mathfrak{k}}]\subset \Phi_{[\mathfrak{p},\mathfrak{p}]}.$$

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロト ・日ト ・ヨト ・ヨト

For any $X \in \mathfrak{k}$, we denote by Φ_X the restriction of ad_X to \mathfrak{p} . $\Phi : \mathfrak{k} \longrightarrow \operatorname{so}(\mathfrak{p}, \langle , \rangle_{\mathfrak{p}})$ is a representation and

$$\mathrm{so}(\mathfrak{p},\langle\;,\;
angle_\mathfrak{p})=\Phi_\mathfrak{k}\oplus(\Phi_\mathfrak{k})^\perp,$$

where $(\Phi_{\mathfrak{k}})^{\perp}$ is the orthogonal with respect to the invariant scalar product on $\operatorname{so}(\mathfrak{p}, \langle , \rangle_{\mathfrak{p}})$, $(A, B) \mapsto -\operatorname{tr}(AB)$.

Remark 2 [p,p] is an ideal of t and hence

$$[\Phi_{[\mathfrak{p},\mathfrak{p}]},\Phi_\mathfrak{k}]\subset \Phi_{[\mathfrak{p},\mathfrak{p}]}.$$

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロン ・四 と ・ ヨ と ・ ヨ と

Proposition 3.7

The supra-curvature of $(G/K,\langle\,,\,\rangle_{G/K},k)$ at $\pi(e)$ is given by

$$R^{\nabla^{E}}(X,Y)Z = [[X,Y],Z] + \frac{k}{4} ([Y,U(\Phi_{[X,Z]})] - [X,U(\Phi_{[Y,Z]})]),$$

$$R^{\nabla^{E}}(X,Y)F = [\Phi_{[X,Y]}, \Phi_{X^{F}-\frac{k}{4}U(F)}] + [\Phi_{[X,Y]},F^{\perp}],$$

where $X, Y, Z \in T_{\pi(e)}G/K = \mathfrak{p}$, $F = \Phi_{X^F} + F^{\perp} \in \mathrm{so}(\mathfrak{p}, \langle , \rangle_{\mathfrak{p}}) = \Phi_{\mathfrak{k}} \oplus (\Phi_{\mathfrak{k}})^{\perp}$ and U(F) is the element of \mathfrak{k} given by

$$U(F) = \sum_{i=1}^{n} [X_i, F(X_i)],$$

where (X_1, \ldots, X_n) is an orthonormal basis of \mathfrak{p} .

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Corollary 3.2

If the supra-curvature of $(G/K, \langle , \rangle_{G/K}, k)$ vanishes then $\Phi_{[\mathfrak{p},\mathfrak{p}]}$ is an ideal of $\mathrm{so}(\mathfrak{p}, \langle , \rangle_{\mathfrak{p}})$.

Remark 3

For every $n \neq 4$, so(n) is a simple Lie algebra.

Theorem 3.3 (Jensen)

A simply-connected four dimensional homogeneous Einstein manifold with positive scalar curvature is isometric to $\mathbb{S}^4(r)$, $\mathbb{S}^2(r) \times \mathbb{S}^2(r)$ or $P^2(\mathbb{C})$.

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロン ・回 と ・ ヨ と ・ ヨ と …

Corollary 3.2

If the supra-curvature of $(G/K, \langle , \rangle_{G/K}, k)$ vanishes then $\Phi_{[\mathfrak{p},\mathfrak{p}]}$ is an ideal of $\mathrm{so}(\mathfrak{p}, \langle , \rangle_{\mathfrak{p}})$.

Remark 3 For every $n \neq 4$, so(n) is a simple Lie algebra.

Theorem 3.3 (Jensen)

A simply-connected four dimensional homogeneous Einstein manifold with positive scalar curvature is isometric to $\mathbb{S}^4(r)$, $\mathbb{S}^2(r) \times \mathbb{S}^2(r)$ or $P^2(\mathbb{C})$.

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロン ・回 と ・ ヨ と ・ ヨ と

Corollary 3.2

If the supra-curvature of $(G/K, \langle , \rangle_{G/K}, k)$ vanishes then $\Phi_{[\mathfrak{p},\mathfrak{p}]}$ is an ideal of $\mathrm{so}(\mathfrak{p}, \langle , \rangle_{\mathfrak{p}})$.

Remark 3

For every $n \neq 4$, so(n) is a simple Lie algebra.

Theorem 3.3 (Jensen)

A simply-connected four dimensional homogeneous Einstein manifold with positive scalar curvature is isometric to $\mathbb{S}^4(r)$, $\mathbb{S}^2(r) \times \mathbb{S}^2(r)$ or $P^2(\mathbb{C})$.

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

・ロン ・四 と ・ ヨ と ・ ヨ と

Let $\pi : \mathbb{C}^{n+1} \setminus \{0\} \longrightarrow P^n(\mathbb{C})$ be the natural projection and $\pi_s : S^{2n+1} \longrightarrow P^n(\mathbb{C})$ its restriction to $S^{2n+1} \subset \mathbb{C}^{n+1} \setminus \{0\}$. For any $m \in S^{2n+1}$, put $F_m = \ker((\pi_s)_*)_m$ and let F_m^{\perp} be the orthogonal complementary subspace to F_m in $T_m(S^{2n+1})$;

$$T_m(S^{2n+1})=F_m\oplus F_m^{\perp}.$$

We introduce the Riemannian metric $\langle , \rangle_{P^n(\mathbb{C})}$ on $P^n(\mathbb{C})$ so that the restriction of $(\pi_s)_*$ to F_m^{\perp} is an isometry onto $T_{\pi(m)}(P^n(\mathbb{C}))$. Let J_0 be the canonical complex structures on \mathbb{C}^{n+1} and the standard complex structures J on $P^n(\mathbb{C})$ is given by

$$J(\pi_s)_*v = (\pi_s)_*J_0v, \ v \in F_m^{\perp}.$$

A breve presentation of symmetric Riemannian manifolds The supra-curvature of symmetric spaces Supra-curvature of complex projective spaces

(ロ) (同) (E) (E) (E)

Proposition 3.8

The curvature and the supra-curvature of $(P^n(\mathbb{C}), g, k)$ are given by

$$R^{P^{n}(\mathbb{C})}(X,Y)Z = \langle X,Z\rangle_{P^{n}(\mathbb{C})}Y - \langle Y,Z\rangle_{P^{n}(\mathbb{C})}X - 2\langle JY,X\rangle_{P^{n}(\mathbb{C})}JZ + \langle JZ,Y\rangle_{P^{n}(\mathbb{C})}JX - \langle JZ,X\rangle_{P^{n}(\mathbb{C})}JY,$$

$$R^{\nabla^{E}}(X,Y)Z = (k-1)(\langle Y,Z\rangle_{P^{n}(\mathbb{C})}X - \langle X,Z\rangle_{P^{n}(\mathbb{C})}Y + 2\langle JY,X\rangle_{P^{n}(\mathbb{C})}JZ + ((2n+3)k-1)(\langle JZ,X\rangle_{P^{n}(\mathbb{C})}JY - \langle JZ,Y\rangle_{P^{n}(\mathbb{C})}JX),$$

$$R^{\nabla^{E}}(X,Y)F = \left(\frac{k}{2}-1\right)[F,X\wedge Y + JX\wedge JY] + 2\langle JY,X\rangle_{P^{n}(\mathbb{C})}[F,J] + \frac{k}{2}([J\circ F\circ J,X\wedge Y] - J\circ F(X)\wedge JY - JX\wedge J\circ F(Y))$$

where $X, Y, Z \in \Gamma(TP^n(\mathbb{C}))$ and $F \in \Gamma(so(TP^n(\mathbb{C})))$.

Theorem 4.1 (M. Boucetta-H. Essoufi, Mediterr. J. Math. (2020).)

Let $(M, \langle , \rangle_{TM})$ be a connected Riemannian manifold. Then the supra-curvature of $(M, \langle , \rangle_{TM}, k)$ vanishes if and only if the Riemannian universal cover of $(M, \langle , \rangle_{TM})$ is isometric to $(\mathbb{R}^n, \langle , \rangle_0) \times \mathbb{S}^{n_1}\left(\sqrt{\frac{k}{2}}\right) \times \ldots \times \mathbb{S}^{n_p}\left(\sqrt{\frac{k}{2}}\right)$ where $\mathbb{S}^{n_i}\left(\sqrt{\frac{k}{2}}\right)$ is the Riemannian sphere of dimension n_i , of radius $\sqrt{\frac{k}{2}}$ and constant curvature $\frac{2}{k}$.

イロン イヨン イヨン イヨン

Proof.

- If the supra-curvature of (M, ⟨ , ⟩_{TM}, k) vanishes then the supra-curvature of the Riemannian covering (N, ⟨ , ⟩_{TN}) of (M, ⟨ , ⟩_{TM}) vanishes since π : N → M is a local isometry.
- (2) Then (N, ⟨, ⟩_{TN}) is locally symmetric and hence symmetric. Moreover, its sectional curvature is non-negative. (See Proposition 3.2)
- (N, ⟨, ⟩_{TN}) = (E, ⟨, ⟩₀) × (N₁, ⟨, ⟩₁) × ... × (N_p, ⟨, ⟩_p) where (E, ⟨, ⟩₀) is flat and the (N_i, ⟨, ⟩_i) are irreducible symmetric spaces with non-negative sectional curvature. (See Theorem 3.2)

・ロン ・回 と ・ ヨ と ・ ヨ と

Proof.

- If the supra-curvature of (M, ⟨ , ⟩_{TM}, k) vanishes then the supra-curvature of the Riemannian covering (N, ⟨ , ⟩_{TN}) of (M, ⟨ , ⟩_{TM}) vanishes since π : N → M is a local isometry.
- (2) Then (N, ⟨ , ⟩_{TN}) is locally symmetric and hence symmetric. Moreover, its sectional curvature is non-negative. (See Proposition 3.2)
- (N, ⟨, ⟩_{TN}) = (E, ⟨, ⟩₀) × (N₁, ⟨, ⟩₁) × ... × (N_p, ⟨, ⟩_p) where (E, ⟨, ⟩₀) is flat and the (N_i, ⟨, ⟩_i) are irreducible symmetric spaces with non-negative sectional curvature. (See Theorem 3.2)

・ロン ・四 と ・ ヨ と ・ ヨ と

Proof.

- If the supra-curvature of (M, ⟨ , ⟩_{TM}, k) vanishes then the supra-curvature of the Riemannian covering (N, ⟨ , ⟩_{TN}) of (M, ⟨ , ⟩_{TM}) vanishes since π : N → M is a local isometry.
- (2) Then (N, ⟨ , ⟩_{TN}) is locally symmetric and hence symmetric. Moreover, its sectional curvature is non-negative. (See Proposition 3.2)
- (3) (N, ⟨ , ⟩_{TN}) = (E, ⟨ , ⟩₀) × (N₁, ⟨ , ⟩₁) × ... × (N_p, ⟨ , ⟩_p) where (E, ⟨ , ⟩₀) is flat and the (N_i, ⟨ , ⟩_i) are irreducible symmetric spaces with non-negative sectional curvature. (See Theorem 3.2)

・ロン ・回 と ・ ヨ と ・ ヨ と

Continued.

- (4) For each i = 1,..., p, N_i is an irreducible symmetric space with non-negative sectional curvature and hence it is Einstein with positive scalar curvature and hence compact. (See Proposition 3.6 and Meyer's Theorem.)
- (5) The vanishing of the supra-curvature of (N, ⟨ , ⟩_{TN}, k) implies the vanishing of the supra-curvature of (N_i, ⟨ , ⟩_i, k) for i = 1,..., p (See Proposition 3.1).
- (6) If dim $N_i = 4$ then, according to Jensen's Theorem, N_i is isometric to $\mathbb{S}^4(r)$, $\mathbb{S}^2(r) \times \mathbb{S}^2(r)$. $(P^2(\mathbb{C})$ has a non vanishing supra-curvature by virtue of Proposition 3.8).
- (7) If dim $N_i \neq 4$ then $N_i = G/K$ as in Proposition 3.7 and the vanishing of the supra-curvature of N_i implies that $\Phi_{[p,p]}$ is an ideal of $so(\mathfrak{p}, \langle , \rangle_{\mathfrak{p}})$.

(日) (同) (注) (注) (注)

Continued.

- (4) For each i = 1,..., p, N_i is an irreducible symmetric space with non-negative sectional curvature and hence it is Einstein with positive scalar curvature and hence compact. (See Proposition 3.6 and Meyer's Theorem.)
- (5) The vanishing of the supra-curvature of (N, ⟨ , ⟩_{TN}, k) implies the vanishing of the supra-curvature of (N_i, ⟨ , ⟩_i, k) for i = 1,..., p (See Proposition 3.1).
- (6) If dim N_i = 4 then, according to Jensen's Theorem, N_i is isometric to S⁴(r), S²(r) × S²(r). (P²(C) has a non vanishing supra-curvature by virtue of Proposition 3.8).
- (7) If dim N_i ≠ 4 then N_i = G/K as in Proposition 3.7 and the vanishing of the supra-curvature of N_i implies that Φ_[p,p] is an ideal of so(p, (,)_p).

<ロ> (四) (四) (三) (三) (三)

Continued.

- (4) For each i = 1,..., p, N_i is an irreducible symmetric space with non-negative sectional curvature and hence it is Einstein with positive scalar curvature and hence compact. (See Proposition 3.6 and Meyer's Theorem.)
- (5) The vanishing of the supra-curvature of (N, ⟨ , ⟩_{TN}, k) implies the vanishing of the supra-curvature of (N_i, ⟨ , ⟩_i, k) for i = 1,..., p (See Proposition 3.1).
- (6) If dim N_i = 4 then, according to Jensen's Theorem, N_i is isometric to S⁴(r), S²(r) × S²(r). (P²(C) has a non vanishing supra-curvature by virtue of Proposition 3.8).
- (7) If dim N_i ≠ 4 then N_i = G/K as in Proposition 3.7 and the vanishing of the supra-curvature of N_i implies that Φ_[p,p] is an ideal of so(p, (,)_p).

<ロ> <四> <四> <三> <三> <三> <三> <三> <三</td>

Continued.

- (4) For each i = 1,..., p, N_i is an irreducible symmetric space with non-negative sectional curvature and hence it is Einstein with positive scalar curvature and hence compact. (See Proposition 3.6 and Meyer's Theorem.)
- (5) The vanishing of the supra-curvature of (N, ⟨ , ⟩_{TN}, k) implies the vanishing of the supra-curvature of (N_i, ⟨ , ⟩_i, k) for i = 1,..., p (See Proposition 3.1).
- (6) If dim N_i = 4 then, according to Jensen's Theorem, N_i is isometric to S⁴(r), S²(r) × S²(r). (P²(C) has a non vanishing supra-curvature by virtue of Proposition 3.8).
- (7) If dim N_i ≠ 4 then N_i = G/K as in Proposition 3.7 and the vanishing of the supra-curvature of N_i implies that Φ_[p,p] is an ideal of so(p, (,)_p).

(日) (四) (注) (注) (注) [

Continued.

- (4) For each i = 1,..., p, N_i is an irreducible symmetric space with non-negative sectional curvature and hence it is Einstein with positive scalar curvature and hence compact. (See Proposition 3.6 and Meyer's Theorem.)
- (5) The vanishing of the supra-curvature of (N, ⟨ , ⟩_{TN}, k) implies the vanishing of the supra-curvature of (N_i, ⟨ , ⟩_i, k) for i = 1,..., p (See Proposition 3.1).
- (6) If dim N_i = 4 then, according to Jensen's Theorem, N_i is isometric to S⁴(r), S²(r) × S²(r). (P²(C) has a non vanishing supra-curvature by virtue of Proposition 3.8).
- (7) If dim N_i ≠ 4 then N_i = G/K as in Proposition 3.7 and the vanishing of the supra-curvature of N_i implies that Φ_[p,p] is an ideal of so(p, (,)_p).

(日) (四) (注) (注) (三)

Continued.

(8) Since the curvature of N_i is different from zero then $\Phi_{[\mathfrak{p},\mathfrak{p}]} \neq 0$ and hence $\Phi_{[\mathfrak{p},\mathfrak{p}]} = \mathrm{so}(\mathfrak{p}, \langle , \rangle_{\mathfrak{p}}).$

(9) Let $n_i = \dim N_i = \dim \mathfrak{p}$. Then

$$\dim \mathfrak{k} \geq \dim \Phi_{\mathfrak{k}} \geq \dim \mathrm{so}(\mathfrak{p}) = \frac{n_i(n_i-1)}{2}.$$

So

$$\dim G = \dim \mathfrak{k} + n_i \geq \frac{n_i(n_i+1)}{2}.$$

But the dimension of the group of isometries is always less or equal to $\frac{n_i(n_i+1)}{2}$ with equality when the manifold has constant curvature. Thus dim $G = \frac{n(n+1)}{2}$ and hence N_i has constant curvature. This completes the proof.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Continued.

(8) Since the curvature of N_i is different from zero then $\Phi_{[\mathfrak{p},\mathfrak{p}]} \neq 0$ and hence $\Phi_{[\mathfrak{p},\mathfrak{p}]} = \operatorname{so}(\mathfrak{p}, \langle , \rangle_{\mathfrak{p}}).$

(9) Let $n_i = \dim N_i = \dim \mathfrak{p}$. Then

$$\dim \mathfrak{k} \geq \dim \Phi_{\mathfrak{k}} \geq \dim \mathrm{so}(\mathfrak{p}) = \frac{n_i(n_i-1)}{2}.$$

So

$$\dim G = \dim \mathfrak{k} + n_i \geq \frac{n_i(n_i+1)}{2}.$$

But the dimension of the group of isometries is always less or equal to $\frac{n_i(n_i+1)}{2}$ with equality when the manifold has constant curvature. Thus dim $G = \frac{n(n+1)}{2}$ and hence N_i has constant curvature. This completes the proof.

▲□▶ ▲□▶ ▲≣▶ ▲≣▶ ■ の��