
THE AFFINE GROUP OF A SMOOTH MANIFOLD

MEHDI NABIL

1. Introduction

The goal of these notes is to explore various results concerning the group of affine
transformations of a smooth manifold endowed with a linear connection. Many of
those results involve the isometry group of a Riemannian manifold and its relation
to the group of affine transformations for the Levi-Civita connection.

Let M be an n-dimensional smooth manifold. For any x ∈ M , we call a frame
on M at x any linear isomorphism Rn '−→ TxM , the set of such frames will be de-
noted L(M)x. Clearly, the general linear group GL(n,R) acts naturally on L(M)x
via the map:

L(M)x ×GL(n,R) −→ L(M)x, (z, g) 7→ z ◦ g,
and it is not hard to see that this action is simply transitive. Now define

L(M) := qx∈ML(M)x

and consider the projection π : L(M) −→M given by π(L(M)x) := x.

Proposition 1.0.1. Let M be an n-dimensional manifold. Then L(M)
π−→ M is

a smooth principal GL(n,R)-bundle over M called the frame bundle of TM such
that for any local frame {E1, . . . , En} of TM defined on an open subset U ⊂M ,the
map:

σ : U −→ L(M), x 7→ {E1|x, . . . , En|x}, (1)

is a local (smooth) section of L(M)
π−→ M . Conversely, if σ : U −→ L(M) is any

smooth section, then there exists a local frame {E1, . . . , En} of TM over U such
that σ is of the form (1).

In a similar way one defines on a Riemannian manifold (M, 〈 , 〉) the bundle of
orthonormal frames O(M) := qx∈MO(M)x where each O(M)x consists of linear
isometries (Rn, 〈 , 〉0)

'−→ (TxM, 〈 , 〉x). It is clear that O(M) ⊂ L(M), on the
other hand the orthogonal group O(n) acts simply transitively on O(M).

Proposition 1.0.2. Let (M, 〈 , 〉) be an n-dimensional Riemannian manifold.
Then O(M)

π−→M is a smooth principal O(n)-subbundle of L(M). If {E1, . . . , En}
is any local, orthonormal frame of TM defined on an open subset U ⊂M then the
map:

σ : U −→ L(M), x 7→ {E1|x, . . . , En|x}, (2)

is a local (smooth) section of O(M)
π−→M . Conversely, if σ : U −→ O(M) is any

smooth section, then there exists a local orthonormal frame {E1, . . . , En} of TM
over U such that σ is of the form (2).
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Any diffeomorphism f : M −→ M induces a principal bundle automorphism
f∗ : L(M) −→ L(M) such that the following diagram is commutative:

L(M) L(M)

M M

f∗

π π

f

Explicitly, for any z ∈ L(M) we have f∗(z) := Tπ(z)f ◦ z. Define on L(M) the
Rn-valued 1-form θ ∈ Ω1(L(M),Rn) given by θz(v) := z−1(Tzπ(v)), we call it the
canonical form of L(M). We have the following result:

Proposition 1.0.3. Let M be a smooth manifold and let θ denote the canonical
form of the frame bundle L(M). If f : M −→ M is any diffeomorphism of M
then f∗ preserves θ. Conversely, if A : L(M) −→ L(M) is any fiber-preserving
transformation leaving θ invariant, then A = f∗ for some f ∈ Diff(M).

Proof. Let z ∈ L(M) and v ∈ TzL(M), then:

(f∗θ)z(v) = θf∗(z)(Tzf∗(v))

= (f∗(z))
−1(Tf∗(z)π ◦ Tzf∗(v))

= (f∗z)
−1(Tz(π ◦ f∗)(v))

= (f∗z)
−1(Tz(f ◦ π)(v))

= (f∗z)
−1 ◦ Tπ(z)f ◦ Tzπ(v)

= z−1 ◦ Tzπ(v)

= θz(v).

Conversely, we first notice that since A : L(M) −→ L(M) is fiber-preserving, the
map:

f : M −→M, f(x) = π(A(z)), z ∈ π−1(x),

is a well-defined diffeomorphism of M . Now:

(A∗θ)z(v) = θA(z)(TzA(v)) = A(z)−1 ◦ Tπ(z)f ◦ Tzπ(v),

so A will preserve θ if and only if A(z)−1 ◦ Tπ(z)f = z−1 for any z ∈ P which is
exactly what A = f∗ means.

Proposition 1.0.3 states that the morphism Diff(M)
Ψ→ Aut(L(M)), f 7→ f∗

sends the group of diffeomorphisms of M isomorphically onto the subgroup of au-
tomorphisms of L(M) preserving the canonical form θ.

Definition 1.0.1. Let G be a Lie group with Lie algebra g. A connection form on
a principal G-bundle P π−→M is a 1-form ω ∈ Ω1(P, g) satisfying:

1- For any z ∈ P and any A ∈ g, ωz(Ãz) = A where Ã is the fundamental
vector field on P corresponding to A, i.e

Ãz :=
d

dt t=0
z · exp(−tA).
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2- For any g ∈ G and any z ∈ P , v ∈ Tz(p),

(R∗gω)z(v) = Adg−1(ωz(v)),

with Rg : P −→ P being the map z 7→ z · g.

Let now∇ be a linear connection onM . A diffeomorphism f : M −→M is called
an affine transformation with respect to ∇ if it satisfies f∗(∇XY ) = ∇f∗Xf∗Y for
any X,Y ∈ χ(M) where f∗X is the vector field on M given by:

(f∗X)f−1(x) := (Txf)−1(Xx).

The group of such transformations will be denoted Aff(M,∇). On the other hand,
we say that X ∈ χ(M) is an affine vector field if it generates a local 1-parameter
group of affine transformations. We are going to prove in this paragraph that
Aff(M,∇) is a Lie group of dimension ≤ n2 + n when given the compact-open
topology. The idea is to reinterpret the group of affine transformations as a sub-
group of Aut(L(M)) via the identification provided by Proposition 1.0.3, but in
order to do this we need an artifact that represents the linear connection ∇ on the
frame bundle L(M). It turns out that the notion of connection form is the adequate
solution for this task, more precisely we have the following:

Proposition 1.0.4. Let M be a smooth manifold and ∇ a linear connection on M .
Then there exists a unique connection form ω on L(M) such that for any local sec-
tion σ := {E1, . . . , En} of L(M) defined on U , σ∗ω = Γ where Γ ∈ Ω1(U, gl(n,R))
is given by:

∇Ei =

n∑
j=1

ΓijEj .

Conversely, any connection form ω on L(M) gives rise to a linear connection ∇ on
M by means of the previous expression.

Proposition 1.0.5. Let M be a smooth manifold, ∇ a linear connection on M
and ω the connection form on L(M) corresponding to ∇. Let f : M −→ M be a
diffeomorphism, then:

1- f ∈ Aff(M,∇) if and only if f∗ preserves the connection form ω.
2- Conversely, any fiber-preserving tranformation A : L(M) −→ L(M) leaving

both θ and ω invariant is of the form A = f∗ for some f ∈ Aff(M,∇).

Proof. Define on M the linear connection ∇̃ by the expression:

∇̃XY = (f∗)
−1(∇f∗Xf∗Y )

Fix an open subset U ⊂M and let {E1, . . . , En} be a local frame of TM defined on
U which correponds to a local section σ : U −→ L(M). Clearly {f∗E1, . . . , f∗En}
defines a local frame of TM over V := f−1(U) and the corresponding local section
is exactly f−1

∗ ◦ σ ◦ f : V −→ L(M). For convenience put g := f−1 and write:

∇̃Ei =

n∑
j=1

Γ̃ijEj , ∇(f∗Ei) =

n∑
j=1

Γijf∗Ej ,
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where Γ̃ := (Γ̃ij)i,j ∈ Ω1(U, gl(n,R)) and Γ := (Γij)i,j ∈ Ω1(V, gl(n,R)). On the
other hand, a direct computation shows that for any x ∈ U :

(∇̃Ek
Ei)x = g∗(∇f∗Ek

f∗Ei)x = Tg(x)f((∇f∗Ek
f∗Ei)g(x))

=

n∑
j=1

Γij((f∗Ek)g(x))Ei|x

=

n∑
j=1

(g∗Γij)x(Ek|x)Ei|x.

Therefore g∗Γ = Γ̃ and thus σ∗(g∗ω) = Γ̃. In summary we proved that g∗ω is
the (unique) connection form on L(M) defining ∇̃. So f : M −→ M is an affine
transformation i.e ∇̃ = ∇ if and only if ω = f∗ω.

Theorem 1.0.1. Let M be an n-dimensional smooth manifold with a global trivi-
alization {X1, . . . , Xn} of TM . Denote G the group of transformations preserving
this trivialization, i.e diffeomorphisms f : M −→M satisfying Txf(Xi|x) = Xi|f(x).
Then G possesses a unique Lie group structure for the compact-open topology such
that dimG ≤ dimM . More precisely for any p ∈M , the map:

G −→M, f 7→ f(p),

is an imbedding of G onto a closed submanifold ofM , and the submanifold structure
on the image is what makes G a Lie transformation group. Moreover the Lie algebra
of G consists of complete vector fields whose 1-parameter subgroups are in G.

Theorem 1.0.2. Let M be a smooth n-dimensional manifold and ∇ an affine con-
nection on M , then Aff(M,∇) is a Lie group for the compact-topology of dimension
≤ n2 + n. More precisely for any z ∈ L(M) the map:

Aff(M,∇) −→ L(M), f 7→ f∗(z),

is injective and its image is a closed submanifold of L(M). The submanifold struc-
ture on its image makes Aff(M,∇) a Lie transformation group. Its Lie algebra
consists of complete affine vector fields on M .

Proof. First some preparation. For any x ∈ M , Recall that since GL(n,R) acts
simply transitively on Px := π−1(x), the map GL(n,R) −→ Px, g 7→ z · g and its
differential gl(n,R) −→ TzPx, A 7→ d

dt t=0
z ·exp(tA) is therefore an isomorphism. In

other words for any v ∈ TzPx there exists a unique A ∈ gl(n,R) such that v = Ãz.
On the other hand it is clear that Tzπ(TzPx) = 0 and since Tzπ : TzP −→ TxM is
surjective we get that ker(Tzπ) = TzPx.

Denote ω the connection form on P := L(M) corresponding to ∇ and consider
the map TP −→ P × (gl(n,R) × Rn), Z 7→ (p(Z), ω(Z), θ(Z)), then one easily
checks that the following diagram is commutative:

TP P × (gl(n,R)× Rn)

P

φ

p
pr1
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i.e the previous map is a vector bundle homomorphism. In fact, this map defines
a global trivialization of TP , to see this we first notice that this map is surjective
given that π : P −→ M is a submersion so any v ∈ Rn is of the form v = θz(w)

and that A = ω(Ã) for any A ∈ gl(n,R). Let v ∈ TzP such that θz(v) = 0 and
ωz(v) = 0, then:

0 = θz(v) = z−1(Tzπ(v)),

hence v ∈ ker(Tzπ) := TzPπ(z), on the other hand write v = Ãz for some A in
gl(n,R) then we get that

0 = ωz(v) = ωz(Ãz) = A,

and so v = 0, consequently φ is injective. On the other hand if σ : U −→ P is any
local section one can define the map:

P|U × (gl(n,R)× Rn)
ψ−→ P|U , Ãσ(π(z)) + (Tπ(z)σ)(σπ(z)(v)),

it is clear that ψ is a smooth map and one checks without difficulty that φ ◦ψ = Id
and thus φ is a local diffeomorphism, hence we conclude that φ is a vector bundle
isomorphism. Finally, let F : P −→ P be any fiber preserving transformation
leaving θ and ω invariant and choose v ∈ Rn and A ∈ gl(n,R) such that (z,A, v) =
φ(w). Then:

φ ◦ TzF (w) = (F (z), (F ∗ω)z(w), (F ∗θ)z(w)) = (F (z), ωz(w), θz(w)),

which means that TzF (φ−1(z,A, v)) = (F (z), A, v) and so F preserves any global
frame of TP defined by φ. By Theorem 1.0.1 we get the desired result.

The remaining part of this section will be dedicated to prove that the isometry
group of a Riemannian manifold is also a Lie group by following the same footsteps
of the previous paragraph.

Assume now that (M, 〈 , 〉) is a Riemannian manifold and let ∇ be a metric
connection on M , i.e for any X,Y, Z ∈ χ(M), X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉.
Let {E1, . . . , En} be a local orthonormal frame of TM defined on an open subset
U ⊂M and write

∇Ei =

n∑
j=1

ΓijEj .

Then we get that Γij = −Γji or in other terms Γ ∈ Ω1(U, so(n)). Thus if ω̃ is
the connection form on L(M) corresponding to ∇ then its restriction ω to the or-
thogonal frame bundle O(M) is so(n)-valued and defines therefore a connection
form on O(M) and it is in fact the only connection form on O(M) representing ∇.
Conversely any connection form on O(M) admits a unique extension to L(M) and
defines therefore a metric connection ∇ on M .

Denote Isom(M, 〈 , 〉) the isometry group of the Riemannian manifold (M, 〈 , 〉).

Proposition 1.0.6. Let (M, 〈 , 〉) be a Riemannian manifold, ∇ its Levi-Civita
connection and ω the connection form on O(M) representing ∇.

1- A diffeomorphism f : M −→ M is an isometry if and only if f∗(O(M)) =
O(M).
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2- If A : O(M) −→ O(M) is a fiber-preserving transformation leaving in-
variant the canonical form θ of O(M), then there exists a unique isometry
f : M −→M such that A = f∗.

3- Any (principal) bundle automorphism O(M) −→ O(M) leaving θ invariant,
leaves ω invariant.

Proof. The first point is the definition of a Riemannian isometry, the argument
for the second point is the same as in Proposition 1.0.5. For the third point,
observe that since ∇ is torsion-free, then ω is torsion-free as well i.e the 2-form
T ∈ Ω2(O(M),Rn), called torsion form of ω, given by:

T := ω ∧ θ + dθ, (3)

vanishes. Let A : O(M) −→ O(M) be a bundle automorphism, then A∗ω is a
connection form on O(M). Since A preserves the canonical form θ, we get from
expression (3) that A∗ω is torsion-free as well, so by uniqueness of the Levi-Civita
connection we conclude that A∗ω = ω.

Theorem 1.0.3. Let (M, 〈 , 〉) be a Riemannian manifold, then Isom(M, 〈 , 〉)
with the compact-open topology is a Lie group of dimension ≤ n(n+1)

2 . In fact for
any z ∈ O(M), the map:

Isom(M, 〈 , 〉) −→ O(M), f 7→ f∗(z),

is an imbedding and its image is a closed submanifold of O(M). If ∇ is the Levi-
Civita connection of 〈 , 〉 then Isom(M, 〈 , 〉) is a closed subgroup of Aff(M,∇).
Its Lie algebra consists of complete Killing vector fields on M .

Proposition 1.0.7. Let (M, 〈 , 〉) be a Riemannian manifold, then the natural
action of Isom(M, 〈 , 〉) on M is proper. In particular if M is compact then
Isom(M, 〈 , 〉) is compact.

Proof. Choose a compact K ⊂ M and put GK = {f ∈ Isom(M), f(K) ∩K 6= ∅}.
Let (fn)n be an arbitrary sequence of GK , then for any n ∈ N we can find pn ∈ K
such that fn(pn) ∈ K. Since K is compact we can assume without loss of gener-
ality that (fn(pn))n is convergent and we denote q ∈ K its limit, similarly there
exists a subsequence (pϕ(n))n of (pn)n converging to some p ∈ K and therefore
(fϕ(n)(pϕ(n)))n is also convergent.

Denote d : M ×M −→ R+ the geodesic distance, which is preserved by elements
of Isom(M, 〈 , 〉), hence:

d(fϕ(n)(p), q) ≤ d(fϕ(n)(p), fϕ(n)(pϕ(n))) + d(fϕ(n)(pϕ(n)), q)

≤ d(p, pϕ(n)) + d(fϕ(n)(pϕ(n)), q) −→
n→+∞

0.

Next put p = π(z) with z ∈ O(M) and C = {fϕ(n)(p), n ∈ N} ∪ {q}, then
C is a compact subset of M and since O(n) is compact we get that π−1(C) is a
compact subset of O(M) containing the sequence ((fϕ(n))∗(z))n and so it has a
convergent subsequence ((fψ(n))∗(z))n. Theorem 1.0.3 implies that {f∗(z), f ∈
Isom(M)} is closed submanifold in O(M) so ((fψ(n))∗(z))n converges to f∗(z) for
some f ∈ Isom(M, 〈 , 〉) and by the same result we get that (fψ(n))n converges to
f in Isom(M, 〈 , 〉). We conclude that GK is compact and so Isom(M, 〈 , 〉) acts
properly on M .
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2. Results on the dimension of the affine group of a manifold

In this section we state some results that illustrates how the dimension of the
group of affine transformations affects the global structure of the manifold. The
main paragraph of this section relies on the notion of parallel transport along curves
and its how it is perceived from the perspective of the frame bundle, and this will
be our starting point.

Let M be an n-dimensional smooth manifold and ∇ a linear connection on M .
Let γ : [0, 1] −→M be a smooth a curve, then ∇ provides a unique linear operator
denoted Dγ̇ : Γ(γ−1TM) −→ Γ(γ−1TM) satisfying:

Dγ̇(fV ) = f ′V + fDγ̇V, f ∈ C∞([0, 1],R), V ∈ Γ(γ−1TM),

we call it the covariant derivation along γ, here Γ(γ−1TM) is the space of vector
fields along γ i.e smooth maps V : [0, 1] −→ TM such that V (t) ∈ Tγ(t)M . In a
local frame {E1, . . . , En} where ∇Ei =

∑n
j=1 ΓijEj we get that:

Dγ̇V (t) =

n∑
k=1

(
f ′k(t) +

n∑
i,j=1

fi(t)gj(t)Γ
k
ji(γ(t))

)
Ek|γ(t), (4)

where V (t) =
∑
fi(t)Ei|γ(t) and γ̇(t) =

∑
gi(t)Ei|γ(t). We say that V is parallel

along γ ifDγ̇V = 0, using that equation (4) is a linear system of ordinary differential
equations one gets the following important result:

Theorem 2.0.1. Let M be an n-dimensional manifold with a linear connection ∇
and γ : [0, 1] −→ M a smooth curve. For any v ∈ Tγ(0)M , there exists a unique
parallel vector field V along γ satisfying V (0) = v. We call V the parallel transport
of v along γ.

Let ω be the connection form on L(M) representing ∇, for any basis {e1, . . . , en}
of Tγ(0)M one obtain a parallel frame {E1, . . . , En} along γ i.e Ei is the par-
allel vector field along γ satisfying Ei(0) = ei, and it is an easy matter to see
that {E1(t), . . . , En(t)} is a basis of Tγ(t)M , thus one obtains a smooth curve
γ̃ : [0, 1] −→ L(M) given by:

γ̃(t) = (E1(t), . . . , En(t)),

such a curve is called the horizontal lift of γ to L(M) through {e1, . . . , en}.

Proposition 2.0.1. Let M be an n-dimensional manifold with a linear connection
∇ and let γ : [0, 1] −→ M and α : [0, 1] −→ L(M) be smooth curves. Then α is
a horizontal lift of γ if and only if π ◦ α = γ and ωα(t)(α̇(t)) = 0, where ω is the
connection form corresponding to ∇.

Proof. Since π(α(s)) = γ(s) for any 0 ≤ s ≤ 1, we can write α(s) = (V1(s), . . . , Vn(s))
where Vi ∈ Γ(γ−1TM). Next choose a local frame {E1, . . . , En} of M defined on
an open subset U ⊂M and let ε > 0 such that γ(]t− ε, t+ ε[) ⊂ U then write:

Vi(s) =

n∑
j=1

gij(s)Ej |γ(s), ∇Ei =

n∑
j=1

ΓijEj , (5)

for s ∈]t− ε, t+ ε[. Then it is straightforward to prove that:

Dγ̇Vi(t) =
(
g′(t) + g(t) · Γγ(t)(γ̇(t))

)
· Ej |γ(t),
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where g := (gij)i,j ∈ C∞([0, 1],GL(n,R)) and Γ := (Γij)i,j . On the other hand if
σ : U −→ L(M) is the local section corresponding to {E1, . . . , En} then (5) means
exactly that α(s) = σ ◦ γ(s) · g(s)−1, for convenience denote ĝ(s) := g(s)−1. Thus:

α̇(t) = T(σ◦γ)(t)Rg(t)((σ ◦ γ)′(t)) +
d

ds |s=t
(σ ◦ γ)(t) · ĝ(s)

= T(σ◦γ)(t)Rg(t)((σ ◦ γ)′(t)) +
d

ds |s=t
(σ ◦ γ)(t) · ĝ(t) · (g(t)ĝ(s))︸ ︷︷ ︸

h(s)

.

Now s 7→ h(s) is a curve in G satisfying h(t) = e and therefore:
d

ds |s=t
(σ ◦ γ)(t) · ĝ(t) · h(s) = −h̃′(t)(σ◦γ)(t)·ĝ(t),

where h̃′(t) is the fundamental vector field on L(M) corresponding to −h′(t) =

−g(t)ĝ′(t). Thus using that R∗gω = Adg−1(ω) and ω(Ã) = A we get from the
previous computation:

ωα(t)(α̇(t)) = g(t) · (σ∗ω)γ(t)(γ̇(t)) · g(t)−1 − g(t)ĝ′(t)

= g(t) · Γγ(t)(γ̇(t)) · g(t)−1 − g(t)ĝ′(t)

= g(t) · Γγ(t)(γ̇(t)) · g(t)−1 − g′(t)ĝ(t)−1 (g′(s)ĝ(s) = In)

=
(
g(t) · Γγ(t)(γ̇(t))− g′(t)

)
· ĝ(t)−1

So we conclude that ωα(t)(α̇(t)) = 0 if and only if Dγ̇Vi(t) = 0 for all 1 ≤ i ≤ n.

Recall that a vector field Z on L(M) is called horizontal if ω(Z) = 0 and standard
if θ(Z) is a constant function.

Proposition 2.0.2. Let M be an n-dimensional manifold with a linear connection
∇ and ω the connection form of ∇ on L(M).

(1) Let Z be a standard horizontal vector field on L(M). For any z ∈ L(M),
the curve defined by γ(t) := π(ϕZt (z)) is a geodesic on M .

(2) Conversely, given a geodesic γ : [−a, a] −→M , there exists a local standard
horizontal vector field Z on L(M) and ε > 0 such that γ(t) = ϕZt (z) for
any −ε < t < ε.

Proof. Let z ∈ L(M) then there exists ε > 0 such that the curve α :]−ε, ε[−→ L(M)
given by α(t) = ϕZt (z) is well-defined and smooth. Define γ(t) = π(α(t)), since
ωα(t)(α

′(t)) = ωα(t)(Zα(t)) = 0 then Proposition 2.0.1 gives that α is a horizontal
lift of γ on L(M), therefore if we write:

α(t) = (V1(t), . . . , Vn(t)), Vi ∈ Γ(γ−1TM),

we get that {V1, . . . , Vn} is a parallel frame along γ. On the other hand if we write
θz(Zz) = (a1, . . . , an) then we get that:

γ′(t) = Tα(t)π(Zα(t)) = α(t)(θα(t)(Zα(t))) = α(t)(θz(Zz)) =

n∑
i=1

aiEi(t),

which shows that γ′ is parallel along γ i.e γ is a geodesic.
Conversely, let γ : [−a, a] −→M be a geodesic and let U be a normal neighborhood
of p := γ(0) in M , i.e there exists an open neighborhood V of 0 in TpM such that
expp : V −→ U is a diffeomorphism. For any x ∈ U , there exists a unique normal
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geodesic t 7→ (expp(t exp−1
p (x))) joining p to x, denote αz : [0, 1] −→ L(M) its

(unique) horizontal lift through z ∈ L(M)p and define:

Zαz(1) := α′z(1).

It is clear from this definition that ωz(Zz) = 0 and by uniqueness of the horizontal
lift, one proves that α′z(t) = Zαz(t). Furthermore be shown that Z defines a smooth
vector field on a neighborhood of any z ∈ L(M)γ(0) in which case αz(t) = ϕZt (z).
Since γ is a normal geodesic in a small neighborhood ] − ε, ε[, we get the desired
result.

Denote aff(M,∇) := Lie(Aff(M,∇)), anyX ∈ aff(M,∇) defines a smooth vector
field X̂ of L(M) given by:

X̂z :=
d

dt t=0
exp(tX)∗(z).

It is clear that X̂ is a complete vector field on L(M).

Proposition 2.0.3. Let M be an n-dimensional manifold, ∇ a linear connection
on M , and let X ∈ aff(M,∇). Suppose that ωz(X̂z) = 0 for some z ∈ L(M). Then
the curve γ : R −→ M , γ(t) = exp(tX) · x with x = π(z) is a geodesic and its
horizontal lift at z is the curve γ̂(t) := exp(tX)∗(z), t ∈ R.

Proof. Put γ̂(t) = exp(tX)∗(z), then clearly π(γ̂(t)) = γ(t), moreover from the
relation exp(tX)∗ω = ω we get that ωexp(tX)∗z(X̂exp(tX)∗z) = ωz(Zz) = 0 which
means that γ̂ is the horizontal lift of γ through z, in particular if z = (e1, . . . , en)
then:

γ̂(t) = (E1(t), . . . , En(t)),

Ei being the parallel transport of ei along γ. Moreover exp(tX)∗θ = θ gives that
θexp(tX)∗z(X̂exp(tX)∗z) = θz(X̂z) so if we put θz(Xz) = (a1, . . . , an) we get that:

γ′(t) = Tγ̂(t)π(X̂γ̂(t)) = γ̂(t)(θγ̂(t)(X̂γ̂(t))) = γ̂(t)(θz(X̂z)) =

n∑
i=1

aiEi(t).

Hence γ′ is parallel along γ, i.e γ is a geodesic.

Theorem 2.0.2. Let M be an n-dimensional manifold with a linear connection ∇.
Then dim(Aff(M,∇)) = n(n+ 1) if and only if M is an ordinary affine space with
the natural flat affine connection.

Proof. Denote G := Aff(M,∇) and for any x ∈M denote Gx the isotropy at x for
the natural action of G on M . First note that the map:

Gx −→ GL(TxM), f 7→ Txf (6)

is an injective Lie group homomorphism. Assume now that dimG = n(n+ 1), then
let x ∈M and z ∈ L(M) such that π(z) = x. Since the map:

G
Ψ−→ L(M), f 7→ f∗(z)

is an imbedding of G onto a closed submanifold of L(M) and dim L(M) = n(n+1),
then either Ψ(G) = L(M) or Ψ(G) is a connected component of L(M) and in any
case we get that M = G · x ' G/Gx, therefore:

dimGx = dimG− dimM = n2.
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This gives in particular that G0
x = GL+(TxM) under the identification (6). Now

let t > 0 and consider the transformation At ∈ GL+(TxM) given by At(u) = tu.
From the previous remark there exists ft ∈ G0

x such that Txft = At, hence for any
u, v, w ∈ TxM we get that:

At(R
∇
x (u, v)w) = R∇x (Atu,Atv)Atw, At(T

∇
x (u, v)) = T∇x (Atu,Atv),

therefore R∇x (u, v)w = t−2R∇x (u, v)w and T∇x (u, v) = t−1T∇x (u, v) for all t > 0, and
so we conclude that R∇ = 0 and T∇ = 0.

On the other hand, let Z be a standard horizontal vector field on L(M) i.e ω(Z) = 0
and θ(Z) is constant where ω is the connection form representing ∇ and θ is the
canonical form of L(M). If g := Lie(G) then there exists a unique X ∈ g such that
Zz = X̂z where:

X̂z̃ :=
d

dt t=0
exp(tX)∗z̃, z̃ ∈ L(M).

From Proposition 2.0.3 we get that γ(t) = exp(tX) · x is a geodesic with horizontal
lift at z the curve γ̂(t) = exp(tX)∗(z) defined for any t ∈ R. Now γ : R −→ M is
the geodesic with initial conditions γ(0) = x and γ′(0) = Tzπ(Zz) and therefore its
horizontal lift at z is exactly

α :]− ε, ε[−→ L(M), t 7→ ϕZt (z),

which proves that α can be extended to all of R. Since z ∈ L(M) was arbitrary we
get that Z is complete, and since we know by Proposition 2.0.2 that geodesics ofM
are exactly the projections of integral curves of standard horizontal vector fields,
we conclude that M is (geodesically) complete.

Consider now the universal cover M̃ of (M,∇) with its induced induced linear
connection, then there exists an affine transformation M̃ '−→ Rn. Next M = M̃/Γ

where Γ is a discrete subgroup of Aff(M̃,∇) ' GL(n,R) o Rn hence commuting
with Aff(M̃,∇)0 ' GL+(n,R) o Rn. But one can show with ease that only the
trivial element commutes with connected component of GL(n,R) oRn, hence Γ is
trivial and M is itself simply connected i.e M̃ = M , this completes the proof.

Theorem 2.0.3. Let M be an n-dimensional manifold with an affine connection
and assume that dim Aff(M,∇) > n2. Then ∇ is torsion-free.

This result is a consequence of the following algebraic Lemma:

Lemma 2.0.1. Let V ba an n-dimensional vector space and T : V × V −→ V a
non-trivial skew-symmetric bilinear map i.e T ∈ V ⊗Λ2V ∗. Denote H the subgroup
of linear transformation preserving T , then dimH ≤ n2 − n.

Proof of the Theorem. Denote G := Aff(M,∇) then let x ∈ M and denote Gx the
isotropy at x for the natural action of G on M , then from G/Gx ' G · x we get:

dim(Gx) ≥ dim(G)− dim(M) > n2 − n (7)

On the other hand denote T∇ the torsion tensor of ∇, then for every f ∈ Gx we
get that:

T∇x (Txf(u), Txf(v)) = Txf(T∇x (u, v)), u, v ∈ TxM.
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Therefore the group {Txf, f ∈ Gx} ' Gx preserves T∇x , but according to the
previous Lemma and (7) we conclude that T∇x = 0 for any x ∈M , i.e ∇ is torsion-
free.

Another result in the same spirit is the following Theorem due to Egorov [3] and
can be proved by essentially the same procedure:

Theorem 2.0.4. Let M be an n-dimensional manifold and ∇ a linear connection
on M such that dim Aff(M,∇) > n2. Then ∇ has neither torsion nor curvature
provided that n ≥ 4.

3. Relation between the isometry group and the affine group of a
Riemannian manifold

In this section, we go through a number of results that have treated the relation
between the group of affine transformations and the isometry group in the case of
a Riemannian manifold. These results exploit the holonomy Riemannian manifolds
along with the De Rham decomposition theorem in order to get to conclusions,
therefore we begin by introducing the notion of holonomy.

Let M be an n-dimensional manifold and ∇ a linear connection on M . For any
smooth curve γ : [a, b] −→ M one can define a map τγa,b : Tγ(a)M −→ Tγ(b)M by
the formula τγa,b(v) = V (b) where V ∈ Γ(γ−1TM) is the parallel transport of v
along γ (relative to ∇). It is clear that this map is linear since V is a solution of a
system of linear ordinary differential equations, furthermore:

Proposition 3.0.1.

(1) τγa,b does not depend on the orientation-preserving parametrization of the
curve γ.

(2) Denote γ1 := γ|[a,t0] and γ2 := γ|[t0,b] i.e γ = γ1 ∗ γ2, then:

τγa,b = τ
γ2

t0,b
◦ τγ1

a,t0 .

(3) For any smooth curve γ, τγa,b is an isomorphism and its inverse is exactly

the linear operator τγ
−

a,b : Tγ(b)M −→ τγ(a)M with γ−(t) = γ(a+ b− t).

Proof.
(1) & (3)- Choose a diffeomorphism ϕ : [c, d] −→ [a, b] and put α = γ ◦ ϕ. Let V
be the parallel transport of v ∈ Tγ(a)M along γ and W := V ◦ ϕ. Next, write:

V (ϕ(s)) =

n∑
i=1

gi(ϕ(s))Ei|α(s), γ̇(ϕ(s)) =

n∑
i=1

fi(ϕ(s))Ei|α(s)
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for any s ∈]t − ε, t + ε[, where {E1, . . . , En} is a local frame of M defined on an
open subset U and α(]t− ε, t+ ε[) ⊂ U . Since α̇(s) = ϕ′(s)γ̇(ϕ(s)), then:

Dα̇W (s) =

n∑
i=1

ϕ′(s)g′i(ϕ(s))Ei|α(s) +

n∑
i=1

gi(ϕ(s))(∇α̇Ei)|α(s)

=

n∑
i=1

ϕ′(s)g′i(ϕ(s))Ei|α(s) +

n∑
i,j=1

ϕ′(s)gi(ϕ(s))fj(ϕ(s))(∇EjEi)|α(s)

= ϕ′(s)(Dγ̇V )(ϕ(s))

= 0

Thus Dα̇W (t) = 0 for any t ∈ [c, d] i.e W is parallel along α, moreover if ϕ is
orientation-preserving we get that W is the parallel transport of v along α, thus:

ταc,d(v) = W (d) = V (b) = τγa,b(v).

In the case where [c, d] = [a, b] and ϕ(t) = a+ b− t i.e α = γ− then we get that:

τγ
−

a,b ◦ τ
γ
a,b(v) = τγ

−

a,b(V (b)) = τγ
−

a,b(W (a)) = W (b) = V (a) = v.

(2)− Let V be the parallel transport of v ∈ Tγ(a)M along γ and denote V1 the
parallel vector field along γ1 satisfying V1(a) = v and V2 the parallel vector field
along γ2 with initial condition V2(t0) = V1(t0). Then by uniqueness of parallel
transport and the expressions of γ1 and γ2, we get V1 = V|[a,t0] and V2 := V[t0,b].
In particular:

τ
γ2

t0,b
◦ τγ1

a,t0(v) = τ
γ2

t0,b
(V (t0)) = V (b) = τγa,b(v).

This ends the proof.

These properties allows to extend the definition of τγa,b for piecewise smooth
curves γ : [a, b] −→M by setting:

τγa,b := τγtk,b ◦ τ
γ
tk−1,tk

◦ · · · ◦ τγt1,t2 ◦ τ
γ
a,t1 ,

where a = t0 < t1 < · · · < tk < tk+1 = b is any subdivision of [a, b] such that the
curve γ[ti,ti+1] is smooth. The previous properties extend to this situation as well:

Proposition 3.0.2. LetM be a smooth manifold with a linear connection ∇. Then:
(1) τγa,b does not depend on the orientation-preserving parametrization of the

piecewise smooth curve γ : [a, b] −→M .
(2) Given two piecewise smooth curves γ1 : [a, b] −→ M and γ2 : [b, c] −→ M

such that γ2(b) = γ1(b) then τγ1∗γ2
a,c = τ

γ2

b,c ◦ τ
γ1

a,b.

(3) For any piecewise smooth curve γ : [a, b] −→ M , τγa,b is invertible with

inverse τγ
−

a,b.

It is more convenient therefore to denote τγa,b by τγγ(a),γ(b) instead or just τγγ(a)

when γ is a loop. Fix x0 ∈M and define:

Holx0(M,∇) := {τγx0
: Tx0M

'−→ Tx0M, γ is a loop based at x0}.

Using the above observations, it is clear that Holx0
(M,∇) is a subgroup of GL(Tx0

M)
called the holonomy group of (M,∇) at x0. We also define the restricted holonomy
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of (M,∇) at x0 to be:

H̃olx0
(M,∇) := {τγx0

: Tx0
M

'−→ Tx0
M, γ is a contractible loop based at x0},

which is obviously a subgroup of the holonomy group since concatenation and in-
verse of contractible loops remains contractible. It is also straightforward to see
that H̃olx0

(M,∇) is normal in Holx0
(M,∇).

Theorem 3.0.1. Let M be a smooth manifold and ∇ a linear connection on M .
The holonomy group Holx0

(M,∇) possesses the structure of an (immersed) Lie
subgroup of GL(Tx0M) and H̃olx0(M,∇) = Holx0(M,∇)0.

Proof.
We start by proving that H̃olx0(M,∇) is arcwise connected. Let g ∈ H̃olx0(M,∇),
then there exists a piecewise smooth loop γ based at x0 homotopic to the constant
loop x0 such that g = τγx0

. Denote F : [0, 1]× [a, b] −→M this homotopy, i.e:

F (0, t) = γ(t), F (1, t) = x0, F (s, a) = F (s, b) = x0.

Put F (s, t) := γs(t), clearly each loop γs is contractible as well and one can assume
without loss of generality that γs is piecewise smooth for any 0 ≤ s ≤ 1, so we get a
correspondence α : [0, 1] −→ H̃olx0

(M,∇), s 7→ τ
γs

a,b with α(0) = g and α(1) = Id.
The claim amounts to proving that α is continuous.

Fix a system of local coordinates (U, x1, . . . , xn) centered at x0. For every 0 ≤ s ≤ 1,
F (s, 1) = x0 ∈ U therefore we can find an open neighborhood Us of s in [0, 1] and
0 ≤ αs < 1 such that F (Us× [αs, 1]) ⊂ U . Since [0, 1] is compact, it is the union of
finitely many Usi with 1 ≤ i ≤ r, so if we put α = max

1≤i≤r
αsi < 1 we obtain that:

F ([0, 1]× [α, 1]) = F
(( r⋃

i=1

Usi

)
× [α, 1]

)
=

r⋃
i=1

F (Usi × [α, 1]) ⊂ U.

A similar argument allows to choose α < 1 such that every γs is smooth on [α, 1].
Now let v ∈ Tx0M and denote Vs the parallel transport of v along γs. Put Ei := ∂

∂xi

and write for any α ≤ t ≤ 1:

Vs(t) =

n∑
i=1

fi(s, t)Ei|F (s,t),
∂F

∂t
(s, t) =

n∑
i=1

gi(s, t)Ei|F (s,t), ∇Ei =
n∑
j=1

ΓijEj .

Then Vs|[α,1] is the solution of the following system of ordinary linear differential
equations:

n∑
k=1

(∂fk
∂t

(s, t) +

n∑
i,j=1

gj(s, t)fi(s, t)Γ
k
ji(F (s, t))

)
Ek|F (s,t)

It is clear that the coefficients of this system are all continuous (in fact uniformly
continuous) with respect to the parameter s, therefore we get that the solution
[0, 1] × [α, 1] −→ Rn, (s, t) 7→ (f1(s, t), . . . , fn(s, t)) is continuous as well, in par-
ticular one obtains that the map [0, 1] −→ Tx0M , s 7→ Vs(1) = α(s)(v) is also
continuous for every v ∈ Tx0M . Since Tx0M is a finite-dimensional vector space we
conclude that α : [0, 1] −→ H̃olx0(M,∇) is continuous.

By Yamabe’s Theorem we get that the restricted holonomy group H̃olx0
(M,∇)
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has the structure of an (immersed) Lie subgroup of GL(Tx0
M). Next, observe that

there exists a well-defined group homomorphism:

π1(M,x0) −→ Holx0
(M,∇)/H̃olx0

(M,∇), [γ] 7→ [τγx0
],

proving that the quotient Holx0(M,∇)/H̃olx0(M,∇) is at most countable. Using
this we can show that H̃olx0(M,∇) is the identity component of Holx0(M,∇), and
since Holx0

(M,∇) is second-countable with countably many connected components,
it has the structure of an (immersed) Lie subgroup of GL(Tx0

M).

If M is connected, the holonomy group at any point is essentially the same, in
the sense of the following result:

Proposition 3.0.3. Let M be a connected manifold with a linear connection ∇
and let x, y ∈ M . Then for any piecewise smooth curve γ : [a, b] −→ M joining x
to y, the map:

Holx(M,∇) −→ Holy(M,∇), g 7→ τγx,y ◦ g ◦ (τγx,y)−1,

is an isomorphism.

Proof. Straightforward

In what follows (M, 〈 , 〉) will always be a connected Riemannian manifold with
Levi-Civita connection ∇. Then following that ∇〈 , 〉 = 0 we get that for any
smooth curve γ : [a, b] −→M and any V,W ∈ Γ(γ−1TM):

d

dt
〈V (t),W (t)〉 = 〈Dγ̇V (t),W (t)〉+ 〈V (t), Dγ̇W (t)〉.

In particular if V and W are parallel along γ then t 7→ 〈V (t),W (t)〉 is a constant
map and therefore 〈τγa,b(v), τγa,b(w)〉 = 〈v, w〉. This leads to the following result:

Proposition 3.0.4. Let (M, 〈 , 〉) be a Riemannian manifold with Levi-Civita
connection ∇. Then Holx(M,∇) ⊂ O(TxM, 〈 , 〉) for any x ∈M .

We use the symbol Holx(M, 〈 , 〉) instead of Holx(M,∇) in what follows. For any
x ∈ M , we will say that TxM is irreducibe if it is irreducible as a Holx(M, 〈 , 〉)-
module i.e does not admit any proper, non-trival subspace that is invariant by
the action of Holx(M, 〈 , 〉). In view of Proposition 3.0.3 we see that if TxM is
irreducible then TyM is also irreducible for any y ∈M . This suggests the following
definition:

Definition 3.0.1. A Riemannian manifold (M, 〈 , 〉) is said to be irreducible if
TxM is irreducible for some (hence every) x ∈M .

The next result is a classical Theorem in riemannian geometry and will be es-
sential for the next part:

Theorem 3.0.2 (De Rham decomposition theorem). A simply connected, complete
Riemannian manifold (M, 〈 , 〉) is isometric to the direct product M0 × . . . ,×Mk

where M0 is a Euclidean space and M1, . . . ,Mk are all simply connected, irreducible
Riemannian manifolds. Such a decomposition is a unique up to an order of the
factors involved.

Corollary 3.0.1. Let (M, 〈 , 〉) be a simply connected, complete Riemannian man-
ifold and M = M0 × · · · ×Mk its de Rham decomposition. Let x = (x0, . . . , xk),
then:
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(1) The identification Holx1
(M1, 〈 , 〉) × . . .Holxk

(Mk, 〈 , 〉) 7→ Holx(M, 〈 , 〉)
given by (τ

γ1
x1 , . . . , τ

γk
xk ) 7→ τα1

x ◦ · · · ◦ ταk
x is an isomorphism, where αi is the

loop given by:

αi(t) = (x1, . . . , γi(t), . . . , xk).

(2) Under the previous identification, Holxi
(Mi, 〈 , 〉) is a normal subgroup of

Holx(M, 〈 , 〉) acting trivially on TxjMj for j 6= i and irreducibly on TxiMi.
(3) For any f ∈ Aff(M,∇) and any i = 1, . . . , k,

Txf(Tx0M0) = Tf(x)0M0, and Txf(TxiMi) = Tf(x)jMj ,

for some j = 1, . . . , k. If f ∈ Aff(M,∇)0 then Txf(TxiMi) = Tf(x)iMi.

Proof. We only prove the third point. Let f : M −→M be an affine transformation
and choose a piecewise smooth loop γ : [0, 1] −→ M based at f(x). Then for any
v ∈ Tx0

M0:
τγf(x)(Txf(v)) = Txf(τf

−1◦γ
x (v)) = Txf(v),

thus Txf(v) is invariant by Holf(x)(M,∇) which gives that Txf(Tx0M0) = Tf(x)0M0.
On the other hand, if w ∈ TxiMi for i 6= 0 then:

τγf(x)(Txf(w)) = Txf(τf
−1◦γ
x (w)) ∈ Txf(Txi

Mi),

which shows that Txf(Txi
Mi) is invariant, furthermore if V ⊂ Txf(Txi

Mi) is any in-
variant subspace then in the same way (Txf)−1(V ) is an invariant subspace of Txi

Mi

thus it is either trivial or equal to TxiMi proving that Txf(TxiMi) is irreducible,
in particular one gets the decomposition of Tf(x)M into the sum of irreducible
subspaces:

Tf(x)M = Txf(Tx0M0)⊕ · · · ⊕ Txf(Txk
Mk),

and by uniqueness of such decomposition we conclude that Txf(TxiMi) = Tf(x)jMj

for some j = 1, . . . , k.

Next let X be a complete affine vector field on M i.e X ∈ aff(M,∇), and con-
sider the curve γ(t) = exp(tX) · x. Let vi ∈ Txi

Mi, and consider u : R −→ R given
by:

u(t) = 〈Tx exp(tX)(vi), τ
γ
0,t(vi)〉γ(t).

Then u is a smooth function satisfying u(0) = 〈vi, vi〉x 6= 0 and therefore u(t) 6= 0
for −δ < t < δ, which shows that Tx exp(tX)(vi) ∈ Tγ(t)iMi for all −δ < t < δ. In
fact since TxiMi is finite-dimensional, one can choose δ > 0 small enough so that

Tx exp(tX)(Txi
Mi) ∈ Tγ(t)iMi,

for any −δ < t < δ. The result follows from the fact that Aff(M,∇)0 is generated
by 1-parameter subgroups.

Theorem 3.0.3. Let M = M0 × · · · × Mk be the de Rham decomposition of a
complete, simply connected Riemannian manifold (M, 〈 , 〉).Then:

Isom(M, 〈 , 〉)0 = Isom(M0, 〈 , 〉)0 × · · · × Isom(Mk, 〈 , 〉)0,

Aff(M,∇)0 = Aff(M0,∇)0 × · · · ×Aff(Mk,∇)0,

where ∇ is the Levi-Civita connection of M .
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Proof. Consider the homomorphism Ψ : Diff(M0) × · · · × Diff(Mk) −→ Diff(M)
which corresponds to any k-tuple of diffeomorphisms (f0, . . . , fk) the transformation
f : M −→M given by:

f(x0, . . . , xk) = (f0(x0), . . . , fk(xk)).

Clearly Ψ is continuous and injective. We claim that f = Ψ(f0, . . . , fk) is an affine
transformation if and only if fi is an affine transformation for any 0 ≤ i ≤ k. Indeed
let γ : [0, 1] −→M be any piecewise smooth curve and write γ := (γ0, . . . , γk) then
choose v = v0 ⊕ · · · ⊕ vk ∈ Tγ(0)M with vi ∈ Tγi(0)Mi, then:

Tγ(1)f ◦ τγ0,1(v) =

k∑
i=1

Tyifi(τ
γi
0,1(vi)), τf◦γ0,1 (Tγ(0)f(v)) =

k∑
i=1

τ
fi◦γi
0,1 (Txi

fi(vi)),

which shows that f preserves parallel transports onM if and only if each fi does so
on Mi proving the claim. One can also prove in a similar way that f is an isometry
if and only if every fi is an isometry. In particular:

Ψ(Aff(M0)×· · ·×Aff(Mk)) ⊂ Aff(M), Ψ(Isom(M0)×· · ·×Isom(Mk)) ⊂ Isom(M).

Let f ∈ Aff(M,∇)0 and pri : M −→ Mi be the projection on the i-th component
then denote gi := pri ◦ f , we will show that gi(x0, . . . , xk) only depends on xi.
Indeed let x = (x0, . . . , xk) ∈ M , j 6= i and vj ∈ Txj

Mj then by (3) of Corollary
3.0.1:

Txgi(vj) = Tf(x)pri(Txf(vj)︸ ︷︷ ︸
∈Mj

) = 0

Therefore if we fix (a0, . . . , ak) ∈M and define fi : Mi −→Mi by the expession:

fi(y) := gi(a0, . . . , y, . . . , ak),

then fi is a well-defined diffeomorphism ofMi and f = Ψ(f0, . . . , fk). It also follows
that if f ∈ Isom(M, 〈 , 〉)0 then each fi is an isometry.

Theorem 3.0.4. Let (M, 〈 , 〉) be a complete, irreducible Riemannian manifold,
then Aff(M,∇) = Isom(M, 〈 , 〉) except when M is a 1-dimensional Euclidean
space.

The proof of this Theorem will be done in two steps: First one proves that on any
such manifold, any affine transformation is homothetic and if furthermore (M, 〈 , 〉)
is not Euclidean then homothetic transformations are isometries, the result follows
then by observing that only 1-dimensional Euclidean spaces can be irreducible.

Let (M, 〈 , 〉) be a Riemannian manifold, and recall that f ∈ Diff(M) is said to
be a homothetic transformation if there exists a positive constant c > 0 such that
〈Txf(v), Txf(w)〉 = c2〈v, w〉 for all x ∈M and v, w ∈ TxM , i.e f∗〈 , 〉 = c2〈 , 〉. It
is a well-known fact that if ∇ is the Levi-Civita of (M, 〈 , 〉), then the Levi-Civita
connection ∇̃ for f∗〈 , 〉 is given by:

∇̃XY := f−1
∗ (∇f∗Xf∗Y ), (8)

When f : M −→M is a homothetic transformation we get from its definition that
〈 , 〉 and f∗〈 , 〉 share the same Levi-Civita connection i.e ∇̃ = ∇, which is to say
that any homothetic transformation is an affine transformation. Conversely:
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Lemma 3.0.1. If (M, 〈 , 〉) is an irreducible Riemannian manifold, then every
affine transformation f : M −→M is homothetic.

Proof. According to (8), 〈 , 〉 and f∗〈 , 〉 define the same Levi-Civita ∇. Next
recall that if G ⊂ O(V, 〈 , 〉) acts irreducibly on a Euclidean vector space (V, 〈 , 〉)
and preserves a symmetric bilinear form B : V × V −→ R, then B = c2〈 , 〉 for
some constant c > 0. Applying this result to

(V, 〈 , 〉) = (TxM, 〈 , 〉x), G = Holx(M, 〈 , 〉) and B = (f∗〈 , 〉)x,

we obtain that for any x ∈ M , (f∗〈 , 〉)x = c2x〈 , 〉x for some cx > 0. Finally, if
y ∈ M is another point and γ : [0, 1] −→ M is a piecewise smooth curve joining x
to y, then for every v ∈ TxM :

c2y〈τγx(v), τγx(v)〉y = 〈Tyf(τγx(v)), Tyf(τγx(v))〉f (y)

= 〈τf◦γf(x)(Txf(v)), τf◦γf(x)(Txf(v))〉f(y)

= 〈Txf(v), Txf(v)〉f(x)

= c2x〈v, v〉x.

Since 〈v, v〉x = 〈τγx(v), τγx(v)〉y for any v ∈ TxM we get that cx = cy, completing
the proof.

Lemma 3.0.2. If (M, 〈 , 〉) is a complete Riemannian manifold which is not locally
Euclidean, then every homothetic transformation is an isometry.

Proof. Suppose that (M, 〈 , 〉) admits a homothetic transformation f : M −→ M
that isn’t an isometry, and write f∗〈 , 〉 = c2〈 , 〉 with c > 0. Next notice that
f−1 is homothetic as well with ration 1/c, therefore we suppose without loss of
generality that 0 < c < 1.

We start by proving that f has a fixed point. Denote d : M × M −→ R+ the
geodesic distance and take an arbitrary point x ∈M then put ` := d(x, f(x)). Let
γ : [0, 1] −→ M be a minimizing geodesic joining x to f(x), which exists since M
is complete, then f i ◦ γ is a smooth curve joining f i(x) and f i+1(x) with length:

`i =

∫ 1

0

〈(f i ◦ γ)′(t), (f i ◦ γ)′(t)〉
1
2

fi◦γ(t)dt = ci`,

Therefore if m,n ∈ N are such that m < n then:

d(fm(x), fn(x)) ≤
n−1∑
i=m

d(f i(x), f i+1(x)) ≤
n+1∑
i=m

`i =

n+1∑
i=m

ci` ≤ cm`

1− c
,

and thus (fm(x))m is a Cauchy sequence in (M,d) hence converges to some x∗ ∈M
since M is complete. Now x∗ is obviously a fixed point of f , furthermore x∗ does
not depend on the choice of x, indeed given z ∈ M and α a geodesic joining z to
x∗, we get that fm ◦ α is a curve joining fm(z) to fm(x∗) = x∗ and so:

d(fm(z), x∗) ≤ `(fm ◦ α) = cm`(α) −→
m→+∞

0. (9)

Now fix a neighborhood U of x∗ in M with compact closure. Then there exists a
constant K∗ > 0 such that for any y ∈ U and any unit vectors v1, v2 ∈ TyM :

|〈Ry(v1, v2)v1, v2〉y| ≤ K∗, (10)
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where R denotes the curvature tensor of (M, 〈 , 〉). Since f is also an affine
transformation, then for any z ∈M and any orthonormal family {v, w} of TzM :

〈Rfm(z)(f
m
∗ v, f

m
∗ w)fm∗ v, f

m
∗ w〉 = 〈fm∗ (Rz(v, w)v), fm∗ w〉 = c2m〈Rz(v, w)v, w〉.

(11)
On the other hand, according to (9) there exists N ∈ N such that fm(z) ∈ U for
any m ≥ N , moreover ‖fm∗ v‖= ‖fm∗ w‖= cm, thus using (10):

|〈Rfm(z)(f
m
∗ v, f

m
∗ w)fm∗ v, f

m
∗ w〉| ≤ K∗‖fm∗ v‖2‖fm∗ w‖2= c4mK∗,

and finally (11) gives that |〈Rz(v, w)v, w〉| ≤ c2m for every m ≤ N . We conclude
that 〈Rz(v, w)v, w〉 = 0 for every z ∈M and any orthonormal family {v, w} of TzM
i.e (M, 〈 , 〉) is locally Euclidean.

Theorems 3.0.3 and 3.0.4 have a number of interesting consequences, before we
state them we need to make some remarks:
Let X be an affine vector field on a complete Riemannian manifold (M, 〈 , 〉)
and denote M̃ the universal cover of M with the induced metric p∗〈 , 〉 where
p : M̃ −→M is the natural projection, then let M̃ = M0×· · ·×Mk be its de Rham
decomposition. Next denote X̃ the lift of X to M̃ , i.e the unique vector field on
M̃ satisfying Tzp(X̃z) = Xp(z), then X̃ is an affine transformation and since X is
complete, X̃ is also complete hence an element of aff(M̃,∇). Moreover X̃ is Killing
if and only if X is Killing.
By Theorem 3.0.3, we have aff(M̃,∇) ' aff(M0,∇) × · · · × aff(Mk,∇) and so X̃
corresponds to a unique family (X0, . . . , Xk) such that Xi ∈ aff(Mi,∇). According
to Theorem 3.0.4 gives that X1, . . . , Xk are all Killing vector fields, therefore X will
be Killing if and only if X0 is.

Corollary 3.0.2. If (M, 〈 , 〉) is a complete whose restricted holonomy group
H̃olx(M, 〈 , 〉) have no nonzero invariant vector, then Aff(M,∇)0 = Isom(M, 〈 , 〉)0,
where ∇ is the Levi-Civita connection of (M, 〈 , 〉).

Proof. The restricted holonomy group H̃olx(M, 〈 , 〉) is isomorphic to the restricted
holonomy group of its universal cover M̃ , this is due to the fact that contractible
loops on M lift to (contractible) loops on M̃ , this gives that the map:

H̃olz(M̃, 〈 , 〉) −→ H̃olp(z)(M, 〈 , 〉), τγx 7→ Tzp ◦ τγz ◦ (Tzp)
−1 = τp◦γz ,

is an isomorphism for any z ∈ M̃ , moreover the restricted holonomy group of M̃
coincides with the total holonomy group since M̃ is simply connected. So our
assumption just states that M̃ has no Euclidean factor i.e M0 is a point, which
gives in view of the previous remarks that every affine vector field onM is a Killing
vector field.

Corollary 3.0.3. If X is an affine vector field of a complete Riemannian manifold
(M, 〈 , 〉) and if the length of X is bounded, then X is a Killing vector field.

Proof. Denote M̃ the universal cover of M with the induced metric g := p∗〈 , 〉
where p : M̃ −→M is the natural projection and let M̃ = M0× · · · ×Mk be its De
Rham decomposition. Next let X̃ be the lift of X to M̃ and write X̃ = (X0, . . . , Xk)
such that Xi ∈ aff(Mi,∇). Then:

g(X0, X0) ≤ g(X̃, X̃) = 〈X,X〉,
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hence if X has bounded length then so does X0. Now write X0 =
∑
ξi∂/∂xi in

some (global) Euclidean coordinate system x1, . . . , xr of M0. Since X0 is an affine
vector field then it satisfies:

(LX0
◦ ∇Y −∇Y ◦ LX0

)Z = ∇[X0,Z]Y.

For Y = ∂/∂xj and Z = ∂/∂xk we get that ∇Y = 0, ∇Z = 0 hence by the previous
expression ∇Y [X0, Z] = 0 which is equivalent to:

∂2ξi

∂xj∂xk
= 0, i, j, k = 1, . . . r.

This means that X0 =
∑r
i=1(

∑r
j=1 aijx

j +bi)∂/∂x
i where aij and bi are constants,

but since X0 has bounded length it follows that aij = 0 for all i, j = 1, . . . , r proving
thatX0 is a linear combination of ∂/∂x1, . . . , ∂/∂xr each of which is a Killing vector
field on M0, we thus conclude that X0 is Killing. By the previous remarks, X is a
Killing vector field on M .

If M is a compact Riemannian manifold then the length of any vector field is
bounded, therefore:

Corollary 3.0.4 (Yano’s Theorem). Let (M, 〈 , 〉) be a compact Riemannian man-
ifold with Levi-Civita connection ∇. Then Aff(M,∇)0 = Isom(M, 〈 , 〉)0.
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