The Group of affine transformations of a Smooth Manifold

Presented by :

Mehdi Nabil

Geometry, Topology and Applications

December 12th, 2020

1

Table of Contents

[Introduction](#page-1-0)

- **•** [Preliminaries](#page-2-0)
- [The Affine group of a Manifold as a Lie Group](#page-11-0)
- **[Isometry Group of a Riemannian Manifold as a Lie Group](#page-19-0)**
- [Results on the dimension of the group of affine transformations](#page-26-0)
	- [Parallel Transport and Horizontal Lift](#page-28-0)
	- **[Main Results](#page-37-0)**
- [The affine group of a Riemannian manifold](#page-45-0)
	- [Holonomy](#page-47-0)
	- [De Rham decomposition Theorem](#page-54-0)
	- **[Main results](#page-59-0)**

Let M be an n-dimensional smooth manifold. For any $x \in M$, we call a frame on M at x any linear isomorphism $\mathbb{R}^n \stackrel{\simeq}{\longrightarrow} \mathcal{T}_{x}M$, the set of such frames will be denoted $L(M)_x$. Clearly, the general linear group $GL(n,\mathbb{R})$ acts naturally on $L(M)_x$ via the map :

$$
L(M)_x \times \mathrm{GL}(n,\mathbb{R}) \longrightarrow \mathrm{L}(M)_x, \quad (z,g) \mapsto z \circ g,
$$

and it is not hard to see that this action is simply transitive. Now define

$$
\mathrm{L}(M):=\amalg_{x\in M}\mathrm{L}(M)_x
$$

and consider the projection $\pi : L(M) \longrightarrow M$ given by $\pi(L(M)_x) := x$.

Proposition 1.1

Let M be an n-dimensional manifold. Then L(M) ^{-™}→ M has a unique structure of a smooth principal $GL(n,\mathbb{R})$ -bundle over M called the frame bundle of TM such that for any local frame $\{E_1, \ldots, E_n\}$ of TM defined on an open subset $U \subset M$, the map :

$$
\sigma: U \longrightarrow L(M), \quad x \mapsto \{E_{1|x}, \ldots, E_{n|x}\}, \tag{1}
$$

is a local (smooth) section of $L(M)$. Conversely, if $\sigma : U \longrightarrow L(M)$ is any smooth section, then there exists a local frame $\{E_1, \ldots, E_n\}$ of TM over U such that σ is of the form [\(1\)](#page-3-0).

In a similar way one defines on a Riemannian manifold (M, \langle , \rangle) the bundle of orthonormal frames $O(M) := H_{x \in M}O(M)_x$ where each $O(M)_x$ consists of linear isometries

$$
(\mathbb{R}^n, \langle , \rangle_0) \stackrel{\simeq}{\longrightarrow} (T_xM, \langle , \rangle_x).
$$

It is clear that $O(M) \subset L(M)$, on the other hand the orthogonal group $O(n)$ acts simply transitively on $O(M)$.

Proposition 1.2

Let (M, \langle , \rangle) be an n-dimensional Riemannian manifold. Then $\mathrm{O}(M) \stackrel{\pi}{\longrightarrow} \widetilde{M}$ is a smooth principal $\mathrm{O}(n)$ -subbundle of $\mathrm{L}(M)$. Futhermore if $\{E_1, \ldots, E_n\}$ is any local, orthonormal frame of TM defined on an open subset $U \subset M$ then the map :

$$
\sigma: U \longrightarrow L(M), \quad x \mapsto \{E_{1|x}, \dots, E_{n|x}\},\tag{2}
$$

is a local (smooth) section of $O(M)$. Conversely, if $\sigma : U \longrightarrow O(M)$ is any smooth section, then there exists a local orthonormal frame $\{E_1, \ldots, E_n\}$ of TM over U such that σ is of the form [\(2\)](#page-5-0).

Any diffeomorphism $f : M \longrightarrow M$ induces a principal bundle automorphism $f_* : L(M) \longrightarrow L(M)$ such that the following diagram is commutative :

Explicitly, for any $z\in\mathrm{L}(\mathcal{M})$ we have $f_*(z):=\mathcal{T}_{\pi(z)}f\circ z.$

Define on $L(M)$ the \mathbb{R}^n -valued 1-form $\theta \in \Omega^1(L(M), \mathbb{R}^n)$ given by

$$
\theta_z(v) := z^{-1}(T_z \pi(v)),
$$

we call it the *canonical form* of $L(M)$. We have the following result :

Proposition 1.3

Let M be a smooth manifold and let *θ* denote the canonical form of the frame bundle $L(M)$. If $f : M \longrightarrow M$ is any diffeomorphism of M then f_* preserves θ . Conversely, if $A: L(M) \longrightarrow L(M)$ is any fiber-preserving transformation leaving θ invariant, then $A = f_*$ for some $f \in \text{Diff}(M)$.

Proof

The first point is a straightforward computation. Conversely, we first notice that since $A: L(M) \longrightarrow L(M)$ is fiber-preserving, the map :

$$
f: M \longrightarrow M, \quad f(x) = \pi(A(z)), \quad z \in \pi^{-1}(x),
$$

is a well-defined diffeomorphism of M. Now :

$$
(A^*\theta)_z(v) = \theta_{A(z)}(T_zA(v)) = A(z)^{-1} \circ T_{\pi(z)}f \circ T_z\pi(v),
$$

so A will preserve θ if and only if $A(z)^{-1}\circ \mathcal{T}_{\pi(z)}f = z^{-1}$ for any $z\in P$ which is exactly what $A = f_*$ means.

Proposition [1.3](#page-7-0) states that the morphism $\mathrm{Diff}(M) \stackrel{\Psi}{\to} \mathrm{Aut}(\mathrm{L}(M)),\ f \mapsto f_*$ sends the group of diffeomorphisms of M isomorphically onto the subgroup of automorphisms of L(M) preserving the canonical form *θ*.

Definition 1.1

Let G be a Lie group with Lie algebra g. A connection form on a principal G-bundle $P \stackrel{\pi}{\longrightarrow} M$ is a 1-form $\omega \in \Omega^1(P, \mathfrak{g})$ satisfying :

1- For any $z \in P$ and any $A \in \mathfrak{a}$, $\omega_z(\widetilde{A}_z) = A$ where \widetilde{A} is the fundamental vector field on P corresponding to A, i.e

$$
\widetilde{A}_z := \frac{d}{dt}_{t=0} z \cdot \exp(-tA).
$$

2- For any $g \in G$ and any $z \in P$, $v \in T_z(p)$,

$$
(R_g^*\omega)_z(v)=\mathrm{Ad}_{g^{-1}}(\omega_z(v)),
$$

with $R_g : P \longrightarrow P$ being the map $z \mapsto z \cdot g$.

Let now ∇ be a linear connection on M. A diffeomorphism $f : M \longrightarrow M$ is called an *affine transformation* with respect to ∇ if it satisfies

$$
f_*(\nabla_X Y)=\nabla_{f_*X} f_* Y
$$

for any $X, Y \in \mathcal{X}(M)$ where f_*X is the vector field on M given by :

$$
(f_*X)_{f^{-1}(x)} := (T_xf)^{-1}(X_x).
$$

The group of such transformations will be denoted $\text{Aff}(M,\nabla)$. On the other hand, we say that $X \in \mathcal{X}(M)$ is an *affine vector field* if it generates a local 1-parameter group of affine transformations.

Proposition 2.1

Let M be a smooth manifold and ∇ a linear connection on M. Then there exists a unique connection form ω on $L(M)$ such that for any local section $\sigma := \{E_1, \ldots, E_n\}$ of $\text{L}(M)$ defined on U , $\sigma^* \omega = \Gamma$ where $\Gamma \in \Omega^1(U,\mathfrak{gl}(n,\mathbb{R}))$ is given by :

$$
\nabla E_i = \sum_{j=1}^n \Gamma_{ij} E_j.
$$

Conversely, any connection form ω on $L(M)$ gives rise to a linear connection ∇ on M by means of the previous expression.

Proposition 2.2

Let M be a smooth manifold, ∇ a linear connection on M and *ω* the connection form on $L(M)$ corresponding to ∇ . Let $f : M \longrightarrow M$ be a diffeomorphism, then :

- 1- $f \in \text{Aff}(M, \nabla)$ if and only if f_* preserves the connection form ω .
- 2- Conversely, any fiber-preserving tranformation $A: L(M) \longrightarrow L(M)$ leaving both θ and ω invariant is of the form $A = f_*$ for some $f \in \text{Aff}(M, \nabla)$.

The Affine Group as a Lie group

Proof.

Define on M the linear connection $\widetilde{\nabla}$ by the expression :

$$
\widetilde{\nabla}_X Y = (f_*)^{-1}(\nabla_{f_*X} f_* Y)
$$

The idea is to prove that $(f^{-1})^* \omega$ is the (unique) connection form on $L(M)$ defining $\widetilde{\nabla}$. So f is an affine transformation i.e $\widetilde{\nabla} = \nabla$ if and only $if \omega = f^* \omega.$

Theorem 1

Let M be an n-dimensional smooth manifold with a global trivialization ${X_1, \ldots, X_n}$ of TM. Denote G the group of transformations preserving this trivialization, i.e diffeomorphisms $f : M \longrightarrow M$ satisfying $T_x f(X_{i|x}) = X_{i|f(x)}$. Then G possesses a unique Lie group structure for the compact-open topology such that dim $G \le$ dim M. More precisely for any $p \in M$, the map :

$$
G\longrightarrow M, \quad f\mapsto f(p),
$$

is an imbedding of G onto a closed submanifold of M, and the submanifold structure on the image is what makes G a Lie transformation group. Moreover the Lie algebra of G consists of complete vector fields whose 1-parameter subgroups are in G.

Theorem 2

Let M be a smooth n-dimensional manifold and ∇ an affine connection on M, then $\text{Aff}(M,\nabla)$ is a Lie group for the compact-topology of dimension \leq n 2 + n. More precisely for any $z\in{\rm L}(M)$ the map :

$$
\text{Aff}(M,\nabla)\longrightarrow \text{L}(M),\quad f\mapsto f_*(z),
$$

is injective and its image is a closed submanifold of $L(M)$. The submanifold structure on its image makes Aff(M*,* ∇) a Lie transformation group. Its Lie algebra consists of complete affine vector fields on M.

Proof.

For any $x \in M$, Recall that since $GL(n, \mathbb{R})$ acts simply transitively on $P_x := \pi^{-1}(x)$, the map $\mathrm{GL}(n,\mathbb{R}) \longrightarrow P_{x}, \, g \mapsto z \cdot g$ is a diffeomorphism and its differential

$$
\mathfrak{gl}(n,\mathbb{R})\longrightarrow \mathcal{T}_{z}P_{x},\quad A\mapsto \frac{d}{dt}_{t=0}z\cdot \exp(tA),
$$

is an isomorphism. Thus for any $v \in T_zP_x$ there is a unique $A \in \mathfrak{gl}(n,\mathbb{R})$ such that $v = A_z$. On the other hand $T_z P_x = \text{ker}(T_z \pi)$.

Denote ω the connection form on $P := L(M)$ corresponding to ∇ . We prove that the map

$$
\mathsf{TP} \stackrel{\phi}{\longrightarrow} \mathsf{P} \times (\mathfrak{gl}(n,\mathbb{R})\times \mathbb{R}^n), \quad Z \mapsto (\mathsf{p}(Z),\omega(Z),\theta(Z)),
$$

defines a trivialization of TP. First notice that *φ* is surjective given that $\pi : P \longrightarrow M$ is a submersion and $A = \omega(A)$ for any $A \in \mathfrak{gl}(n, \mathbb{R})$.

Let $v \in T_z P$ such that $\theta_z(v) = 0$ and $\omega_z(v) = 0$, then :

$$
0=\theta_z(v)=z^{-1}(T_z\pi(v)),
$$

hence $v \in \text{ker}(T_z \pi) := T_z P_{\pi(z)}$, on the other hand write $v = A_z$ for some A in $\mathfrak{gl}(n,\mathbb{R})$ then we get that

$$
0=\omega_z(v)=\omega_z(\widetilde{A}_z)=A,
$$

and so $v = 0$, i.e ϕ is injective. On the other hand if $\sigma : U \longrightarrow P$ is any local section one can define the map :

$$
P_{|U}\times (\mathfrak{gl}(n,\mathbb{R})\times \mathbb{R}^n) \stackrel{\psi}{\longrightarrow} P_{|U},\quad \widetilde{A}_{\sigma(\pi(z))}+(\mathcal{T}_{\pi(z)}\sigma)(\sigma_{\pi(z)}(v)),
$$

it is clear that ψ is a smooth map and $\phi \circ \psi = \text{Id}$, thus ϕ is a local diffeomorphism and we conclude that it is a vector bundle isomorphism. Finally, one checks that any fiber preserving transformation $F: P \longrightarrow P$ leaving *θ* and *ω* invariant leaves *φ* invariant. By Theorem [1](#page-15-0) we get the desired result.

Assume now that (M, \langle , \rangle) is a Riemannian manifold and let ∇ be a metric connection on M, i.e $X\langle Y, Z\rangle = \langle \nabla_X Y, Z\rangle + \langle Y, \nabla_X Z\rangle$. Let $\{E_1, \ldots, E_n\}$ be a local orthonormal frame of TM defined on an open subset $U \subset M$ and write

$$
\nabla E_i = \sum_{j=1}^n \Gamma_{ij} E_j.
$$

Then we get that $\Gamma_{ij}=-\Gamma_{ji}$ or in other terms $\Gamma\in\Omega^1(\mathcal{U},\mathfrak{so}(n)).$

Thus if $\tilde{\omega}$ is the connection form on $L(M)$ corresponding to ∇ then its restriction ω to the orthogonal frame bundle $O(M)$ is $\mathfrak{so}(n)$ -valued and defines therefore a connection form on $O(M)$ and it is in fact the only connection form on $O(M)$ representing ∇ . Conversely any connection form on $O(M)$ admits a unique extension to $L(M)$ and defines therefore a metric connection ∇ on M .

Proposition 3.1

Let (M, \langle , \rangle) be a Riemannian manifold, ∇ its Levi-Civita connection and ω the connection form on $O(M)$ representing ∇ .

- 1- A diffeomorphism $f : M \longrightarrow M$ is an isometry if and only if $f_*(O(M)) = O(M)$.
- 2- If $A: O(M) \longrightarrow O(M)$ is a fiber-preserving transformation leaving invariant the canonical form θ of $O(M)$, then there exists a unique isometry $f : M \longrightarrow M$ such that $A = f_*$.
- 3- Any (principal) bundle automorphism O(M) −→ O(M) leaving *θ* invariant, leaves *ω* invariant.

Proof

The first point is the definition of a Riemannian isometry, the argument for the second point is the same as in Proposition [2.2.](#page-13-0) For the third point, observe that since ∇ is torsion-free, then *ω* is torsion-free as well i.e the 2-form $T \in \Omega^2(\mathrm{O}(M),{\mathbb R}^n)$, called torsion form of ω , given by :

$$
\mathcal{T} := \omega \wedge \theta + d\theta,\tag{3}
$$

vanishes. Let $A: O(M) \longrightarrow O(M)$ be a bundle automorphism, then $A^*\omega$ is a connection form on O(M). Since A preserves the canonical form *θ*, we get from expression [\(3\)](#page-22-0) that A[∗]*ω* is torsion-free as well, so by uniqueness of the Levi-Civita connection we conclude that $A^*\omega = \omega$.

Theorem 3

Let (M, \langle , \rangle) be a Riemannian manifold, then $\text{Isom}(M, \langle , \rangle)$ with the compact-open topology is a Lie group of dimension $\leq \frac{n(n+1)}{2}$ $\frac{n+1}{2}$. In fact for any $z \in O(M)$, the map :

$$
\operatorname{Isom}(M, \langle , \rangle) \longrightarrow \operatorname{O}(M), \quad f \mapsto f_*(z),
$$

is an imbedding and its image is a closed submanifold of $O(M)$. If ∇ is the Levi-Civita connection of \langle , \rangle then $\text{Isom}(M, \langle , \rangle)$ is a closed subgroup of $Aff(M, \nabla)$. Its Lie algebra consists of complete Killing vector fields on M.

The Isometry Group as a Lie group

Proposition 3.2

The natural action of $\text{Isom}(M,\langle , \rangle)$ on M is proper. In particular if M is compact then $\text{Isom}(M, \langle , \rangle)$ is compact.

Proof.

Choose a compact $K \subset M$ and put $G_K = \{f \in \text{Isom}(M), f(K) \cap K \neq \emptyset\}.$ Let $(f_n)_n$ be an arbitrary sequence of G_K , then for any $n \in \mathbb{N}$ we can find $p_n \in K$ such that $f_n(p_n) \in K$. Since K is compact, one can show that there exists a subsequence $(p_{\varphi(n)})_n$ of $(p_n)_n$ converging to some $p \in K$ such that $(f_{\varphi(n)}(p_{\varphi(n)}))_n$ is also convergent, denote q its limit.

Let $d : M \times M \longrightarrow \mathbb{R}^+$ be the geodesic distance, then :

$$
d(f_{\varphi(n)}(p),q) \leq d(f_{\varphi(n)}(p),f_{\varphi(n)}(p_{\varphi(n)})) + d(f_{\varphi(n)}(p_{\varphi(n)}),q) \leq d(p,p_{\varphi(n)}) + d(f_{\varphi(n)}(p_{\varphi(n)}),q) \underset{n \to +\infty}{\longrightarrow} 0.
$$

Next put $p = \pi(z)$ with $z \in O(M)$ and $C = \{f_{\varphi(n)}(p), n \in \mathbb{N}\} \cup \{q\},\$ since $\mathrm{O}(n)$ is compact we get that $\pi^{-1}(\mathcal{C})$ is a compact subset of $\mathrm{O}(M)$, therefore $((f_{\varphi(n)})_*(z))_n$ and so it has a convergent subsequence. By Theorem [3,](#page-23-0) $\{f_*(z), f \in \text{Isom}(M)\}\$ is closed submanifold in $O(M)$ so $((f_{\psi(n)})_*(z))_n$ converges to $f_*(z)$ for some isometry f and by the same result we get that $(f_{\psi(n)})_n$ converges to f in Isom (M, \langle , \rangle) . We conclude that G_K is compact and so $\text{Isom}(M, \langle , \rangle)$ acts properly on M.

Table of Contents

[Introduction](#page-1-0)

- **•** [Preliminaries](#page-2-0)
- [The Affine group of a Manifold as a Lie Group](#page-11-0)
- **[Isometry Group of a Riemannian Manifold as a Lie Group](#page-19-0)**
- ² [Results on the dimension of the group of affine transformations](#page-26-0)
	- [Parallel Transport and Horizontal Lift](#page-28-0)
	- **[Main Results](#page-37-0)**
- [The affine group of a Riemannian manifold](#page-45-0)
	- [Holonomy](#page-47-0)
	- [De Rham decomposition Theorem](#page-54-0)
	- **[Main results](#page-59-0)**

Results on the dimension of the group of affine transformations

Theorem 4

Let M be an n-dimensional manifold with a linear connection ∇ . Then $\dim(\text{Aff}(M,\nabla)) = n(n+1)$ if and only if M is an ordinary affine space with the natural flat affine connection

Let M be an n-dimensional smooth manifold and ∇ a linear connection on M. Let $\gamma : [0,1] \longrightarrow M$ be a smooth a curve, then ∇ provides a unique linear operator denoted *D_γ* : Γ(γ^{-1} *TM*) → Γ(γ^{-1} *TM*) satisfying :

$$
D_{\dot{\gamma}}(fV) = f'V + fD_{\dot{\gamma}}V, \quad f \in \mathcal{C}^{\infty}([0,1],\mathbb{R}), \ V \in \Gamma(\gamma^{-1}TM),
$$

we call it the *covariant derivation along* γ *,* here Γ $(\gamma^{-1}\mathit{TM})$ is the space of vector fields along *γ* i.e smooth maps V : [0*,* 1] −→ TM such that $V(t) \in T_{\gamma(t)}M$.

Finally V is said to be *parallel along* γ if $D_{\gamma}V = 0$.

Theorem 5

Let M be an n-dimensional manifold with a linear connection ∇ and $\gamma : [0,1] \longrightarrow M$ a smooth curve. For any $v \in T_{\gamma(0)}M$, there exists a unique parallel vector field V along γ satisfying $V(0) = v$. We call V the parallel transport of v along *γ*.

Let ω be the connection form on $L(M)$ representing ∇ , for any basis $\{e_1, \ldots, e_n\}$ of $T_{\gamma(0)}M$ one obtain a *parallel frame* $\{E_1, \ldots, E_n\}$ along γ i.e E_i is the parallel vector field along γ satisfying $E_i(0)=e_i.$

It is an easy matter to see that $\{E_1(t), \ldots, E_n(t)\}$ is a basis of $T_{\gamma(t)}M$, thus one obtains a smooth curve $\tilde{\gamma}$: [0, 1] \longrightarrow L(M) given by :

$$
\widetilde{\gamma}(t)=(E_1(t),\ldots,E_n(t)),
$$

this curve is called *the horizontal lift* of γ to $L(M)$ through $\{e_1, \ldots, e_n\}$.

Proposition 1.1

Let M be an n-dimensional manifold with a linear connection ∇ and let $\gamma : [0,1] \longrightarrow M$ and $\alpha : [0,1] \longrightarrow L(M)$ be smooth curves. Then α is a horizontal lift of γ if and only if $\pi \circ \alpha = \gamma$ and $\omega_{\alpha(t)}(\dot{\alpha}(t)) = 0$, where ω is the connection form corresponding to ∇ .

Recall that a vector field Z on $L(M)$ is called *horizontal* if $\omega(Z) = 0$ and *standard* if $\theta(Z)$ is a constant function.

Proposition 1.2

Let M be an n-dimensional manifold with a linear connection ∇ and *ω* the connection form of ∇ on $L(M)$.

- \bullet Let Z be a standard horizontal vector field on $L(M)$. For any $z\in \mathrm{L}(M)$, the curve defined by $\gamma(t):=\pi(\varphi_t^Z(z))$ is a geodesic on M.
- **2** Conversely, given a geodesic γ : [−a, a] \longrightarrow M, there exists a local standard horizontal vector field Z on $L(M)$ and $\epsilon > 0$ such that $\gamma(t) = \varphi_t^Z(z)$ for any $-\epsilon < t < \epsilon$.

Parallel Transport and horizontal lift

Proof.

We only prove the first point. Let $z \in L(M)$ then there exists $\epsilon > 0$ such that the curve α :] $-\epsilon, \epsilon$ \longrightarrow L(M) given by $\alpha(t) = \varphi_t^Z(z)$ is well-defined and smooth. Let $\gamma(t) = \pi(\alpha(t))$, since $\omega_{\alpha(t)}(\alpha'(t)) = \omega_{\alpha(t)}(Z_{\alpha(t)}) = 0$ then Proposition [1.1](#page-31-0) gives that α is a horizontal lift of γ on $L(M)$, therefore if we write :

$$
\alpha(t)=(V_1(t),\ldots,V_n(t)),\quad V_i\in\Gamma(\gamma^{-1}\mathcal{TM}),
$$

we get that $\{V_1,\ldots,V_n\}$ is a parallel frame along γ . On the other hand if we write $\theta_z(Z_z) = (a_1, \ldots, a_n)$ then we get that :

$$
\gamma'(t)=\mathcal{T}_{\alpha(t)}\pi(Z_{\alpha(t)})=\alpha(t)(\theta_{\alpha(t)}(Z_{\alpha(t)}))=\alpha(t)(\theta_z(Z_z))=\sum_{i=1}^n a_iV_i(t),
$$

which shows that $γ'$ is parallel along $γ$ i.e $γ$ is a geodesic.

Denote $\operatorname{aff}(M,\nabla) := \operatorname{Lie}(\operatorname{Aff}(M,\nabla))$, any $X \in \operatorname{aff}(M,\nabla)$ defines a smooth vector field \hat{X} of $L(M)$ given by :

$$
\hat{X}_z := \frac{d}{dt}_{t=0} \exp(tX)_*(z).
$$

It is clear that \hat{X} is a complete vector field on $L(M)$.

Proposition 1.3

Let M be an n-dimensional manifold, ∇ a linear connection on M, and let $X\in\mathfrak{aff}(M,\nabla).$ Suppose that $\omega_z(\hat{X}_z)=0$ for some $z\in\mathrm{L}(M).$ Then the curve $\gamma : \mathbb{R} \longrightarrow M$, $\gamma(t) = \exp(tX) \cdot x$ with $x = \pi(z)$ is a geodesic and its horizontal lift at z is the curve $\hat{\gamma}(t) := \exp(tX)_*(z)$, $t \in \mathbb{R}$.
Parallel Transport and horizontal lift

Proof.

Put $\hat{\gamma}(t) = \exp(tX)_*(z)$, then clearly $\pi(\hat{\gamma}(t)) = \gamma(t)$, moreover from the r elation $\exp(tX)^*\omega=\omega$ we get that $\omega_{\exp(tX)_*z}(\hat{X}_{\exp(tX)_*z})=0$ which means that *γ*ˆ is the horizontal lift of *γ* through z, in particular if $z = (e_1, \ldots, e_n)$ then :

$$
\hat{\gamma}(t)=(E_1(t),\ldots,E_n(t)),
$$

 E_i being the parallel transport of e_i along γ . Moreover $\exp(tX)^*\theta = \theta$ gives that $\theta_{\exp(tX)_*z}(\hat{X}_{\exp(tX)_*z})=\theta_z(\hat{X}_z)$ so if $\theta_z(X_z)=(a_1,\ldots,a_n)$ we get that :

$$
\gamma'(t)=\mathcal{T}_{\hat{\gamma}(t)}\pi(\hat{X}_{\hat{\gamma}(t)})=\hat{\gamma}(t)(\theta_{\hat{\gamma}(t)}(\hat{X}_{\hat{\gamma}(t)}))=\hat{\gamma}(t)(\theta_{z}(\hat{X}_z))=\sum_{i=1}^n a_iE_i(t).
$$

Hence *γ* 0 is parallel along *γ*, i.e *γ* is a geodesic.

Main Results

Theorem 6

Let M be an n-dimensional manifold with a linear connection ∇ . Then $\dim(\text{Aff}(M,\nabla)) = n(n+1)$ if and only if M is an ordinary affine space with the natural flat affine connection.

Proof.

Denote $G := \text{Aff}(M, \nabla)$ and for any $x \in M$ denote G_x the isotropy at x for the natural action of G on M . First note that the map :

$$
G_x \longrightarrow \text{GL}(T_xM), \quad f \mapsto T_xf \tag{4}
$$

is an injective Lie group homomorphism. Assume now that dim $G = n(n+1)$, then let $x \in M$ and $z \in L(M)$ such that $\pi(z) = x$. Since the map :

$$
G \stackrel{\Psi}{\longrightarrow} \mathrm{L}(M), \quad f \mapsto f_*(z)
$$

is an imbedding of G onto a closed submanifold of $L(M)$ and dim $L(M) = n(n + 1)$, then either $\Psi(G) = L(M)$ or $\Psi(G)$ is a connected component of $L(M)$ and in any case we get that $M = G \cdot x \simeq G/G_x$, therefore :

$$
\dim G_x = \dim G - \dim M = n^2.
$$

This gives that $G_{\scriptscriptstyle \! X}^0 = \mathrm{GL}^+ (\, \mathcal{T}_{\scriptscriptstyle \! X} M)$ under the identification [\(4\)](#page-38-0).

Main Results

Now let $t>0$ and consider the transformation $A_t\in \mathrm{GL}^+(T_\varkappa M)$ given by $A_t(u)=t u.$ From the previous remark there exists $f_t\in \mathit{G}^{0}_{\mathsf{x}}$ such that $T_x f_t = A_t$, hence for any $u, v, w \in T_x M$ we get that :

$$
A_t(R_x^{\nabla}(u, v)w) = R_x^{\nabla}(A_t u, A_t v)A_t w, \quad A_t(T_x^{\nabla}(u, v)) = T_x^{\nabla}(A_t u, A_t v),
$$

therefore $R_x^{\nabla}(u, v)w = t^{-2}R_x^{\nabla}(u, v)w$ and $T_x^{\nabla}(u, v) = t^{-1}T_x^{\nabla}(u, v)$ for
all $t > 0$, and so we conclude that $R^{\nabla} = 0$ and $T^{\nabla} = 0$.

Main Results

On the other hand, let Z be a standard horizontal vector field on $L(M)$. If $\mathfrak{g}:=\mathrm{Lie}(G)$ then there exists a unique $X\in \mathfrak{g}$ such that $Z_\mathsf{z}=\hat X_\mathsf{z}$ where :

$$
\hat{X}_{\widetilde{z}}:=\frac{d}{dt}_{t=0}\exp(tX)_*\widetilde{z},\quad \widetilde{z}\in\mathrm{L}(M).
$$

From Proposition [1.3](#page-35-0) we get that $\gamma(t) = \exp(tX) \cdot x$ is a geodesic with horizontal lift at z the curve $\hat{\gamma}(t) = \exp(tX)_*(z)$ defined for any $t \in \mathbb{R}$. Now $\gamma : \mathbb{R} \longrightarrow M$ is the geodesic with initial conditions $\gamma(0) = x$ and $\gamma'(0)=\, T_z\pi(Z_z)$ and therefore its horizontal lift at z is exactly

$$
\alpha:]-\epsilon,\epsilon[\longrightarrow \mathrm{L}(M),\quad t\mapsto \varphi_t^Z(z),
$$

which proves that α can be extended to all of R. Since $z \in L(M)$ was arbitrary we get that Z is complete, and since we know by Proposition [1.2](#page-32-0) that geodesics of M are exactly the projections of integral curves of standard horizontal vector fields, we conclude that M is (geodesically) complete.

Consider now the universal cover \widetilde{M} of (M,∇) with its induced induced linear connection, then there exists an affine transformation $\widetilde{M}\stackrel{\simeq}{\longrightarrow} \mathbb{R}^n$. Next $M = M/\Gamma$ where Γ is a discrete subgroup of

$$
\mathrm{Aff}(\widetilde{M},\nabla)\simeq \mathrm{GL}(n,\mathbb{R})\rtimes\mathbb{R}^n
$$

hence commuting with $\mathrm{Aff}(\widetilde{M},\nabla)^0 \simeq \mathrm{GL}^+(n,\mathbb{R})\rtimes \mathbb{R}^n$. But one can show that only the trivial element commutes with connected component of $\operatorname{GL}(n,\mathbb{R})\rtimes \mathbb{R}^n$, hence $\overline{\Gamma}$ is trivial and M is itself simply connected i.e $M = M$, this completes the proof.

Main Results

Theorem 7

Let M be an n-dimensional manifold with an affine connection and assume that $\dim \mathrm{Aff}(M,\nabla) > n^2$. Then ∇ is torsion-free.

This result is a consequence of the following algebraic Lemma :

Lemma 8

Let V ba an n-dimensional vector space and $T: V \times V \longrightarrow V$ a non-trivial skew-symmetric bilinear map i.e $\mathcal{T} \in V \otimes \Lambda^2 V^*$. Denote H the subgroup of linear transformation preserving T, then $\dim H \le n^2 - n$.

Main Results

Proof of the Theorem.

Denote $G := Aff(M, \nabla)$ then let $x \in M$ and denote G_x the isotropy at x for the natural action of G on M, then from $G/G_x \simeq G \cdot x$ we get :

$$
\dim(G_x) \geq \dim(G) - \dim(M) > n^2 - n \tag{5}
$$

On the other hand denote \mathcal{T}^∇ the torsion tensor of ∇ , then for every $f \in G_{\rm x}$ we get that :

$$
T_x^{\nabla}(T_x f(u), T_x f(v)) = T_x f(T_x^{\nabla}(u, v)), \quad u, v \in T_x M.
$$

Therefore the group $\{T_x f, f \in G_x\} \simeq G_x$ preserves T_x^{∇} , but according to the previous Lemma and [\(5\)](#page-43-0) we conclude that $\mathcal{T}^\nabla_\mathsf{x}=0$ for any $\mathsf{x}\in M$, i.e ∇ is torsion-free.

Another result in the same spirit is the following Theorem due to Egorov and can be proved by essentially the same procedure :

Theorem 9

Let M be an n-dimensional manifold and ∇ a linear connection on M such that $\dim \mathrm{Aff}(M,\nabla)>n^2.$ Then ∇ has neither torsion nor curvature provided that $n \geq 4$.

Table of Contents

[Introduction](#page-1-0)

- **[Preliminaries](#page-2-0)**
- [The Affine group of a Manifold as a Lie Group](#page-11-0)
- **[Isometry Group of a Riemannian Manifold as a Lie Group](#page-19-0)**
- [Results on the dimension of the group of affine transformations](#page-26-0) [Parallel Transport and Horizontal Lift](#page-28-0)
	- **[Main Results](#page-37-0)**
- ³ [The affine group of a Riemannian manifold](#page-45-0)
	- [Holonomy](#page-47-0)
	- [De Rham decomposition Theorem](#page-54-0)
	- **•** [Main results](#page-59-0)

The goal of this part it to prove the following Result :

Yano's Theorem

Let (M, \langle , \rangle) be a compact Riemannian manifold with Levi-Civita $\mathsf{connection}\ \nabla.$ Then $\mathrm{Aff}(M,\nabla)^0=\mathrm{Isom}(M,\langle\;,\;\rangle)^0.$

Let M be an *n*-dimensional manifold and ∇ a linear connection on M. For any smooth curve $\gamma : [a, b] \longrightarrow M$ one can define the linear map $\tau^{\gamma}_{a,b}: \overline{T}_{\gamma(a)}M \longrightarrow \overline{T}_{\gamma(b)}M$ by the formula $\tau^{\gamma}_{a,b}(v) = V(b)$ where $V \in \Gamma(\gamma^{-1}TM)$ is the parallel transport of v along γ (relative to ∇).

Proposition 1.1

- \mathbf{P} $\tau_{\mathsf{a},\mathsf{b}}^\gamma$ does not depend on the orientation-preserving parametrization of the curve *γ*.
- 2 Denote $\gamma_1:=\gamma_{|[a,t_0]}$ and $\gamma_2:=\gamma_{|[t_0,b]}$ i.e $\gamma=\gamma_1*\gamma_2$, then :

$$
\tau_{\mathsf{a},\mathsf{b}}^\gamma = \tau_{\mathsf{t}_0,\mathsf{b}}^{\gamma_2}\circ \tau_{\mathsf{a},\mathsf{t}_0}^{\gamma_1}.
$$

 \bullet For any smooth curve γ , $\tau_{\mathsf{a},\mathsf{b}}^\gamma$ is an isomorphism and its inverse is exactly the linear operator

$$
\tau_{a,b}^{\gamma^-}: \, T_{\gamma(b)}M \longrightarrow \tau_{\gamma(a)}M
$$

with $\gamma^{-}(t) = \gamma(a+b-t)$.

These properties allows to extend the definition of $\tau_{a,b}^{\gamma}$ for piecewise smooth curves γ : [a, b] \longrightarrow M by setting :

$$
\tau_{a,b}^{\gamma} := \tau_{t_k,b}^{\gamma} \circ \tau_{t_{k-1},t_k}^{\gamma} \circ \cdots \circ \tau_{t_1,t_2}^{\gamma} \circ \tau_{a,t_1}^{\gamma},
$$

where $a = t_0 < t_1 < \cdots < t_k < t_{k+1} = b$ is any subdivision of [a, b] such that the curve $\gamma_{[t_i, t_{i+1}]}$ is smooth. The previous properties extend to this situation as well :

Proposition 1.2

Let M be a smooth manifold with a linear connection ∇ . Then :

- \mathbf{P} $\tau_{\mathsf{a},\mathsf{b}}^\gamma$ does not depend on the orientation-preserving parametrization of the piecewise smooth curve $\gamma : [a, b] \longrightarrow M$.
- **2** Given two piecewise smooth curves $\gamma_1 : [a, b] \longrightarrow M$ and $\gamma_2 : [b, c] \longrightarrow M$ such that $\gamma_2(b) = \gamma_1(b)$ then $\tau_{a,c}^{\gamma_1*\gamma_2} = \tau_{b,c}^{\gamma_2} \circ \tau_{a,b}^{\gamma_1}$.
- \bullet For any piecewise smooth curve $\gamma : [a,b] \longrightarrow M$, $\tau_{a,b}^{\gamma}$ is invertible with inverse $\tau_{a,b}^{\gamma}$ a*,*b .

It is more convenient therefore to denote $\tau_{\mathsf{a},\mathsf{b}}^{\gamma}$ by τ_{γ}^{γ} *γ*(a)*,γ*(b) instead or just $\tau^{\gamma}_{\gamma(\mathsf{a})}$ when γ is a loop. Fix $\mathsf{x}_0\in M$ and define :

$$
\mathrm{Hol}_{x_0}(M,\nabla):=\{\tau_{x_0}^{\gamma}:\, T_{x_0}M\stackrel{\simeq}{\longrightarrow} T_{x_0}M,\,\,\gamma\,\,\text{is a loop based at}\,\,x_0\}.
$$

Using the above observations, it is clear that $\mathrm{Hol}_{\mathsf{x}_0}(\mathsf{M},\nabla)$ is a subgroup of GL($T_{x_0}M$) called the *holonomy group of* (M, ∇) at x_0 . We also define the *restricted holonomy of* (M, ∇) at x_0 to be :

 $\widetilde{\operatorname{Hol}}_{x_0}(M,\nabla) := \{\tau_{x_0}^{\gamma}: \, \mathcal{T}_{x_0}M \stackrel{\simeq}{\longrightarrow} \mathcal{T}_{x_0}M, \; \gamma \; \text{is a contractible loop based at} \; x_0\},$

which is obviously a subgroup of the holonomy group since concatenation and inverse of contractible loops remains contractible. It is also straightforward to see that $\mathrm{Hol}_{x_0}(M,\nabla)$ is normal in $\mathrm{Hol}_{x_0}(M,\nabla).$

Theorem 10

Let M be a smooth manifold and ∇ a linear connection on M. The holonomy group $\mathrm{Hol}_{x_0}(\mathcal{M},\nabla)$ possesses the structure of an (immersed) Lie subgroup of $\text{GL}(T_{x_0}M)$ and $\text{Hol}_{x_0}(M,\nabla) = \text{Hol}_{x_0}(M,\nabla)^0$.

Proposition 1.3

Let M be a connected manifold with a linear connection ∇ and let $x, y \in M$. Then for any piecewise smooth curve $\gamma : [a, b] \longrightarrow M$ joining x to y, the map :

$$
\mathrm{Hol}_\mathsf{x}(M,\nabla)\longrightarrow \mathrm{Hol}_\mathsf{y}(M,\nabla),\ \ \, \mathsf{g}\mapsto \tau_{\mathsf{x},\mathsf{y}}^\gamma\circ \mathsf{g}\circ (\tau_{\mathsf{x},\mathsf{y}}^\gamma)^{-1},
$$

is an isomorphism.

Let (M, \langle , \rangle) be a connected Riemannian manifold with Levi-Civita connection ∇ . Then following that $\nabla \langle , \rangle = 0$ we get that for any smooth curve $\gamma:$ $[a,b]\longrightarrow M$ and any $\,$, $W\in\Gamma(\gamma^{-1}\mathcal{TM})$:

$$
\frac{d}{dt}\langle V(t),W(t)\rangle=\langle D_{\dot{\gamma}}\,V(t),W(t)\rangle+\langle V(t),D_{\dot{\gamma}}\,W(t)\rangle.
$$

In particular if V and W are parallel along γ then $t \mapsto \langle V(t), W(t) \rangle$ is a constant map and therefore $\langle \tau_{a,b}^{\gamma}(\nu), \tau_{a,b}^{\gamma}(\nu)\rangle = \langle v,w\rangle.$ This leads to the following result :

De Rham decomposition Theorem

Proposition 2.1

Let (M, \langle , \rangle) be a Riemannian manifold with Levi-Civita connection ∇ . Then $\text{Hol}_x(M,\nabla) \subset \text{O}(\mathcal{T}_x M,\langle\ ,\ \rangle)$ for any $x \in M$.

For any $x \in M$, we will say that T_xM is irreducibe if it does not admit any proper, non-trival subspace that is invariant by the action of the holonomy group at x.

In view of Proposition [1.3](#page-53-0) we see that if T_xM is irreducible then T_vM is also irreducible for any $y \in M$. This suggests the following definition :

De Rham decomposition Theorem

Definition 2.1

A Riemannian manifold (M, \langle , \rangle) is said to be irreducible if T_xM is irreducible for some (hence every) $x \in M$.

Theorem 11 (De Rham decomposition theorem)

A simply connected, complete Riemannian manifold (M*,*h *,* i) is isometric to the direct product $M_0 \times \ldots \times M_k$ where M_0 is a Euclidean space and M_1, \ldots, M_k are all simply connected, irreducible Riemannian manifolds. Such a decomposition is a unique up to the order of the factors involved.

Corollary 3.1

Let (M, \langle , \rangle) be a simply connected, complete Riemannian manifold and $M = M_0 \times \cdots \times M_k$ its de Rham decomposition. Let $x = (x_0, \ldots, x_k)$.

1 The identification

 $\text{Hol}_{x_1}(M_1, \langle , \rangle) \times \cdots \times \text{Hol}_{x_k}(M_k, \langle , \rangle) \mapsto \text{Hol}_{x}(M, \langle , \rangle)$

given by $(\tau_{x_1}^{\gamma_1}, \ldots, \tau_{x_k}^{\gamma_k}) \mapsto \tau_x^{\alpha_1} \circ \cdots \circ \tau_x^{\alpha_k}$ is an isomorphism, where α_i is the loop given by $\alpha_i(t)=(x_1,\ldots,\gamma_i(t),\ldots,x_k).$

 \bullet Under the previous identification, $\mathrm{Hol}_{\mathsf{x}_i}(\mathsf{M}_i,\langle\;,\;\rangle)$ is a normal subgroup of $\text{Hol}_x(M, \langle , \rangle)$ acting trivially on $T_{x_i}M_i$ for $j \neq i$ and irreducibly on $T_{x_i}M_i$.

 \bullet For any $f \in \text{Aff}(M,\nabla)$ and any $i = 1,\ldots,k$,

 $T_x f(T_{x_0} M_0) = T_{f(x)_0} M_0$, and $T_x f(T_{x_i} M_i) = T_{f(x)_j} M_j$,

for some $j = 1, \ldots, k$. If $f \in \mathrm{Aff}(M, \nabla)^0$, $T_x f(T_{x_i}M_i) = T_{f(x_i)}M_i$.

Proof.

We only prove the third point. Let $f \in Aff(M,\nabla)$ and choose a piecewise smooth loop $\gamma : [0,1] \longrightarrow M$ based at $f(x)$. Then for any $v \in T_{x_0}M_0$:

$$
\tau_{f(x)}^{\gamma}(T_xf(v))=T_xf(\tau_x^{f^{-1}\circ\gamma}(v))=T_xf(v),
$$

so $T_x f(v)$ is invariant by $\text{Hol}_{f(x)}(M, \nabla)$ thus $T_x f(T_{x_0} M_0) = T_{f(x)_0} M_0$. On the other hand, if $w \in T_{x_i} M_i$ for $i \neq 0$ then :

$$
\tau^{\gamma}_{f(x)}(T_{x}f(w))=T_{x}f(\tau^{f^{-1}\circ\gamma}_{x}(w))\in T_{x}f(T_{x_{i}}M_{i}),
$$

thus $T_x f(T_x, M_i)$ is invariant, furthermore if $V \subset T_x f(T_x, M_i)$ is any invariant subspace then in the same way $(\mathcal{T}_{\mathsf{x}}\mathit{f})^{-1}(V)$ is an invariant subspace of T_x , M_i thus it is either trivial or equal to T_x , M_i proving that $T_x f(T_x, M_i)$ is irreducible, in particular one gets the decomposition of $T_{f(x)}M$ into the sum of irreducible subspaces :

$$
T_{f(x)}M=T_xf(T_{x_0}M_0)\oplus\cdots\oplus T_xf(T_{x_k}M_k),
$$

and by uniqueness of such decomposition we conclude that $T_x f(T_{x_i} M_i) = T_{f(x_i)} M_i$ for some $j = 1, \ldots, k$.

Proof. (Continued) Next let X be a complete affine vector field on M i.e $X \in \operatorname{aff}(M, \nabla)$, and consider the curve $\gamma(t)=\exp(tX)\cdot x$. Let $v_i\in \mathcal{T}_{x_i}M_i$, and consider $u : \mathbb{R} \longrightarrow \mathbb{R}$ given by :

$$
u(t) = \langle T_x \exp(tX)(v_i), \tau_{0,t}^{\gamma}(v_i) \rangle_{\gamma(t)}.
$$

Then u is a smooth function satisfying $u(0) = \langle v_i, v_i \rangle_\mathsf{x} \neq 0$ and therefore $u(t) \neq 0$ for $-\delta < t < \delta$, which shows that $T_x \exp(tX)(v_i) \in T_{\gamma(t_i)}M_i$ for all $-\delta < t < \delta.$ In fact since $\mathcal{T}_{\mathsf{x}_i} \mathsf{M}_i$ is finite-dimensional, one can choose *δ >* 0 small enough so that

$$
T_x \exp(tX) (T_{x_i} M_i) \in T_{\gamma(t)_i} M_i,
$$

for any $-\delta < t < \delta.$ The result follows from the fact that ${\rm Aff}(M,\nabla)^0$ is generated by 1-parameter subgroups.

Theorem 12

Let $M = M_0 \times \cdots \times M_k$ be the de Rham decomposition of a complete, simply connected Riemannian manifold (M, \langle , \rangle) . Then :

$$
\operatorname{Isom}(M, \langle , \rangle)^0 = \operatorname{Isom}(M_0, \langle , \rangle)^0 \times \cdots \times \operatorname{Isom}(M_k, \langle , \rangle)^0,
$$

$$
\text{Aff}(M,\nabla)^0=\text{Aff}(M_0,\nabla)^0\times\cdots\times\text{Aff}(M_k,\nabla)^0,
$$

where ∇ is the Levi-Civita connection of M.

Proof.

Consider the homomorphism $\Psi : Diff(M_0) \times \cdots \times Diff(M_k) \longrightarrow Diff(M)$ which corresponds to any k-tuple of diffeomorphisms (f_0, \ldots, f_k) the transformation $f : M \longrightarrow M$ given by :

$$
f(x_0,\ldots,x_k)=(f_0(x_0),\ldots,f_k(x_k)).
$$

Clearly Ψ is continuous and injective. We claim that $f = \Psi(f_0, \ldots, f_k)$ is an affine transformation if and only if f_i is an affine transformation for any $0 \le i \le k$. Indeed let $\gamma : [0,1] \longrightarrow M$ be any piecewise smooth curve and write $\gamma := (\gamma_0, \ldots, \gamma_k)$ then choose $v = v_0 \oplus \cdots \oplus v_k \in T_{\gamma(0)}M$ with $v_i \in T_{\gamma_i(0)}M_i$, then :

$$
T_{\gamma(1)}f \circ \tau_{0,1}^{\gamma}(v) = \sum_{i=1}^{k} T_{y_i} f_i(\tau_{0,1}^{\gamma_i}(v_i)), \quad \tau_{0,1}^{f \circ \gamma}(T_{\gamma(0)}f(v)) = \sum_{i=1}^{k} \tau_{0,1}^{f_i \circ \gamma_i}(T_{x_i}f_i(v_i)),
$$

which shows that f preserves parallel transports on M if and only if each f_i does so on M_i proving the claim. One can also prove in a similar way that f is an isometry if and only if every f_i is an isometry. In particular :

$$
\Psi(\text{Aff}(M_0) \times \cdots \times \text{Aff}(M_k)) \subset \text{Aff}(M)
$$

,
$$
\Psi(\text{Isom}(M_0) \times \cdots \times \text{Isom}(M_k)) \subset \text{Isom}(M).
$$

Proof. (Continued) Let $f \in \mathrm{Aff}(M,\nabla)^0$ and $\mathrm{pr}_i:M \longrightarrow M_i$ be the projection on the *i*-th component then denote $g_i := \mathrm{pr}_i \circ f$, we will show that $g_i(x_0, \ldots, x_k)$ only depends on x_i . Indeed let $x = (x_0, \ldots, x_k) \in M$, $j \neq i$ and $v_i \in T_{x_i}M_i$ then by (3) of Corollary [3.1](#page-59-1) :

$$
T_{\times}g_i(v_j)=T_{f(x)}\mathrm{pr}_i(\underbrace{T_{\times}f(v_j)}_{\in M_j})=0
$$

Therefore if we fix $(a_0,\ldots,a_k)\in M$ and define $f_i:M_i\longrightarrow M_i$ by the expession :

$$
f_i(y) := g_i(a_0,\ldots,y,\ldots,a_k),
$$

then f_i is a well-defined diffeomorphism of M_i and $f=\Psi(f_0,\ldots,f_k).$ It also follows that if $f\in\mathrm{Isom}(M,\langle\;,\;\rangle)^0$ then each f_i is an isometry. \Box

Theorem 13

Let (M, \langle , \rangle) be a complete, irreducible Riemannian manifold, then $Aff(M, \nabla) = Isom(M, \langle , \rangle)$ except when M is a 1-dimensional Euclidean space.

The proof of this Theorem will be done in two steps : First one proves that on any such manifold, any affine transformation is homothetic and if furthermore (M, \langle , \rangle) is not Euclidean then homothetic transformations are isometries, the result follows then by observing that only 1-dimensional Euclidean spaces can be irreducible.

Let (M, \langle , \rangle) be a Riemannian manifold, and recall that $f \in \text{Diff}(M)$ is said to be a *homothetic transformation* if there exists a positive constant $c > 0$ such that

$$
\langle T_x f(v), T_x f(w) \rangle = c^2 \langle v, w \rangle
$$

for all $x \in M$ and $v, w \in T_xM$, i.e $f^*\langle , \ \rangle = c^2 \langle , \ \rangle$.

If ∇ is the Levi-Civita of (M, \langle , \rangle) , then the Levi-Civita connection $\widetilde{\nabla}$ for $f^*\langle , \rangle$ is given by :

$$
\widetilde{\nabla}_X Y := f_*^{-1}(\nabla_{f_*X} f_* Y), \tag{6}
$$

When $f : M \longrightarrow M$ is a homothetic transformation then $\langle \; , \; \rangle$ and $f^*\langle \; , \; \rangle$ share the same Levi-Civita connection i.e $\widetilde{\nabla} = \nabla$, hence any homothetic transformation is an affine transformation. Conversely :

Lemma 14

If (M, \langle , \rangle) is an irreducible Riemannian manifold, then every affine transformation $f : M \longrightarrow M$ is homothetic.

Proof. Clearly \langle , \rangle and $f^*\langle , \rangle$ define the same Levi-Civita ∇ .

Recall that if $G \subset O(V, \langle , \rangle)$ acts irreducibly on a Euclidean vector space (V, \langle , \rangle) and preserves a symmetric bilinear form B, then we can find $c>0$ such that $B=c^2\langle \; , \; \rangle.$ Applying this fact to

$$
(\mathsf{V}, \langle \; , \; \rangle) = (T_x M, \langle \; , \; \rangle_x), \quad \mathsf{G} = \mathrm{Hol}_x(M, \langle \; , \; \rangle) \quad \text{and} \quad \mathsf{B} = (f^* \langle \; , \; \rangle)_x,
$$

we obtain that for any $x \in M$, $(f^*\langle ,\ \rangle)_x = c^2_x\langle ,\ \rangle_x$ for some $c_x > 0$. Finally, if $y \in M$ is another point and $\gamma : [0,1] \longrightarrow M$ is a piecewise smooth curve joining x to y, then for every $v \in T_xM$:

$$
c_{y}^{2}\langle\tau_{x}^{\gamma}(v),\tau_{x}^{\gamma}(v)\rangle_{y} = \langle T_{y}f(\tau_{x}^{\gamma}(v)), T_{y}f(\tau_{x}^{\gamma}(v))\rangle_{f}(y)
$$

\n
$$
= \langle\tau_{f(x)}^{f\circ\gamma}(T_{x}f(v)),\tau_{f(x)}^{f\circ\gamma}(T_{x}f(v))\rangle_{f(y)}
$$

\n
$$
= \langle T_{x}f(v), T_{x}f(v)\rangle_{f(x)}
$$

\n
$$
= c_{x}^{2}\langle v, v\rangle_{x}.
$$

Since $\langle v, v \rangle_x = \langle \tau_x^{\gamma}(v), \tau_x^{\gamma}(v) \rangle_y$ for any $v \in \mathcal{T}_xM$ we get that $c_x = c_y$, completing the proof. Г

Lemma 15

If (M, \langle , \rangle) is a complete Riemannian manifold which is not locally Euclidean, then every homothetic transformation is an isometry.
Proof.

Suppose that (M, \langle , \rangle) admits a homothetic transformation $f : \mathcal{M} \longrightarrow \mathcal{M}$ that isn't an isometry, and write $f^*\langle \; , \; \rangle = c^2 \langle \; , \; \rangle$ with $c>0.$ Next notice that f^{-1} is homothetic as well with ration $1/c,$ therefore we suppose without loss of generality that $0 < c < 1$.

We start by proving that f has a fixed point. Denote $d: M \times M \longrightarrow \mathbb{R}^+$ the geodesic distance and take an arbitrary point $x \in M$ then put $\ell := d(x, f(x))$. Let $\gamma : [0, 1] \longrightarrow M$ be a minimizing geodesic joining x to $f(x)$, which exists since M is complete, then $f^i \circ \gamma$ is a smooth curve joining $f^i(x)$ and $f^{i+1}(x)$ with length :

$$
\ell_i = \int_0^1 \langle (f^i \circ \gamma)'(t), (f^i \circ \gamma)'(t) \rangle_{f^i \circ \gamma(t)}^{\frac{1}{2}} dt = c^i \ell,
$$

Therefore if $m, n \in \mathbb{N}$ are such that $m < n$ then :

$$
d(f^{m}(x),f^{n}(x))\leq \sum_{i=m}^{n-1}d(f^{i}(x),f^{i+1}(x))\leq \sum_{i=m}^{n+1}\ell_{i}=\sum_{i=m}^{n+1}c^{i}\ell\leq \frac{c^{m}\ell}{1-c},
$$

and thus $(f^m(x))_m$ is a Cauchy sequence in (M, d) hence converges to some $x^* \in M$ since M is complete.

Proof. (Continued)

Now x^* is obviously a fixed point of f, furthermore x^* does not depend on the choice of x, indeed given $z \in M$ and α a geodesic joining z to x^* , we get that $f^m \circ \alpha$ is a curve joining $f^m(z)$ to $f^m(x^*) = x^*$ and so :

$$
d(f^{m}(z),x^{*}) \leq \ell(f^{m} \circ \alpha) = c^{m}\ell(\alpha) \underset{m \to +\infty}{\longrightarrow} 0. \tag{7}
$$

Now fix a neighborhood U of x^* in M with compact closure. Then there exists a constant $K^*>0$ such that for any $y\in U$ and any unit vectors $v_1, v_2 \in T_v M$:

$$
|\langle R_{\mathsf{y}}(\mathsf{v}_1,\mathsf{v}_2)\mathsf{v}_1,\mathsf{v}_2\rangle_{\mathsf{y}}| \leq K^*,\tag{8}
$$

where R denotes the curvature tensor of (M, \langle , \rangle) . Since f is also an affine transformation, then for any $z \in M$ and any orthonormal family $\{v, w\}$ of T_zM :

$$
\langle R_{f^m(z)}(f^m_*v, f^m_*w) f^m_*v, f^m_*w \rangle = \langle f^m_*(R_z(v,w)v), f^m_*w \rangle = c^{2m} \langle R_z(v,w)v, w \rangle.
$$
\n(9)

Proof. (Continued) According to [\(7\)](#page-73-0) there exists $N \in \mathbb{N}$ such that $f^m(z) \in U$ for any $m \geq N$, moreover $||f^m_*v|| = ||f^m_*w|| = c^m$, thus using (8) :

$$
|\langle R_{f^m(z)}(f^m_*v, f^m_*w) f^m_*v, f^m_*w\rangle| \leq K^* ||f^m_*v||^2 ||f^m_*w||^2 = c^{4m} K^*,
$$

and finally [\(9\)](#page-73-2) gives that $|\langle R_z (v,w)v,w\rangle| \leq c^{2m}K^*$ for every $m\geq N.$ We conclude that $\langle R_z(v, w)v, w \rangle = 0$ for every $z \in M$ and any orthonormal family $\{v, w\}$ of T_zM i.e (M, \langle , \rangle) is locally Euclidean.

Theorems [12](#page-62-0) and [13](#page-65-0) have a number of interesting consequences, before we state them we need to make some remarks :

Let X be an affine vector field on a complete Riemannian manifold (M, \langle , \rangle) and denote \widetilde{M} the universal cover of M with the induced metric $p^* \langle , \rangle$ where $p : M \longrightarrow M$ is the natural projection, then let $\widetilde{M}=M_0\times \cdots \times M_k$ be its de Rham decomposition.

Next denote \widetilde{X} the lift of X to \widetilde{M} , i.e the unique vector field on \widetilde{M} satisfying

$$
T_z \rho(\widetilde{X}_z) = X_{\rho(z)},
$$

then \widetilde{X} is an affine transformation and since X is complete, \widetilde{X} is also complete hence an element of $aff(M,\nabla)$. Moreover X is Killing if and only if X is Killing.

By Theorem [12,](#page-62-0) we have $\alpha \text{iff}(\widetilde{M}, \nabla) \simeq \alpha \text{iff}(M_0, \nabla) \times \cdots \times \alpha \text{iff}(M_k, \nabla)$ and so \widetilde{X} corresponds to a unique family (X_0, \ldots, X_k) such that

 $X_i \in \mathfrak{aff}(M_i, \nabla).$

According to Theorem [13](#page-65-0) gives that X_1, \ldots, X_k are all Killing vector fields, therefore X will be Killing if and only if X_0 is.

Corollary 3.2

If M is a complete whose restricted holonomy group $Hol_x(M, \langle , \rangle)$ have no nonzero invariant vector, then $\mathrm{Aff}(M,\nabla)^0=\mathrm{Isom}(M,\langle\;,\;\rangle)^0,$ where ∇ is the Levi-Civita connection of (M, \langle , \rangle) .

Proof.

The restricted holonomy group $\text{Hol}_x(M, \langle , \rangle)$ is isomorphic to the restricted holonomy group of its universal cover \tilde{M} , this is due to the fact that contractible loops on M lift to (contractible) loops on \tilde{M} , this gives that the map :

$$
\widetilde{\mathrm{Hol}}_z(\widetilde{M}, \langle , \rangle) \longrightarrow \widetilde{\mathrm{Hol}}_{p(z)}(M, \langle , \rangle), \quad \tau_x^{\gamma} \mapsto T_z p \circ \tau_z^{\gamma} \circ (T_z p)^{-1} = \tau_z^{p \circ \gamma},
$$

is an isomorphism for any $z \in \widetilde{M}$, moreover the restricted holonomy group of \tilde{M} coincides with the total holonomy group since \tilde{M} is simply connected. So our assumption just states that M has no Euclidean factor i.e M_0 is a point, which gives in view of the previous remarks that every affine vector field on M is a Killing vector field.

Corollary 3.3

If X is an affine vector field of a complete Riemannian manifold (M, \langle , \rangle) and if the length of X is bounded, then X is a Killing vector field.

Proof.

Denote *M* the universal cover of *M* with the induced metric $g := p^* \langle , \rangle$ where $p : \widetilde{M} \longrightarrow M$ is the natural projection and let $\widetilde{M} = M_0 \times \cdots \times M_k$ be its De Rham decomposition. Next let X be the lift of X to M and write $X = (X_0, \ldots, X_k)$ such that $X_i \in \mathfrak{aff}(M_i, \nabla)$. Then :

$$
g(X_0,X_0)\leq g(\widetilde{X},\widetilde{X})=\langle X,X\rangle,
$$

hence if X has bounded length then so does X₀. Write $X_0 = \sum \xi^i \partial / \partial x^i$ in some (global) Euclidean coordinate system $\mathsf{x}^1, \dots, \mathsf{x}^r$ of $\mathit{M}_0.$ Since \mathcal{X}_0 is an affine vector field then it satisfies :

$$
\bigl(L_{X_0}\circ \nabla_Y - \nabla_Y\circ L_{X_0} \bigr)Z = \nabla_{[X_0,Z]}Y, \quad \text{i.e} \ \ L_{X_0}\nabla = 0.
$$

For $Y = \partial/\partial x^j$ and $Z = \partial/\partial x^k$ we get that $\nabla Y = 0$, $\nabla Z = 0$ hence by the previous expression $\nabla_Y[X_0, Z] = 0$ which is equivalent to :

$$
\frac{\partial^2 \xi^i}{\partial x^j \partial x^k} = 0, \quad i, j, k = 1, \ldots r.
$$

Proof. (Continued)

This means that

$$
X_0 = \sum_{i=1}^r \left(\sum_{j=1}^r a_{ij} x^j + b_i \right) \partial / \partial x^i
$$

where a_{ii} and b_i are constants, but since X_0 has bounded length it follows that $a_{ii} = 0$ for all $i, j = 1, ..., r$ proving that X_0 is a linear combination of $\partial/\partial x^1,\ldots,\partial/\partial x^r$ each of which is a Killing vector field on M_0 , we thus conclude that X_0 is Killing. By the previous remarks, X is a Killing vector field on M.

If M is a compact Riemannian manifold then the length of any vector field is bounded, therefore :

Corollary 3.4 (Yano's Theorem)

Let (M, \langle , \rangle) be a compact Riemannian manifold with Levi-Civita connection ∇ . Then $\mathrm{Aff}(M,\nabla)^0 = \mathrm{Isom}(M,\langle\;,\;\rangle)^0$.

Thanks for your attention