The Group of affine transformations of a Smooth Manifold

Presented by :

Mehdi Nabil

Geometry, Topology and Applications

December 12th, 2020

Table of Contents

- Introduction
 - Preliminaries
 - The Affine group of a Manifold as a Lie Group
 - Isometry Group of a Riemannian Manifold as a Lie Group
- Results on the dimension of the group of affine transformations
 - Parallel Transport and Horizontal Lift
 - Main Results
- The affine group of a Riemannian manifold
 - Holonomy
 - De Rham decomposition Theorem
 - Main results

Let M be an n-dimensional smooth manifold. For any $x \in M$, we call a frame on M at x any linear isomorphism $\mathbb{R}^n \xrightarrow{\simeq} T_x M$, the set of such frames will be denoted $\mathrm{L}(M)_x$. Clearly, the general linear group $\mathrm{GL}(n,\mathbb{R})$ acts naturally on $\mathrm{L}(M)_x$ via the map :

$$L(M)_x imes \mathrm{GL}(n,\mathbb{R}) \longrightarrow \mathrm{L}(M)_x, \quad (z,g) \mapsto z \circ g,$$

and it is not hard to see that this action is simply transitive. Now define

$$L(M) := \coprod_{x \in M} L(M)_x$$

and consider the projection $\pi: L(M) \longrightarrow M$ given by $\pi(L(M)_x) := x$.

Proposition 1.1

Let M be an n-dimensional manifold. Then $L(M) \xrightarrow{\pi} M$ has a unique structure of a smooth principal $\mathrm{GL}(n,\mathbb{R})$ -bundle over M called the frame bundle of TM such that for any local frame $\{E_1,\ldots,E_n\}$ of TM defined on an open subset $U\subset M$, the map :

$$\sigma: U \longrightarrow L(M), \quad x \mapsto \{E_{1|x}, \dots, E_{n|x}\},$$
 (1)

is a local (smooth) section of L(M). Conversely, if $\sigma: U \longrightarrow L(M)$ is any smooth section, then there exists a local frame $\{E_1, \ldots, E_n\}$ of TM over U such that σ is of the form (1).

In a similar way one defines on a Riemannian manifold (M, \langle , \rangle) the bundle of orthonormal frames $\mathrm{O}(M) := \coprod_{x \in M} \mathrm{O}(M)_x$ where each $\mathrm{O}(M)_x$ consists of linear isometries

$$(\mathbb{R}^n, \langle \;,\; \rangle_0) \stackrel{\simeq}{\longrightarrow} (T_x M, \langle \;,\; \rangle_x).$$

It is clear that $O(M) \subset L(M)$, on the other hand the orthogonal group O(n) acts simply transitively on O(M).

Proposition 1.2

Let (M, \langle , \rangle) be an n-dimensional Riemannian manifold. Then $\mathrm{O}(M) \stackrel{\pi}{\longrightarrow} M$ is a smooth principal $\mathrm{O}(n)$ -subbundle of $\mathrm{L}(M)$. Futhermore if $\{E_1, \ldots, E_n\}$ is any local, orthonormal frame of TM defined on an open subset $U \subset M$ then the map :

$$\sigma: U \longrightarrow L(M), \quad x \mapsto \{E_{1|x}, \dots, E_{n|x}\},$$
 (2)

is a local (smooth) section of O(M). Conversely, if $\sigma: U \longrightarrow O(M)$ is any smooth section, then there exists a local orthonormal frame $\{E_1, \ldots, E_n\}$ of TM over U such that σ is of the form (2).

Any diffeomorphism $f:M\longrightarrow M$ induces a principal bundle automorphism $f_*:\mathrm{L}(M)\longrightarrow\mathrm{L}(M)$ such that the following diagram is commutative :

$$L(M) \xrightarrow{f_*} L(M)$$

$$\downarrow^{\pi}$$

$$M \xrightarrow{f} M$$

Explicitly, for any $z \in L(M)$ we have $f_*(z) := T_{\pi(z)} f \circ z$.

Define on L(M) the \mathbb{R}^n -valued 1-form $\theta \in \Omega^1(L(M),\mathbb{R}^n)$ given by

$$\theta_z(v) := z^{-1}(T_z\pi(v)),$$

we call it the *canonical form* of L(M). We have the following result :

Proposition 1.3

Let M be a smooth manifold and let θ denote the canonical form of the frame bundle L(M). If $f:M\longrightarrow M$ is any diffeomorphism of M then f_* preserves θ . Conversely, if $A:L(M)\longrightarrow L(M)$ is any fiber-preserving transformation leaving θ invariant, then $A=f_*$ for some $f\in \mathrm{Diff}(M)$.

Proof.

The first point is a straightforward computation. Conversely, we first notice that since $A: L(M) \longrightarrow L(M)$ is fiber-preserving, the map:

$$f: M \longrightarrow M, \quad f(x) = \pi(A(z)), \quad z \in \pi^{-1}(x),$$

is a well-defined diffeomorphism of M. Now:

$$(A^*\theta)_z(v) = \theta_{A(z)}(T_zA(v)) = A(z)^{-1} \circ T_{\pi(z)}f \circ T_z\pi(v),$$

so A will preserve θ if and only if $A(z)^{-1} \circ T_{\pi(z)} f = z^{-1}$ for any $z \in P$ which is exactly what $A = f_*$ means.

Proposition 1.3 states that the morphism $\mathrm{Diff}(M) \stackrel{\Psi}{\to} \mathrm{Aut}(\mathrm{L}(M)), \ f \mapsto f_*$ sends the group of diffeomorphisms of M isomorphically onto the subgroup of automorphisms of $\mathrm{L}(M)$ preserving the canonical form θ .

Definition 1.1

Let G be a Lie group with Lie algebra \mathfrak{g} . A connection form on a principal G-bundle $P \xrightarrow{\pi} M$ is a 1-form $\omega \in \Omega^1(P,\mathfrak{g})$ satisfying :

1- For any $z \in P$ and any $A \in \mathfrak{g}$, $\omega_z(\widetilde{A}_z) = A$ where \widetilde{A} is the fundamental vector field on P corresponding to A, i.e

$$\widetilde{A}_z := \frac{d}{dt} z \cdot \exp(-tA).$$

2- For any $g \in G$ and any $z \in P$, $v \in T_z(p)$,

$$(R_g^*\omega)_z(v) = \mathrm{Ad}_{g^{-1}}(\omega_z(v)),$$

with $R_g: P \longrightarrow P$ being the map $z \mapsto z \cdot g$.

Let now ∇ be a linear connection on M. A diffeomorphism $f:M\longrightarrow M$ is called an *affine transformation* with respect to ∇ if it satisfies

$$f_*(\nabla_X Y) = \nabla_{f_*X} f_* Y$$

for any $X, Y \in \chi(M)$ where f_*X is the vector field on M given by :

$$(f_*X)_{f^{-1}(x)} := (T_x f)^{-1}(X_x).$$

The group of such transformations will be denoted $\mathrm{Aff}(M,\nabla)$. On the other hand, we say that $X\in \mathcal{X}(M)$ is an *affine vector field* if it generates a local 1-parameter group of affine transformations.

Proposition 2.1

Let M be a smooth manifold and ∇ a linear connection on M. Then there exists a unique connection form ω on L(M) such that for any local section $\sigma := \{E_1, \ldots, E_n\}$ of L(M) defined on U, $\sigma^*\omega = \Gamma$ where $\Gamma \in \Omega^1(U, \mathfrak{gl}(n, \mathbb{R}))$ is given by :

$$\nabla E_i = \sum_{j=1}^n \Gamma_{ij} E_j.$$

Conversely, any connection form ω on L(M) gives rise to a linear connection ∇ on M by means of the previous expression.

Proposition 2.2

Let M be a smooth manifold, ∇ a linear connection on M and ω the connection form on L(M) corresponding to ∇ . Let $f: M \longrightarrow M$ be a diffeomorphism, then :

- 1- $f \in Aff(M, \nabla)$ if and only if f_* preserves the connection form ω .
- 2- Conversely, any fiber-preserving tranformation $A: L(M) \longrightarrow L(M)$ leaving both θ and ω invariant is of the form $A = f_*$ for some $f \in Aff(M, \nabla)$.

Proof.

Define on M the linear connection $\widetilde{\nabla}$ by the expression :

$$\widetilde{\nabla}_X Y = (f_*)^{-1} (\nabla_{f_* X} f_* Y)$$

The idea is to prove that $(f^{-1})^*\omega$ is the (unique) connection form on L(M) defining $\widetilde{\nabla}$. So f is an affine transformation i.e $\widetilde{\nabla} = \nabla$ if and only if $\omega = f^*\omega$.

Theorem 1

Let M be an n-dimensional smooth manifold with a global trivialization $\{X_1,\ldots,X_n\}$ of TM. Denote G the group of transformations preserving this trivialization, i.e diffeomorphisms $f:M\longrightarrow M$ satisfying $T_x f(X_{i|x})=X_{i|f(x)}$. Then G possesses a unique Lie group structure for the compact-open topology such that $\dim G \leq \dim M$. More precisely for any $p\in M$, the map :

$$G \longrightarrow M$$
, $f \mapsto f(p)$,

is an imbedding of G onto a closed submanifold of M, and the submanifold structure on the image is what makes G a Lie transformation group. Moreover the Lie algebra of G consists of complete vector fields whose 1-parameter subgroups are in G.

Theorem 2

Let M be a smooth n-dimensional manifold and ∇ an affine connection on M, then $\mathrm{Aff}(M,\nabla)$ is a Lie group for the compact-topology of dimension $\leq n^2 + n$. More precisely for any $z \in \mathrm{L}(M)$ the map :

$$Aff(M, \nabla) \longrightarrow L(M), \quad f \mapsto f_*(z),$$

is injective and its image is a closed submanifold of L(M). The submanifold structure on its image makes $Aff(M, \nabla)$ a Lie transformation group. Its Lie algebra consists of complete affine vector fields on M.

Proof.

For any $x \in M$, Recall that since $\mathrm{GL}(n,\mathbb{R})$ acts simply transitively on $P_x := \pi^{-1}(x)$, the map $\mathrm{GL}(n,\mathbb{R}) \longrightarrow P_x$, $g \mapsto z \cdot g$ is a diffeomorphism and its differential

$$\mathfrak{gl}(n,\mathbb{R})\longrightarrow T_zP_x, \quad A\mapsto \frac{d}{dt}_{t=0}z\cdot\exp(tA),$$

is an isomorphism. Thus for any $v \in T_z P_x$ there is a unique $A \in \mathfrak{gl}(n,\mathbb{R})$ such that $v = \widetilde{A}_z$. On the other hand $T_z P_x = \ker(T_z \pi)$.

Denote ω the connection form on P := L(M) corresponding to ∇ . We prove that the map

$$TP \xrightarrow{\phi} P \times (\mathfrak{gl}(n,\mathbb{R}) \times \mathbb{R}^n), \quad Z \mapsto (p(Z),\omega(Z),\theta(Z)),$$

defines a trivialization of TP. First notice that ϕ is surjective given that $\pi: P \longrightarrow M$ is a submersion and $A = \omega(\widetilde{A})$ for any $A \in \mathfrak{gl}(n, \mathbb{R})$.

Let $v \in T_z P$ such that $\theta_z(v) = 0$ and $\omega_z(v) = 0$, then :

$$0 = \theta_z(v) = z^{-1}(T_z\pi(v)),$$

hence $v \in \ker(T_z\pi) := T_z P_{\pi(z)}$, on the other hand write $v = \widetilde{A}_z$ for some A in $\mathfrak{gl}(n,\mathbb{R})$ then we get that

$$0 = \omega_z(v) = \omega_z(\widetilde{A}_z) = A,$$

and so v=0, i.e ϕ is injective. On the other hand if $\sigma:U\longrightarrow P$ is any local section one can define the map :

$$P_{|U} \times (\mathfrak{gl}(n,\mathbb{R}) \times \mathbb{R}^n) \stackrel{\psi}{\longrightarrow} P_{|U}, \quad \widetilde{A}_{\sigma(\pi(z))} + (T_{\pi(z)}\sigma)(\sigma_{\pi(z)}(v)),$$

it is clear that ψ is a smooth map and $\phi \circ \psi = \mathrm{Id}$, thus ϕ is a local diffeomorphism and we conclude that it is a vector bundle isomorphism. Finally, one checks that any fiber preserving transformation $F:P\longrightarrow P$ leaving θ and ω invariant leaves ϕ invariant. By Theorem 1 we get the desired result.

Assume now that (M, \langle , \rangle) is a Riemannian manifold and let ∇ be a metric connection on M, i.e $X\langle Y, Z\rangle = \langle \nabla_X Y, Z\rangle + \langle Y, \nabla_X Z\rangle$. Let $\{E_1, \ldots, E_n\}$ be a local orthonormal frame of TM defined on an open subset $U \subset M$ and write

$$\nabla E_i = \sum_{i=1}^n \Gamma_{ij} E_j.$$

Then we get that $\Gamma_{ij} = -\Gamma_{ji}$ or in other terms $\Gamma \in \Omega^1(U, \mathfrak{so}(n))$.

Thus if $\widetilde{\omega}$ is the connection form on $\mathrm{L}(M)$ corresponding to ∇ then its restriction ω to the orthogonal frame bundle $\mathrm{O}(M)$ is $\mathfrak{so}(n)$ -valued and defines therefore a connection form on $\mathrm{O}(M)$ and it is in fact the only connection form on $\mathrm{O}(M)$ representing ∇ . Conversely any connection form on $\mathrm{O}(M)$ admits a unique extension to $\mathrm{L}(M)$ and defines therefore a metric connection ∇ on M.

Proposition 3.1

Let (M, \langle , \rangle) be a Riemannian manifold, ∇ its Levi-Civita connection and ω the connection form on O(M) representing ∇ .

- 1- A diffeomorphism $f: M \longrightarrow M$ is an isometry if and only if $f_*(O(M)) = O(M)$.
- 2- If $A : O(M) \longrightarrow O(M)$ is a fiber-preserving transformation leaving invariant the canonical form θ of O(M), then there exists a unique isometry $f : M \longrightarrow M$ such that $A = f_*$.
- 3- Any (principal) bundle automorphism $O(M) \longrightarrow O(M)$ leaving θ invariant, leaves ω invariant.

Proof.

The first point is the definition of a Riemannian isometry, the argument for the second point is the same as in Proposition 2.2. For the third point, observe that since ∇ is torsion-free, then ω is torsion-free as well i.e the 2-form $T \in \Omega^2(O(M), \mathbb{R}^n)$, called torsion form of ω , given by :

$$T := \omega \wedge \theta + d\theta, \tag{3}$$

vanishes. Let $A: O(M) \longrightarrow O(M)$ be a bundle automorphism, then $A^*\omega$ is a connection form on O(M). Since A preserves the canonical form θ , we get from expression (3) that $A^*\omega$ is torsion-free as well, so by uniqueness of the Levi-Civita connection we conclude that $A^*\omega = \omega$.

Theorem 3

Let (M, \langle , \rangle) be a Riemannian manifold, then $\mathrm{Isom}(M, \langle , \rangle)$ with the compact-open topology is a Lie group of dimension $\leq \frac{n(n+1)}{2}$. In fact for any $z \in \mathrm{O}(M)$, the map :

$$\mathrm{Isom}(M,\langle\;,\;\rangle)\longrightarrow \mathrm{O}(M),\quad f\mapsto f_*(z),$$

is an imbedding and its image is a closed submanifold of O(M). If ∇ is the Levi-Civita connection of $\langle \ , \ \rangle$ then $Isom(M, \langle \ , \ \rangle)$ is a closed subgroup of $Aff(M, \nabla)$. Its Lie algebra consists of complete Killing vector fields on M.

Proposition 3.2

The natural action of $\mathrm{Isom}(M, \langle \ , \ \rangle)$ on M is proper. In particular if M is compact then $\mathrm{Isom}(M, \langle \ , \ \rangle)$ is compact.

Proof.

Choose a compact $K \subset M$ and put $G_K = \{f \in \text{Isom}(M), f(K) \cap K \neq \emptyset\}$. Let $(f_n)_n$ be an arbitrary sequence of G_K , then for any $n \in \mathbb{N}$ we can find $p_n \in K$ such that $f_n(p_n) \in K$. Since K is compact, one can show that there exists a subsequence $(p_{\varphi(n)})_n$ of $(p_n)_n$ converging to some $p \in K$ such that $(f_{\varphi(n)}(p_{\varphi(n)}))_n$ is also convergent, denote q its limit.

Let $d: M \times M \longrightarrow \mathbb{R}^+$ be the geodesic distance, then :

$$egin{array}{lll} d(f_{arphi(n)}(p),q) & \leq & d(f_{arphi(n)}(p),f_{arphi(n)}(p_{arphi(n)})) + d(f_{arphi(n)}(p_{arphi(n)}),q) \ & \leq & d(p,p_{arphi(n)}) + d(f_{arphi(n)}(p_{arphi(n)}),q) & \mathop{\longrightarrow}\limits_{n
ightarrow + \infty} 0. \end{array}$$

Next put $p = \pi(z)$ with $z \in \mathrm{O}(M)$ and $C = \{f_{\varphi(n)}(p), n \in \mathbb{N}\} \cup \{q\}$, since $\mathrm{O}(n)$ is compact we get that $\pi^{-1}(C)$ is a compact subset of $\mathrm{O}(M)$, therefore $((f_{\varphi(n)})_*(z))_n$ and so it has a convergent subsequence. By Theorem 3, $\{f_*(z), f \in \mathrm{Isom}(M)\}$ is closed submanifold in $\mathrm{O}(M)$ so $((f_{\psi(n)})_*(z))_n$ converges to $f_*(z)$ for some isometry f and by the same result we get that $(f_{\psi(n)})_n$ converges to f in $\mathrm{Isom}(M, \langle \ , \ \rangle)$. We conclude that G_K is compact and so $\mathrm{Isom}(M, \langle \ , \ \rangle)$ acts properly on M.

Table of Contents

- Introduction
 - Preliminaries
 - The Affine group of a Manifold as a Lie Group
 - Isometry Group of a Riemannian Manifold as a Lie Group
- Results on the dimension of the group of affine transformations
 - Parallel Transport and Horizontal Lift
 - Main Results
- The affine group of a Riemannian manifold
 - Holonomy
 - De Rham decomposition Theorem
 - Main results

Results on the dimension of the group of affine transformations

Theorem 4

Let M be an n-dimensional manifold with a linear connection ∇ . Then $\dim(\operatorname{Aff}(M,\nabla))=n(n+1)$ if and only if M is an ordinary affine space with the natural flat affine connection.

Let M be an n-dimensional smooth manifold and ∇ a linear connection on M. Let $\gamma:[0,1]\longrightarrow M$ be a smooth a curve, then ∇ provides a unique linear operator denoted $D_{\dot{\gamma}}:\Gamma(\gamma^{-1}TM)\longrightarrow\Gamma(\gamma^{-1}TM)$ satisfying :

$$D_{\dot{\gamma}}(fV) = f'V + fD_{\dot{\gamma}}V, \quad f \in \mathcal{C}^{\infty}([0,1],\mathbb{R}), \ V \in \Gamma(\gamma^{-1}TM),$$

we call it the *covariant derivation along* γ , here $\Gamma(\gamma^{-1}TM)$ is the space of vector fields along γ i.e smooth maps $V:[0,1]\longrightarrow TM$ such that $V(t)\in T_{\gamma(t)}M$.

Finally V is said to be parallel along γ if $D_{\dot{\gamma}}V=0$.

Theorem 5

Let M be an n-dimensional manifold with a linear connection ∇ and $\gamma:[0,1]\longrightarrow M$ a smooth curve. For any $v\in T_{\gamma(0)}M$, there exists a unique parallel vector field V along γ satisfying V(0)=v. We call V the parallel transport of v along γ .

Let ω be the connection form on L(M) representing ∇ , for any basis $\{e_1,\ldots,e_n\}$ of $T_{\gamma(0)}M$ one obtain a parallel frame $\{E_1,\ldots,E_n\}$ along γ i.e E_i is the parallel vector field along γ satisfying $E_i(0)=e_i$.

It is an easy matter to see that $\{E_1(t),\ldots,E_n(t)\}$ is a basis of $T_{\gamma(t)}M$, thus one obtains a smooth curve $\widetilde{\gamma}:[0,1]\longrightarrow \mathrm{L}(M)$ given by :

$$\widetilde{\gamma}(t) = (E_1(t), \ldots, E_n(t)),$$

this curve is called the horizontal lift of γ to L(M) through $\{e_1, \ldots, e_n\}$.

Proposition 1.1

Let M be an n-dimensional manifold with a linear connection ∇ and let $\gamma:[0,1]\longrightarrow M$ and $\alpha:[0,1]\longrightarrow \mathrm{L}(M)$ be smooth curves. Then α is a horizontal lift of γ if and only if $\pi\circ\alpha=\gamma$ and $\omega_{\alpha(t)}(\dot{\alpha}(t))=0$, where ω is the connection form corresponding to ∇ .

Recall that a vector field Z on L(M) is called *horizontal* if $\omega(Z)=0$ and *standard* if $\theta(Z)$ is a constant function.

Proposition 1.2

Let M be an n-dimensional manifold with a linear connection ∇ and ω the connection form of ∇ on L(M).

- **Q** Let Z be a standard horizontal vector field on L(M). For any $z \in L(M)$, the curve defined by $\gamma(t) := \pi(\varphi_t^Z(z))$ is a geodesic on M.
- **②** Conversely, given a geodesic $\gamma: [-a, a] \longrightarrow M$, there exists a local standard horizontal vector field Z on L(M) and $\epsilon > 0$ such that $\gamma(t) = \varphi_t^Z(z)$ for any $-\epsilon < t < \epsilon$.

Proof.

We only prove the first point. Let $z \in L(M)$ then there exists $\epsilon > 0$ such that the curve $\alpha :] - \epsilon, \epsilon [\longrightarrow L(M)$ given by $\alpha(t) = \varphi_t^Z(z)$ is well-defined and smooth. Let $\gamma(t) = \pi(\alpha(t))$, since $\omega_{\alpha(t)}(\alpha'(t)) = \omega_{\alpha(t)}(Z_{\alpha(t)}) = 0$ then Proposition 1.1 gives that α is a horizontal lift of γ on L(M), therefore if we write :

$$\alpha(t) = (V_1(t), \dots, V_n(t)), \quad V_i \in \Gamma(\gamma^{-1}TM),$$

we get that $\{V_1, \ldots, V_n\}$ is a parallel frame along γ . On the other hand if we write $\theta_z(Z_z) = (a_1, \ldots, a_n)$ then we get that :

$$\gamma'(t) = T_{\alpha(t)}\pi(Z_{\alpha(t)}) = \alpha(t)(\theta_{\alpha(t)}(Z_{\alpha(t)})) = \alpha(t)(\theta_z(Z_z)) = \sum_{i=1}^n a_i V_i(t),$$

which shows that γ' is parallel along γ i.e γ is a geodesic.

Denote $\mathfrak{aff}(M, \nabla) := \operatorname{Lie}(\operatorname{Aff}(M, \nabla))$, any $X \in \mathfrak{aff}(M, \nabla)$ defines a smooth vector field \hat{X} of $\operatorname{L}(M)$ given by :

$$\hat{X}_z := \frac{d}{dt}_{t=0} \exp(tX)_*(z).$$

It is clear that \hat{X} is a complete vector field on L(M).

Proposition 1.3

Let M be an n-dimensional manifold, ∇ a linear connection on M, and let $X \in \mathfrak{aff}(M,\nabla)$. Suppose that $\omega_z(\hat{X}_z) = 0$ for some $z \in L(M)$. Then the curve $\gamma : \mathbb{R} \longrightarrow M$, $\gamma(t) = \exp(tX) \cdot x$ with $x = \pi(z)$ is a geodesic and its horizontal lift at z is the curve $\hat{\gamma}(t) := \exp(tX)_*(z)$, $t \in \mathbb{R}$.

Parallel Transport and horizontal lift

Proof.

Put $\hat{\gamma}(t) = \exp(tX)_*(z)$, then clearly $\pi(\hat{\gamma}(t)) = \gamma(t)$, moreover from the relation $\exp(tX)^*\omega = \omega$ we get that $\omega_{\exp(tX)_*z}(\hat{X}_{\exp(tX)_*z}) = 0$ which means that $\hat{\gamma}$ is the horizontal lift of γ through z, in particular if $z = (e_1, \ldots, e_n)$ then :

$$\hat{\gamma}(t) = (E_1(t), \dots, E_n(t)),$$

 E_i being the parallel transport of e_i along γ . Moreover $\exp(tX)^*\theta = \theta$ gives that $\theta_{\exp(tX)_*z}(\hat{X}_{\exp(tX)_*z}) = \theta_z(\hat{X}_z)$ so if $\theta_z(X_z) = (a_1, \ldots, a_n)$ we get that :

$$\gamma'(t) = T_{\hat{\gamma}(t)}\pi(\hat{X}_{\hat{\gamma}(t)}) = \hat{\gamma}(t)(\theta_{\hat{\gamma}(t)}(\hat{X}_{\hat{\gamma}(t)})) = \hat{\gamma}(t)(\theta_z(\hat{X}_z)) = \sum_{i=1}^n a_i E_i(t).$$

Hence γ' is parallel along γ , i.e γ is a geodesic.

Theorem 6

Let M be an n-dimensional manifold with a linear connection ∇ . Then $\dim(\mathrm{Aff}(M,\nabla))=n(n+1)$ if and only if M is an ordinary affine space with the natural flat affine connection.

Proof.

Denote $G := \mathrm{Aff}(M, \nabla)$ and for any $x \in M$ denote G_x the isotropy at x for the natural action of G on M. First note that the map :

$$G_{x} \longrightarrow \mathrm{GL}(T_{x}M), \quad f \mapsto T_{x}f$$
 (4)

is an injective Lie group homomorphism. Assume now that dim G = n(n+1), then let $x \in M$ and $z \in L(M)$ such that $\pi(z) = x$. Since the map :

$$G \xrightarrow{\Psi} L(M), \quad f \mapsto f_*(z)$$

is an imbedding of G onto a closed submanifold of L(M) and $\dim L(M) = n(n+1)$, then either $\Psi(G) = L(M)$ or $\Psi(G)$ is a connected component of L(M) and in any case we get that $M = G \cdot x \simeq G/G_x$, therefore :

$$\dim G_x = \dim G - \dim M = n^2$$
.

This gives that $G_x^0 = GL^+(T_xM)$ under the identification (4).

Now let t > 0 and consider the transformation $A_t \in \mathrm{GL}^+(T_x M)$ given by $A_t(u) = tu$. From the previous remark there exists $f_t \in G_x^0$ such that $T_x f_t = A_t$, hence for any $u, v, w \in T_x M$ we get that :

$$A_t(R_x^{\nabla}(u,v)w) = R_x^{\nabla}(A_tu,A_tv)A_tw, \quad A_t(T_x^{\nabla}(u,v)) = T_x^{\nabla}(A_tu,A_tv),$$

therefore $R_x^{\nabla}(u,v)w=t^{-2}R_x^{\nabla}(u,v)w$ and $T_x^{\nabla}(u,v)=t^{-1}T_x^{\nabla}(u,v)$ for all t>0, and so we conclude that $R^{\nabla}=0$ and $T^{\nabla}=0$.

On the other hand, let Z be a standard horizontal vector field on L(M). If $\mathfrak{g} := \operatorname{Lie}(G)$ then there exists a unique $X \in \mathfrak{g}$ such that $Z_z = \hat{X}_z$ where :

$$\hat{X}_{\widetilde{z}} := \frac{d}{dt} \exp(tX)_* \widetilde{z}, \quad \widetilde{z} \in L(M).$$

From Proposition 1.3 we get that $\gamma(t)=\exp(tX)\cdot x$ is a geodesic with horizontal lift at z the curve $\hat{\gamma}(t)=\exp(tX)_*(z)$ defined for any $t\in\mathbb{R}$. Now $\gamma:\mathbb{R}\longrightarrow M$ is the geodesic with initial conditions $\gamma(0)=x$ and $\gamma'(0)=T_z\pi(Z_z)$ and therefore its horizontal lift at z is exactly

$$\alpha:]-\epsilon, \epsilon[\longrightarrow L(M), \quad t \mapsto \varphi_t^Z(z),$$

which proves that α can be extended to all of \mathbb{R} . Since $z \in L(M)$ was arbitrary we get that Z is complete, and since we know by Proposition 1.2 that geodesics of M are exactly the projections of integral curves of standard horizontal vector fields, we conclude that M is (geodesically) complete.

Consider now the universal cover \widetilde{M} of (M,∇) with its induced induced linear connection, then there exists an affine transformation $\widetilde{M} \stackrel{\simeq}{\longrightarrow} \mathbb{R}^n$. Next $M = \widetilde{M}/\Gamma$ where Γ is a discrete subgroup of

$$\mathrm{Aff}(\widetilde{M},\nabla)\simeq\mathrm{GL}(n,\mathbb{R})\rtimes\mathbb{R}^n$$

hence commuting with $\operatorname{Aff}(\widetilde{M},\nabla)^0 \simeq \operatorname{GL}^+(n,\mathbb{R}) \rtimes \mathbb{R}^n$. But one can show that only the trivial element commutes with connected component of $\operatorname{GL}(n,\mathbb{R}) \rtimes \mathbb{R}^n$, hence Γ is trivial and M is itself simply connected i.e $\widetilde{M} = M$, this completes the proof.

Theorem 7

Let M be an n-dimensional manifold with an affine connection and assume that $\dim \operatorname{Aff}(M, \nabla) > n^2$. Then ∇ is torsion-free.

This result is a consequence of the following algebraic Lemma :

Lemma 8

Let V ba an n-dimensional vector space and $T: V \times V \longrightarrow V$ a non-trivial skew-symmetric bilinear map i.e $T \in V \otimes \Lambda^2 V^*$. Denote H the subgroup of linear transformation preserving T, then $\dim H \leq n^2 - n$.

Proof of the Theorem.

Denote $G := \mathrm{Aff}(M, \nabla)$ then let $x \in M$ and denote G_x the isotropy at x for the natural action of G on M, then from $G/G_x \simeq G \cdot x$ we get :

$$\dim(G_{\mathsf{x}}) \ge \dim(G) - \dim(M) > n^2 - n \tag{5}$$

On the other hand denote T^{∇} the torsion tensor of ∇ , then for every $f \in G_{\mathsf{x}}$ we get that :

$$T_x^{\nabla}(T_x f(u), T_x f(v)) = T_x f(T_x^{\nabla}(u, v)), \quad u, v \in T_x M.$$

Therefore the group $\{T_x f, f \in G_x\} \simeq G_x$ preserves T_x^{∇} , but according to the previous Lemma and (5) we conclude that $T_x^{\nabla} = 0$ for any $x \in M$, i.e ∇ is torsion-free.

Another result in the same spirit is the following Theorem due to Egorov and can be proved by essentially the same procedure :

Theorem 9

Let M be an n-dimensional manifold and ∇ a linear connection on M such that $\dim \mathrm{Aff}(M,\nabla) > n^2$. Then ∇ has neither torsion nor curvature provided that $n \geq 4$.

Table of Contents

- Introduction
 - Preliminaries
 - The Affine group of a Manifold as a Lie Group
 - Isometry Group of a Riemannian Manifold as a Lie Group
- Results on the dimension of the group of affine transformations
 - Parallel Transport and Horizontal Lift
 - Main Results
- The affine group of a Riemannian manifold
 - Holonomy
 - De Rham decomposition Theorem
 - Main results

The goal of this part it to prove the following Result :

Yano's Theorem

Let (M, \langle , \rangle) be a compact Riemannian manifold with Levi-Civita connection ∇ . Then $\mathrm{Aff}(M, \nabla)^0 = \mathrm{Isom}(M, \langle , \rangle)^0$.

Let M be an n-dimensional manifold and ∇ a linear connection on M. For any smooth curve $\gamma:[a,b]\longrightarrow M$ one can define the linear map $\tau_{a,b}^{\gamma}:T_{\gamma(a)}M\longrightarrow T_{\gamma(b)}M$ by the formula $\tau_{a,b}^{\gamma}(v)=V(b)$ where $V\in\Gamma(\gamma^{-1}TM)$ is the parallel transport of v along γ (relative to ∇).

Proposition 1.1

- $au_{a,b}^{\gamma}$ does not depend on the orientation-preserving parametrization of the curve γ .
- Oenote $\gamma_1 := \gamma_{|[a,t_0]}$ and $\gamma_2 := \gamma_{|[t_0,b]}$ i.e $\gamma = \gamma_1 * \gamma_2$, then :

$$\tau_{\mathsf{a},\mathsf{b}}^{\gamma} = \tau_{\mathsf{t}_0,\mathsf{b}}^{\gamma_2} \circ \tau_{\mathsf{a},\mathsf{t}_0}^{\gamma_1}.$$

§ For any smooth curve γ , $\tau_{a,b}^{\gamma}$ is an isomorphism and its inverse is exactly the linear operator

$$\tau_{\mathsf{a},\mathsf{b}}^{\gamma^-}: T_{\gamma(\mathsf{b})}M \longrightarrow \tau_{\gamma(\mathsf{a})}M$$

with
$$\gamma^-(t) = \gamma(a+b-t)$$
.

These properties allows to extend the definition of $\tau_{a,b}^{\gamma}$ for piecewise smooth curves $\gamma:[a,b]\longrightarrow M$ by setting :

$$\tau_{\mathsf{a},\mathsf{b}}^{\gamma} := \tau_{\mathsf{t}_{\mathsf{k}},\mathsf{b}}^{\gamma} \circ \tau_{\mathsf{t}_{\mathsf{k}-1},\mathsf{t}_{\mathsf{k}}}^{\gamma} \circ \cdots \circ \tau_{\mathsf{t}_{1},\mathsf{t}_{2}}^{\gamma} \circ \tau_{\mathsf{a},\mathsf{t}_{1}}^{\gamma},$$

where $a=t_0 < t_1 < \cdots < t_k < t_{k+1} = b$ is any subdivision of [a,b] such that the curve $\gamma_{[t_i,t_{i+1}]}$ is smooth. The previous properties extend to this situation as well :

Proposition 1.2

Let M be a smooth manifold with a linear connection ∇ . Then :

- **1** $au_{\mathbf{a},b}^{\gamma}$ does not depend on the orientation-preserving parametrization of the piecewise smooth curve $\gamma: [\mathbf{a}, \mathbf{b}] \longrightarrow M$.
- ② Given two piecewise smooth curves $\gamma_1: [a,b] \longrightarrow M$ and $\gamma_2: [b,c] \longrightarrow M$ such that $\gamma_2(b) = \gamma_1(b)$ then $\tau_{a,c}^{\gamma_1 * \gamma_2} = \tau_{b,c}^{\gamma_2} \circ \tau_{a,b}^{\gamma_1}$.
- For any piecewise smooth curve $\gamma:[a,b]\longrightarrow M$, $\tau_{a,b}^{\gamma}$ is invertible with inverse $\tau_{a,b}^{\gamma^-}$.

It is more convenient therefore to denote $\tau_{a,b}^{\gamma}$ by $\tau_{\gamma(a),\gamma(b)}^{\gamma}$ instead or just $\tau_{\gamma(a)}^{\gamma}$ when γ is a loop. Fix $x_0 \in M$ and define :

$$\operatorname{Hol}_{x_0}(M,\nabla) := \{\tau_{x_0}^\gamma: \, T_{x_0}M \stackrel{\simeq}{\longrightarrow} T_{x_0}M, \,\, \gamma \text{ is a loop based at } x_0\}.$$

Using the above observations, it is clear that $\operatorname{Hol}_{x_0}(M,\nabla)$ is a subgroup of $\operatorname{GL}(T_{x_0}M)$ called the *holonomy group of* (M,∇) *at* x_0 . We also define the *restricted holonomy of* (M,∇) *at* x_0 to be :

$$\widetilde{\operatorname{Hol}}_{x_0}(M,\nabla) := \{\tau_{x_0}^{\gamma}: \mathit{T}_{x_0}M \stackrel{\simeq}{\longrightarrow} \mathit{T}_{x_0}M, \ \gamma \text{ is a contractible loop based at } x_0\},$$

which is obviously a subgroup of the holonomy group since concatenation and inverse of contractible loops remains contractible. It is also straightforward to see that $\widetilde{\operatorname{Hol}}_{x_0}(M,\nabla)$ is normal in $\operatorname{Hol}_{x_0}(M,\nabla)$.

Theorem 10

Let M be a smooth manifold and ∇ a linear connection on M. The holonomy group $\operatorname{Hol}_{x_0}(M,\nabla)$ possesses the structure of an (immersed) Lie subgroup of $\operatorname{GL}(T_{x_0}M)$ and $\widetilde{\operatorname{Hol}}_{x_0}(M,\nabla)=\operatorname{Hol}_{x_0}(M,\nabla)^0$.

Proposition 1.3

Let M be a connected manifold with a linear connection ∇ and let $x,y\in M$. Then for any piecewise smooth curve $\gamma:[a,b]\longrightarrow M$ joining x to y, the map :

$$\operatorname{Hol}_x(M,\nabla) \longrightarrow \operatorname{Hol}_y(M,\nabla), \quad g \mapsto \tau_{x,y}^\gamma \circ g \circ (\tau_{x,y}^\gamma)^{-1},$$

is an isomorphism.

Let $(M,\langle\;,\;\rangle)$ be a connected Riemannian manifold with Levi-Civita connection ∇ . Then following that $\nabla\langle\;,\;\rangle=0$ we get that for any smooth curve $\gamma:[a,b]\longrightarrow M$ and any $V,W\in\Gamma(\gamma^{-1}TM)$:

$$\frac{d}{dt}\langle V(t),W(t)\rangle=\langle D_{\dot{\gamma}}V(t),W(t)\rangle+\langle V(t),D_{\dot{\gamma}}W(t)\rangle.$$

In particular if V and W are parallel along γ then $t\mapsto \langle V(t),W(t)\rangle$ is a constant map and therefore $\langle \tau_{a,b}^{\gamma}(v),\tau_{a,b}^{\gamma}(w)\rangle=\langle v,w\rangle$. This leads to the following result :

Proposition 2.1

Let (M, \langle , \rangle) be a Riemannian manifold with Levi-Civita connection ∇ . Then $\operatorname{Hol}_{\mathsf{x}}(M, \nabla) \subset \operatorname{O}(T_{\mathsf{x}}M, \langle , \rangle)$ for any $\mathsf{x} \in M$.

For any $x \in M$, we will say that T_xM is irreducibe if it does not admit any proper, non-trival subspace that is invariant by the action of the holonomy group at x.

In view of Proposition 1.3 we see that if T_xM is irreducible then T_yM is also irreducible for any $y \in M$. This suggests the following definition :

Definition 2.1

A Riemannian manifold (M, \langle , \rangle) is said to be irreducible if T_xM is irreducible for some (hence every) $x \in M$.

Theorem 11 (De Rham decomposition theorem)

A simply connected, complete Riemannian manifold (M, \langle , \rangle) is isometric to the direct product $M_0 \times \ldots, \times M_k$ where M_0 is a Euclidean space and M_1, \ldots, M_k are all simply connected, irreducible Riemannian manifolds. Such a decomposition is a unique up to the order of the factors involved.

Corollary 3.1

Let (M, \langle , \rangle) be a simply connected, complete Riemannian manifold and $M = M_0 \times \cdots \times M_k$ its de Rham decomposition. Let $x = (x_0, \dots, x_k)$.

The identification

$$\operatorname{Hol}_{\mathsf{x}_1}(M_1,\langle\;,\;\rangle)\times\cdots\times\operatorname{Hol}_{\mathsf{x}_k}(M_k,\langle\;,\;\rangle)\mapsto\operatorname{Hol}_{\mathsf{x}}(M,\langle\;,\;\rangle)$$

given by $(\tau_{x_1}^{\gamma_1}, \dots, \tau_{x_k}^{\gamma_k}) \mapsto \tau_{x}^{\alpha_1} \circ \dots \circ \tau_{x}^{\alpha_k}$ is an isomorphism, where α_i is the loop given by $\alpha_i(t) = (x_1, \dots, \gamma_i(t), \dots, x_k)$.

- ② Under the previous identification, $\operatorname{Hol}_{x_i}(M_i, \langle , \rangle)$ is a normal subgroup of $\operatorname{Hol}_x(M, \langle , \rangle)$ acting trivially on $T_{x_j}M_j$ for $j \neq i$ and irreducibly on $T_{x_i}M_i$.
- **Solution** For any $f \in Aff(M, \nabla)$ and any i = 1, ..., k,

$$T_x f(T_{x_0} M_0) = T_{f(x)_0} M_0$$
, and $T_x f(T_{x_i} M_i) = T_{f(x)_i} M_i$,

for some j = 1, ..., k. If $f \in Aff_0(M, \nabla)^0$, $T_x f(T_{x_i} M_i) = T_{f(x)_i} M_i$.

Proof.

We only prove the third point. Let $f \in \mathrm{Aff}(M,\nabla)$ and choose a piecewise smooth loop $\gamma:[0,1] \longrightarrow M$ based at f(x). Then for any $v \in T_{x_0}M_0$:

$$\tau_{f(x)}^{\gamma}(T_{x}f(v)) = T_{x}f(\tau_{x}^{f^{-1}\circ\gamma}(v)) = T_{x}f(v),$$

so $T_x f(v)$ is invariant by $\operatorname{Hol}_{f(x)}(M, \nabla)$ thus $T_x f(T_{x_0} M_0) = T_{f(x)_0} M_0$. On the other hand, if $w \in T_{x_i} M_i$ for $i \neq 0$ then :

$$\tau_{f(x)}^{\gamma}(T_{x}f(w)) = T_{x}f(\tau_{x}^{f^{-1}\circ\gamma}(w)) \in T_{x}f(T_{x_{i}}M_{i}),$$

thus $T_x f(T_{x_i} M_i)$ is invariant, furthermore if $V \subset T_x f(T_{x_i} M_i)$ is any invariant subspace then in the same way $(T_x f)^{-1}(V)$ is an invariant subspace of $T_{x_i} M_i$ thus it is either trivial or equal to $T_{x_i} M_i$ proving that $T_x f(T_{x_i} M_i)$ is irreducible, in particular one gets the decomposition of $T_{f(x)} M$ into the sum of irreducible subspaces :

$$T_{f(x)}M = T_x f(T_{x_0}M_0) \oplus \cdots \oplus T_x f(T_{x_k}M_k),$$

and by uniqueness of such decomposition we conclude that $T_x f(T_{x_i} M_i) = T_{f(x)_j} M_j$ for some j = 1, ..., k.

61

Proof. (Continued)

Next let X be a complete affine vector field on M i.e $X \in \mathfrak{aff}(M, \nabla)$, and consider the curve $\gamma(t) = \exp(tX) \cdot x$. Let $v_i \in T_{x_i}M_i$, and consider $u : \mathbb{R} \longrightarrow \mathbb{R}$ given by :

$$u(t) = \langle T_x \exp(tX)(v_i), \tau_{0,t}^{\gamma}(v_i) \rangle_{\gamma(t)}.$$

Then u is a smooth function satisfying $u(0) = \langle v_i, v_i \rangle_x \neq 0$ and therefore $u(t) \neq 0$ for $-\delta < t < \delta$, which shows that $T_x \exp(tX)(v_i) \in T_{\gamma(t)_i}M_i$ for all $-\delta < t < \delta$. In fact since $T_{x_i}M_i$ is finite-dimensional, one can choose $\delta > 0$ small enough so that

$$T_x \exp(tX)(T_{x_i}M_i) \in T_{\gamma(t)_i}M_i,$$

for any $-\delta < t < \delta$. The result follows from the fact that $\mathrm{Aff}(M,\nabla)^0$ is generated by 1-parameter subgroups.

Theorem 12

Let $M = M_0 \times \cdots \times M_k$ be the de Rham decomposition of a complete, simply connected Riemannian manifold (M, \langle , \rangle) . Then :

$$\operatorname{Isom}(M, \langle \;,\; \rangle)^0 = \operatorname{Isom}(M_0, \langle \;,\; \rangle)^0 \times \cdots \times \operatorname{Isom}(M_k, \langle \;,\; \rangle)^0,$$
$$\operatorname{Aff}(M, \nabla)^0 = \operatorname{Aff}(M_0, \nabla)^0 \times \cdots \times \operatorname{Aff}(M_k, \nabla)^0,$$

where ∇ is the Levi-Civita connection of M.

Proof.

Consider the homomorphism $\Psi: \mathrm{Diff}(M_0) \times \cdots \times \mathrm{Diff}(M_k) \longrightarrow \mathrm{Diff}(M)$ which corresponds to any k-tuple of diffeomorphisms (f_0, \ldots, f_k) the transformation $f: M \longrightarrow M$ given by :

$$f(x_0,\ldots,x_k)=(f_0(x_0),\ldots,f_k(x_k)).$$

Clearly Ψ is continuous and injective. We claim that $f=\Psi(f_0,\ldots,f_k)$ is an affine transformation if and only if f_i is an affine transformation for any $0 \le i \le k$. Indeed let $\gamma:[0,1] \longrightarrow M$ be any piecewise smooth curve and write $\gamma:=(\gamma_0,\ldots,\gamma_k)$ then choose $v=v_0\oplus\cdots\oplus v_k\in T_{\gamma(0)}M$ with $v_i\in T_{\gamma_i(0)}M_i$, then :

$$T_{\gamma(1)}f \circ \tau_{0,1}^{\gamma}(v) = \sum_{i=1}^{k} T_{y_i}f_i(\tau_{0,1}^{\gamma_i}(v_i)), \quad \tau_{0,1}^{f \circ \gamma}(T_{\gamma(0)}f(v)) = \sum_{i=1}^{k} \tau_{0,1}^{f_i \circ \gamma_i}(T_{x_i}f_i(v_i)),$$

which shows that f preserves parallel transports on M if and only if each f_i does so on M_i proving the claim. One can also prove in a similar way that f is an isometry if and only if every f_i is an isometry. In particular :

$$\Psi(\mathrm{Aff}(M_0) \times \cdots \times \mathrm{Aff}(M_k)) \subset \mathrm{Aff}(M)$$

,
$$\Psi(\operatorname{Isom}(M_0) \times \cdots \times \operatorname{Isom}(M_k)) \subset \operatorname{Isom}(M)$$
.

64

Proof. (Continued)

Let $f \in \mathrm{Aff}(M, \nabla)^0$ and $\mathrm{pr}_i : M \longrightarrow M_i$ be the projection on the i-th component then denote $g_i := \mathrm{pr}_i \circ f$, we will show that $g_i(x_0, \ldots, x_k)$ only depends on x_i . Indeed let $x = (x_0, \ldots, x_k) \in M$, $j \neq i$ and $v_j \in T_{x_j}M_j$ then by (3) of Corollary 3.1 :

$$T_{x}g_{i}(v_{j}) = T_{f(x)}\operatorname{pr}_{i}(\underbrace{T_{x}f(v_{j})}_{\in M_{i}}) = 0$$

Therefore if we fix $(a_0, \ldots, a_k) \in M$ and define $f_i : M_i \longrightarrow M_i$ by the expession :

$$f_i(y) := g_i(a_0,\ldots,y,\ldots,a_k),$$

then f_i is a well-defined diffeomorphism of M_i and $f = \Psi(f_0, \ldots, f_k)$. It also follows that if $f \in \text{Isom}(M, \langle , \rangle)^0$ then each f_i is an isometry.

Theorem 13

Let (M, \langle , \rangle) be a complete, irreducible Riemannian manifold, then $\mathrm{Aff}(M, \nabla) = \mathrm{Isom}(M, \langle , \rangle)$ except when M is a 1-dimensional Euclidean space.

The proof of this Theorem will be done in two steps: First one proves that on any such manifold, any affine transformation is homothetic and if furthermore $(M,\langle\;,\;\rangle)$ is not Euclidean then homothetic transformations are isometries, the result follows then by observing that only 1-dimensional Euclidean spaces can be irreducible.

Let (M, \langle , \rangle) be a Riemannian manifold, and recall that $f \in \mathrm{Diff}(M)$ is said to be a *homothetic transformation* if there exists a positive constant c > 0 such that

$$\langle T_x f(v), T_x f(w) \rangle = c^2 \langle v, w \rangle$$

for all $x \in M$ and $v, w \in T_x M$, i.e $f^*\langle , \rangle = c^2\langle , \rangle$.

If ∇ is the Levi-Civita of $(M,\langle\;,\;\rangle)$, then the Levi-Civita connection $\widetilde{\nabla}$ for $f^*\langle\;,\;\rangle$ is given by :

$$\widetilde{\nabla}_X Y := f_*^{-1} (\nabla_{f_* X} f_* Y), \tag{6}$$

When $f: M \longrightarrow M$ is a homothetic transformation then $\langle \ , \ \rangle$ and $f^*\langle \ , \ \rangle$ share the same Levi-Civita connection i.e $\widetilde{\nabla} = \nabla$, hence any homothetic transformation is an affine transformation. Conversely :

Lemma 14

If (M, \langle , \rangle) is an irreducible Riemannian manifold, then every affine transformation $f: M \longrightarrow M$ is homothetic.

Proof. Clearly \langle , \rangle and $f^*\langle , \rangle$ define the same Levi-Civita ∇ .

Recall that if $G \subset \mathrm{O}(V,\langle\;,\;\rangle)$ acts irreducibly on a Euclidean vector space $(V,\langle\;,\;\rangle)$ and preserves a symmetric bilinear form B, then we can find c>0 such that $B=c^2\langle\;,\;\rangle$. Applying this fact to

$$(V, \langle , \rangle) = (T_x M, \langle , \rangle_x), \quad G = \operatorname{Hol}_x(M, \langle , \rangle) \quad \text{and} \quad B = (f^* \langle , \rangle)_x,$$

we obtain that for any $x \in M$, $(f^*\langle , \rangle)_x = c_x^2\langle , \rangle_x$ for some $c_x > 0$. Finally, if $y \in M$ is another point and $\gamma : [0,1] \longrightarrow M$ is a piecewise smooth curve joining x to y, then for every $v \in T_xM$:

$$c_{y}^{2}\langle\tau_{x}^{\gamma}(v),\tau_{x}^{\gamma}(v)\rangle_{y} = \langle T_{y}f(\tau_{x}^{\gamma}(v)),T_{y}f(\tau_{x}^{\gamma}(v))\rangle_{f}(y)$$

$$= \langle \tau_{f(x)}^{f\circ\gamma}(T_{x}f(v)),\tau_{f(x)}^{f\circ\gamma}(T_{x}f(v))\rangle_{f(y)}$$

$$= \langle T_{x}f(v),T_{x}f(v)\rangle_{f(x)}$$

$$= c_{x}^{2}\langle v,v\rangle_{x}.$$

Since $\langle v, v \rangle_x = \langle \tau_x^{\gamma}(v), \tau_x^{\gamma}(v) \rangle_y$ for any $v \in T_x M$ we get that $c_x = c_y$, completing the proof.

Lemma 15

If (M, \langle , \rangle) is a complete Riemannian manifold which is not locally Euclidean, then every homothetic transformation is an isometry.

Proof.

Suppose that $(M,\langle\;,\;\rangle)$ admits a homothetic transformation $f:M\longrightarrow M$ that isn't an isometry, and write $f^*\langle\;,\;\rangle=c^2\langle\;,\;\rangle$ with c>0. Next notice that f^{-1} is homothetic as well with ration 1/c, therefore we suppose without loss of generality that 0< c<1.

We start by proving that f has a fixed point. Denote $d: M \times M \longrightarrow \mathbb{R}^+$ the geodesic distance and take an arbitrary point $x \in M$ then put $\ell := d(x, f(x))$. Let $\gamma : [0,1] \longrightarrow M$ be a minimizing geodesic joining x to f(x), which exists since M is complete, then $f^i \circ \gamma$ is a smooth curve joining $f^i(x)$ and $f^{i+1}(x)$ with length :

$$\ell_i = \int_0^1 \langle (f^i \circ \gamma)'(t), (f^i \circ \gamma)'(t) \rangle_{f^i \circ \gamma(t)}^{\frac{1}{2}} dt = c^i \ell,$$

Therefore if $m, n \in \mathbb{N}$ are such that m < n then :

$$d(f^{m}(x), f^{n}(x)) \leq \sum_{i=m}^{n-1} d(f^{i}(x), f^{i+1}(x)) \leq \sum_{i=m}^{n+1} \ell_{i} = \sum_{i=m}^{n+1} c^{i} \ell \leq \frac{c^{m} \ell}{1-c},$$

and thus $(f^m(x))_m$ is a Cauchy sequence in (M, d) hence converges to some $x^* \in M$ since M is complete.

Proof. (Continued)

Now x^* is obviously a fixed point of f, furthermore x^* does not depend on the choice of x, indeed given $z \in M$ and α a geodesic joining z to x^* , we get that $f^m \circ \alpha$ is a curve joining $f^m(z)$ to $f^m(x^*) = x^*$ and so :

$$d(f^{m}(z), x^{*}) \leq \ell(f^{m} \circ \alpha) = c^{m}\ell(\alpha) \underset{m \to +\infty}{\longrightarrow} 0.$$
 (7)

Now fix a neighborhood U of x^* in M with compact closure. Then there exists a constant $K^* > 0$ such that for any $y \in U$ and any unit vectors $v_1, v_2 \in T_v M$:

$$|\langle R_y(v_1, v_2)v_1, v_2\rangle_y| \le K^*, \tag{8}$$

where R denotes the curvature tensor of (M, \langle , \rangle) . Since f is also an affine transformation, then for any $z \in M$ and any orthonormal family $\{v, w\}$ of T_zM :

$$\langle R_{f^m(z)}(f_*^m v, f_*^m w) f_*^m v, f_*^m w \rangle = \langle f_*^m (R_z(v, w)v), f_*^m w \rangle = c^{2m} \langle R_z(v, w)v, w \rangle.$$
(9)

Proof. (Continued)

According to (7) there exists $N \in \mathbb{N}$ such that $f^m(z) \in U$ for any $m \geq N$, moreover $||f_*^m v|| = ||f_*^m w|| = c^m$, thus using (8):

$$|\langle R_{f^m(z)}(f_*^m v, f_*^m w) f_*^m v, f_*^m w \rangle| \leq K^* ||f_*^m v||^2 ||f_*^m w||^2 = c^{4m} K^*,$$

and finally (9) gives that $|\langle R_z(v,w)v,w\rangle| \leq c^{2m}K^*$ for every $m \geq N$. We conclude that $\langle R_z(v,w)v,w\rangle = 0$ for every $z \in M$ and any orthonormal family $\{v,w\}$ of T_zM i.e (M,\langle , \rangle) is locally Euclidean.

Theorems 12 and 13 have a number of interesting consequences, before we state them we need to make some remarks :

Let X be an affine vector field on a complete Riemannian manifold $(M, \langle \ , \ \rangle)$ and denote \widetilde{M} the universal cover of M with the induced metric $p^*\langle \ , \ \rangle$ where $p:\widetilde{M}\longrightarrow M$ is the natural projection, then let $\widetilde{M}=M_0\times\cdots\times M_k$ be its de Rham decomposition.

Next denote \widetilde{X} the lift of X to \widetilde{M} , i.e the unique vector field on \widetilde{M} satisfying

$$T_z p(\widetilde{X}_z) = X_{p(z)},$$

then \widetilde{X} is an affine transformation and since X is complete, \widetilde{X} is also complete hence an element of $\mathfrak{aff}(\widetilde{M},\nabla)$. Moreover \widetilde{X} is Killing if and only if X is Killing.

By Theorem 12, we have $\mathfrak{aff}(\widetilde{M},\nabla)\simeq\mathfrak{aff}(M_0,\nabla)\times\cdots\times\mathfrak{aff}(M_k,\nabla)$ and so \widetilde{X} corresponds to a unique family (X_0,\ldots,X_k) such that

$$X_i \in \mathfrak{aff}(M_i, \nabla)$$
.

According to Theorem 13 gives that $X_1, ..., X_k$ are all Killing vector fields, therefore X will be Killing if and only if X_0 is.

Corollary 3.2

If M is a complete whose restricted holonomy group $\widetilde{\operatorname{Hol}}_{x}(M,\langle\;,\;\rangle)$ have no nonzero invariant vector, then $\operatorname{Aff}(M,\nabla)^{0}=\operatorname{Isom}(M,\langle\;,\;\rangle)^{0}$, where ∇ is the Levi-Civita connection of $(M,\langle\;,\;\rangle)$.

Proof.

The restricted holonomy group $\operatorname{Hol}_{\times}(M,\langle\;,\;\rangle)$ is isomorphic to the restricted holonomy group of its universal cover \widetilde{M} , this is due to the fact that contractible loops on M lift to (contractible) loops on \widetilde{M} , this gives that the map :

$$\widetilde{\operatorname{Hol}}_{z}(\widetilde{M},\langle\;,\;\rangle) \longrightarrow \widetilde{\operatorname{Hol}}_{p(z)}(M,\langle\;,\;\rangle), \quad \tau_{x}^{\gamma} \mapsto T_{z}p \circ \tau_{z}^{\gamma} \circ (T_{z}p)^{-1} = \tau_{z}^{p \circ \gamma},$$

is an isomorphism for any $z \in \widetilde{M}$, moreover the restricted holonomy group of \widetilde{M} coincides with the total holonomy group since \widetilde{M} is simply connected. So our assumption just states that \widetilde{M} has no Euclidean factor i.e M_0 is a point, which gives in view of the previous remarks that every affine vector field on M is a Killing vector field.

Corollary 3.3

If X is an affine vector field of a complete Riemannian manifold (M, \langle , \rangle) and if the length of X is bounded, then X is a Killing vector field.

Proof.

Denote \widetilde{M} the universal cover of M with the induced metric $g:=p^*\langle\;,\;\rangle$ where $p:\widetilde{M}\longrightarrow M$ is the natural projection and let $\widetilde{M}=M_0\times\cdots\times M_k$ be its De Rham decomposition. Next let \widetilde{X} be the lift of X to \widetilde{M} and write $\widetilde{X}=(X_0,\ldots,X_k)$ such that $X_i\in\mathfrak{aff}(M_i,\nabla)$. Then :

$$g(X_0, X_0) \leq g(\widetilde{X}, \widetilde{X}) = \langle X, X \rangle,$$

hence if X has bounded length then so does X_0 . Write $X_0 = \sum \xi^i \partial/\partial x^i$ in some (global) Euclidean coordinate system x^1, \dots, x^r of M_0 . Since X_0 is an affine vector field then it satisfies :

$$(L_{X_0}\circ\nabla_Y-\nabla_Y\circ L_{X_0})Z=\nabla_{[X_0,Z]}Y,\quad \text{i.e}\quad L_{X_0}\nabla=0.$$

For $Y=\partial/\partial x^j$ and $Z=\partial/\partial x^k$ we get that $\nabla Y=0$, $\nabla Z=0$ hence by the previous expression $\nabla_Y[X_0,Z]=0$ which is equivalent to :

$$\frac{\partial^2 \xi^i}{\partial x^j \partial x^k} = 0, \quad i, j, k = 1, \dots r.$$

Proof. (Continued)

This means that

$$X_0 = \sum_{i=1}^r \left(\sum_{j=1}^r a_{ij} x^j + b_i \right) \partial/\partial x^i$$

where a_{ij} and b_i are constants, but since X_0 has bounded length it follows that $a_{ij}=0$ for all $i,j=1,\ldots,r$ proving that X_0 is a linear combination of $\partial/\partial x^1,\ldots,\partial/\partial x^r$ each of which is a Killing vector field on M_0 , we thus conclude that X_0 is Killing. By the previous remarks, X is a Killing vector field on M.

If M is a compact Riemannian manifold then the length of any vector field is bounded, therefore :

Corollary 3.4 (Yano's Theorem)

Let (M, \langle , \rangle) be a compact Riemannian manifold with Levi-Civita connection ∇ . Then $\mathrm{Aff}(M, \nabla)^0 = \mathrm{Isom}(M, \langle , \rangle)^0$.

END

Thanks for your attention