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Abstract

In this thesis, we study differential geometry of Koszul-Vinberg manifolds. A
Koszul-Vinberg manifold is a manifold M endowed with a pair (r, h) where r is
a flat torsionless connection and h is a symmetric bivector field satisfying a gen-
eralized Codazzi equation. When h is invertible, we recover the known notion of
pseudo-Hessian manifold. Koszul-Vinberg manifolds have properties similar to
Poisson manifolds and, in fact, to any Koszul-Vinberg manifold (M,r, h) we as-
sociate naturally a Poisson tensor on TM . We investigate these properties and we
study in detail many classes of such structures in order to highlight the richness of
the geometry of these manifolds. We introduce a notion of Koszul-Vinberg subman-
ifolds and we study their properties by taking into account some developments in
the theory of Poisson submanifolds.

In the second part of the thesis, we study invariant Koszul-Vinberg structures
on homogeneous spaces. More precisely, we give an algebraic characterization of
these structures in the same spirit of Nomizu’s theorem on invariant connections
on homogeneous spaces. We give many classes of examples mainly for reductive
or symmetric pairs (G,H). We establish many properties of pseudo-Hessian homo-
geneous manifolds.
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1

Introduction

A pseudo-Hessian manifold is a pseudo-Riemannian manifold (M, g) together with
a flat torsionless connection r satisfying the Codazzi equation

(rXg)(Y, Z) = (rY g)(X,Z). (0.0.1)

Typically, these structures occur when investigating exponential families of probab-
ility measures (For more details about pseudo-Hessian structures one can see the
book of Shima [49]). A Koszul-Vinberg manifold is a triple (M,r, h) of a manifold M

equipped with a flat torsionless connection r and h is a section of S2(TM) (rather
than a section g of S2(T ⇤

M)) which does not have to be non-degenerate, but satisfies
the generalized Codazzi equation

(r↵#h)(�, �) = (r�#h)(↵, �), (0.0.2)

for all ↵, �, � 2 ⌦1(M) and where ↵
# := h#(↵) is defined by contraction with

h. In case h is non-degenerate, identifying T
⇤
M and TM by h# yields a pseudo-

Riemannian metric, and (0.0.2) is then equivalent to (0.0.1), so that this structure is
indeed more general than pseudo-Hessian structures. This relation is analogous to
the one between Poisson geometry and symplectic geometry. The Koszul-Vinberg
theory is designed to make a symmetric analog of Poisson geometry where h re-
places the Poisson bivector field. Whereas in Poisson geometry the antisymmetric
nature of the Poisson tensor helps to kill second order derivatives, making a lot of
things natural, in this Koszul-Vinberg theory the strong condition of affine mani-
folds is needed to get similar conclusions.

In this context, several natural questions arise. First of all, there is a general
question: which properties of the usual, pseudo-Hessian manifolds hold for Koszul-
Vinberg manifolds? Which properties of Poisson manifolds would remain valid for
Koszul-Vinberg manifolds?

These questions lead to this thesis, whose results can be summarized as follows.
We start by proving an analog of the Darboux-Weinstein Theorem in some cases.
We show that each Koszul-Vinberg manifold gives rise to a Lie algebroid structure
on the cotangent bundle. We show that the associated foliation of this Lie algebroid
has affine leaves carrying a pseudo-Hessian structure in analogy with the symplectic
leaves in the Poisson situation. We show that each Koszul-Vinberg manifold gives
rise to a Poisson structure on the tangent bundle whose symplectic leaves are the
tangent bundles of the integral manifolds. We show that the tangent functor M !

TM sends the category of Koszul-Vinberg manifolds into the category of Poisson
manifolds. We give special classes of examples. Koszul-Vinberg given by affine or
quadratic coefficients as well as right invariant ones on Lie groups, relating the latter
to well known structures. Analogously to the Poisson case, we show that the dual
of any commutative, associative algebra naturally admits a linear Koszul-Vinberg
structure. Moreover, we give some classification results in the two-dimensional case.

Then we proceed to introduce morphisms of Koszul-Vinbeg manifolds which
are smooth affine maps between affine manifolds relating Koszul-Vinberg bivector
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fields. This allows us to speak of the category of Koszul-Vinberg manifolds. In this
spirit, we define Koszul-Vinberg submanifolds as affine submanifolds with tangent
bivector field making the immersion a Koszul-Vinberg map. We show that the tan-
gent bundle of a Koszul-Vinberg submanifold is a Poisson submanifold of the tan-
gent bundle of the ambient Koszul-Vinberg manifold. We introduce a coisotropic
submanifold of a Koszul-Vinberg manifold analogously to a coisotropic submani-
fold in Poisson geometry. We show that the tangent functor sends these submani-
folds to coisotropic submanifolds of the tangent bundle.

The last part of the thesis is devoted to the study of invariant Koszul-Vinberg
structures on homogeneous spaces. We prove an algebraic characterization of G-
invariant Koszul-Vinberg structures on G-homogeneous manifolds in the spirit of
Nomizu’s theorem on invariant connections (cf. [41, 28]). This leads us to build
many classes of invariant Koszul-Vinberg structures on reductive pairs or symmet-
ric spaces. We give also many classes of examples when the Koszul-Vinberg struc-
ture is actually a pseudo-Hessian structure. Among the results obtained, we will
show that if the Lie group G is semi-simple then G/H does not admit any non trivial
G-invariant pseudo-Hessian structure. Then, as an immediate consequence, we ob-
tain a new proof of a result of Shima [49, Theorem 9.2]. We completely describe the
regular affine foliation of an invariant Koszul-Vinberg structure.

These results are the subject of our three articles (two published and one submit-
ted):

A. ABOUQATEB, M. BOUCETTA AND C. BOURZIK. Contravariant Pseudo-Hessian
manifolds and their associated Poisson structures. Differential Geometry and its Applic-
ations 70 (2020): 101630.

A. ABOUQATEB, M. BOUCETTA AND C. BOURZIK. Submanifolds in Koszul–Vinberg
Geometry. Results Math 77, 19 (2022).

A. ABOUQATEB, M. BOUCETTA AND C. BOURZIK. Homogeneous spaces with in-
variant Koszul–Vinberg structures. Submitted. (2022)

Notation. For simplicity, we use K-V notation instead of Koszul-Vinberg.



3

Chapter 1

K-V manifolds

In this chapter, we explore the basic properties of K-V structures and we will see
how we can study them by exploiting their similarities with Poisson structures.

1.1 Affine manifolds

A connection r on a manifold M is a mapping

r : (X, Y ) 2 X(M)⇥ X(M) ! rXY 2 X(M),

satisfying the following conditions,

1. rX+fYZ = rXZ + frYZ,

2. rX(Y + fZ) = rXY +X(f)Z + frXZ,

where X, Y, Z 2 X(M), f 2 C
1(M).

The torsion tensor of r is given by

T (X, Y ) = rXY �rYX � [X, Y ].

The connection r is said to be torsionless if the tensor T vanish identically.
The curvature tensor R of r is given by

R(X, Y )Z = rXrYZ �rYrXZ �r[X,Y ]Z.

The connection r is said to be flat if the tensor R vanish identically.

Definition 1.1.1. A manifold (M,r) endowed with a flat torsionless connection r is called
an affine manifold.

An affine manifold (M,r) is called complete if r is complete. Equivalently, if its
universal covering is homeomorphic to Rn.

The following result is well known.

Proposition 1.1.2 ([49]).

1. Suppose that (M,r) is an affine manifold. Then there exist a local coordinate systems
(x1, . . . , xn) on M such that r@xi = 0. The changes between such coordinate systems
are affine transformations of Rn.

2. Conversely, if M admits a local coordinate systems such that the changes of the local
coordinate systems are affine transformations of Rn, then there exists a flat torsionless
connection r on M .
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For a flat torsionless connection r, a local coordinate system (x1, . . . , xn) satisfy-
ing r@xi = 0 is called an affine local coordinate system with respect r.

The flat torsionless connection r on Rn defined by r@xi = 0, where (x1, . . . , xn)
is the canonical affine coordinate system on Rn, is called the canonical flat torsionless
connection on Rn.

1.2 K-V manifolds

Let (M,r) be an affine manifold, h a symmetric bivector field on M , h# : T ⇤
M !

TM the associated contraction map given by � �, h#(↵) �:= h(↵, �), and for any
↵ 2 ⌦1(M), ↵# := h#(↵).

Definition 1.2.1. The triple (M,r, h) is called a K-V manifold if h satisfies the generalized
Codazzi equation

(r↵#h)(�, �) = (r�#h)(↵, �). (1.2.1)

We call such h a K-V bivector field.

The local expression of the equation (1.2.1) in affine charts is given by the follow-
ing proposition.

Proposition 1.2.2. Let (M,r) be an affine manifold. Let h be a symmetric bivector field on
M . For any f 2 C

1(M), put Xf = (df)#. The following assertions are equivalent

1. h is a K-V bivector field.

2. For any f, g 2 C
1(M) and any ↵ 2 ⌦1(M),

d↵ (Xf , Xg) = rXf
↵
#(g)�rXg↵

#(f).

3. For any f, g, µ 2 C
1(M),

rXf
Xµ(g) = rXgXµ(f).

4. for any m 2 M , there exists a coordinate system (x1, . . . , xn) around m such that for
any 1  i < j  n, k = 1, . . . , n, we have

rXxi
Xxk

(xj) = rXxj
Xxk

(xi) .

5. for any m 2 M , there exists an affine coordinate system (x1, . . . , xn) around m such
that for any 1  i < j  n and any k = 1, . . . , n

nX

l=1

[hil@xl
(hjk)� hjl@xl

(hik)] = 0, (1.2.2)

where hij = h(dxi, dxj).

Proof. Let h be a symmetric bivector field on (M,r) and m 2 M . We choose an
affine coordinate system (x1, . . . , xn) around m. Let ↵ = dxi, � = dxj and � = dxk.
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Then we have

(r↵#h)(�, �) = ↵
#
.h(�, �)� h(r↵#�, �)� h(�,r↵#�)

= �↵
#
.h(�, �)+ � �,r↵#�

#
� + � �,r↵#�

#
�

= �

nX

l=1

hil@xl
(hjk) +

nX

l=1

hil@xl
(hkj) +

nX

l=1

hil@xl
(hjk)

=
nX

l=1

hil@xl
(hjk).

Hence we get that
(r↵#h)(�, �) = (r�#h)(↵, �),

if and only if,
nX

l=1

hil@xl
(hjk) =

nX

l=1

hjl@xl
(hik).

Example 1.2.3.

1. Take M = Rn endowed with its canonical flat torsionless connection and consider

h =
nX

i=1

fi(xi)@xi ⌦ @xi ,

where fi : R �! R for i = 1, . . . , n. Then one can see easily that h satisfies (1.2.2)
and hence defines a K-V structure on Rn.

2. Take M = Rn endowed with its canonical flat torsionless connection and consider

h =
nX

i,j=1

xixj@xi ⌦ @xj .

Then one can easily see that h satisfies (1.2.2) and hence defines a K-V structure on
Rn.

3. Let (M,r) be an affine manifold, (X1, . . . , Xr) a family of parallel vector fields and
(ai,j)1i,jn a symmetric n-matrix. Then

h =
X

i,j

ai,jXi ⌦Xj

defines a K-V structure on M .

4. Consider Rn endowed with its canonical flat torsionless connection r and denote by
(x1, . . . , xr, y1, . . . , yn�r) its canonical linear coordinates. Let f 2 C

1(M) such that
the matrix

⇣
@
2
f

@xi@xj

⌘
is invertible and put

h =
rX

i,j=1

hij@xi ⌦ @xj ,

where (hij) is the inverse of the matrix
⇣

@
2
f

@xi@xj

⌘
. Then (Rn

,r, h) is a K-V manifold.
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1.3 The Lie algebroid of a K-V manifold

Let (M,r, h) be an affine manifold endowed with a symmetric bivector field. We
associate to this triple a bracket on ⌦1(M) by putting

[↵, �]h := r↵#� �r�#↵, (1.3.1)

and a map D : ⌦1(M)⇥ ⌦1(M) �! ⌦1(M) given by

� D↵�, X �:= (rXh)(↵, �)+ � r↵#�, X �, (1.3.2)

for any ↵, � 2 ⌦1(M) and X 2 �(TM). This bracket is skew-symmetric and

Lemma 1.3.1. For any f 2 C
1(M),↵, � 2 ⌦1(M),

[↵, �]h=D↵� �D�↵ and [↵, f�]h=f [↵, �]h + ↵
#(f)�.

Proof. This follows from the fact that

� [↵, �]h, X �=� r↵#� �r�#↵, X �=� D↵� �D�↵, X �,

and

[↵, f�]h = r↵#f� �r(f�)#↵ = ↵
#(f)� + fr↵#� � fr�#↵ = ↵

#(f)� + f [↵, �]h.

Theorem 1.3.2. With the hypothesis and notations above, the following assertions are equi-
valent:

(i) h is a K-V bivector field.

(ii) (T ⇤
M,h#, [ , ]h) is a Lie algebroid.

In this case, D is a flat T ⇤
M -connection on the vector bundle T ⇤

M ! M satisfying

(D↵�)
# = r↵#�

#
,

for any ↵, � 2 ⌦1(M).

Proof. According to [9, Proposition 2.1], (T ⇤
M,h#, [ , ]h) is a Lie algebroid if and

only if, for any affine coordinate system (x1, . . . , xn),

([dxi, dxj]h)
# = [(dxi)

#
, (dxj)

#] and
I

i,j,k

[dxi, [dxj, dxk]h]h = 0,

for 1  i < j < k  n. Since [dxi, dxj]h = 0 this is equivalent to [(dxi)#, (dxj)#] = 0
for any 1  i < j  n which is equivalent to (1.2.2).

Suppose now that (i) or (ii) holds. For any ↵, �, � 2 ⌦1(M),

� D↵�, �
#
� = r�#h(↵, �) + h(r⇤

↵#�, �)

= r↵#h(�, �) + h(r⇤
↵#�, �)

= ↵
#
.h(�, �)� h(r⇤

↵#�, �)

= � �,r↵#�
#
� .
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This shows that (D↵�)# = r↵#�
#.

Let us now show that the curvature of D vanishes. Since [dxi, dxj]h = 0, it suffices
to show that, for any i, j, k 2 {1, . . . , n} with i < j, DdxiDdxjdxk = DdxjDdxidxk. We
have

� Ddxidxk,
@

@xl

�=
@hik

@xl

,

and hence

Ddxidxk =
nX

l=1

@hik

@xl

dxl,

and then

DdxjDdxidxk =
nX

l=1

Ddxj

✓
@hik

@xl

dxl

◆

=
nX

l=1

 
(dxj)

#

✓
@hik

@xl

◆
dxl +

@hik

@xl

 
nX

s=1

@hjl

@xs

dxs

!!

=
nX

l,r=1

hjr

✓
@
2
hik

@xr@xl

◆
dxl +

nX

s,l=1

@hik

@xl

@hjl

@xs

dxs

=
nX

l,r=1

hjr

✓
@
2
hik

@xr@xl

◆
dxl +

nX

l,r=1

@hik

@xr

@hjr

@xl

dxl

=
nX

l,r=1

✓
hjr

✓
@
2
hik

@xr@xl

◆
+
@hik

@xr

@hjr

@xl

◆
dxl

=
nX

l=1

@

@xl

 
X

r

hjr

@hik

@xr

!
dxl.

So

DdxiDdxjdxk �DdxjDdxidxk = d

 
nX

r=1

✓
hjr

@hik

@xr

� hir

@hjk

@xr

◆!
(1.2.2)
= d(0) = 0.

The following result is an important consequence of Theorem 1.3.2.

Proposition 1.3.3. Let (M,r, h) be a K-V manifold. Then,

1. The distribution Imh# is integrable and defines a singular foliation L on M .

2. For any leaf L of L, (L,r|L, gL) is a pseudo-Hessian manifold where gL is given by
gL(↵#

, �
#) = h(↵, �).

We will call the foliation defined by Imh# the affine foliation associated to (M,r, h).

Remark 1.3.4. This Proposition 1.3.3 shows that K-V bivector fields can be used either to
build examples of affine foliations on affine manifolds or to build examples of pseudo-Hessian
manifolds.

Let (M,r, h) be a K-V manifold and D the connection given in (1.3.2). Let x 2 M

and gx = kerh#(x). Since (T ⇤
M,h#, [ , ]h) is a Lie algebroid then (gx, [ , ]) is a Lie
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algebra where the bracket [ , ] is given by

[a, b] = [↵, �]h(x),

where ↵, � 2 ⌦1(M) are any 1-forms satisfying ↵(x) = a and �(x) = b. Now for any
a, b 2 gx put

a • b = (D↵�)(x),

where ↵, � 2 ⌦1(M) are any 1-forms satisfying ↵(x) = a and �(x) = b.

Proposition 1.3.5. (gx, •) is a commutative associative algebra.

Proof. For any ↵, � 2 ⌦1(M),

(D↵�)
# = r↵#�

#
.

This shows that if ↵#
x
= 0 then (D↵�)#x = 0. Moreover,

D↵� �D�↵ = r↵#� �r�#↵.

This implies that if ↵#
x
= �

#
x
= 0 then

(D↵�)(x) = (D�↵)(x).

This implies that • defines a commutative product on gx and moreover, by using the
vanishing of the curvature of D, we get the associativity of •.

Near a point where h vanishes, the algebra structure of gx can be made explicit.

Proposition 1.3.6. We consider Rn endowed with its canonical affine connection, h a sym-
metric bivector field on Rn such that h(0) = 0 and (Rn

,r, h) is a K-V manifold. Then the
product on (Rn)⇤ given by

e
⇤
i
• e

⇤
j
=

nX

k=1

@hij

@xk

(0)e⇤
k
,

is associative and commutative.

Proof. It is a consequence of the relation Ddxidxj = dhij true by virtue of (1.3.2).

1.4 The product of K-V manifolds and the splitting the-

orem

As the product of two Poisson manifolds is a Poisson manifold [56], the product of
two K-V manifolds is a K-V manifold.

Let (M1,r
1
, h

1) and (M2,r
2
, h

2) be two K-V manifolds. We denote by pi : M :=
M1 ⇥ M2 ! Mi, i = 1, 2 the canonical projections. For any X 2 �(TM1) and Y 2

�(TM2), we denote by X + Y the vector field on M given by (X + Y )(m1,m2) =
(X(m1), Y (m2)). The product of the affine atlases on M1 and M2 is an affine atlas
on M and the corresponding flat torsionless connection is the unique flat torsionless
connection r on M satisfying

rX1+Y1(X2 + Y2) = r
1
X1
X2 +r

2
Y1
Y2,

for any X1, X2 2 �(TM1) and Y1, Y2 2 �(TM2).
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Moreover, the product of h1 and h2 is the unique symmetric bivector field h sat-
isfying,

h(p⇤1↵1, p
⇤
1�1) = h

1(↵1, �1)�p1, h(p
⇤
2↵2, p

⇤
2�2) = h

2(↵2, �2)�p2 and h(p⇤1↵1, p
⇤
2↵2) = 0,

for any ↵1, �1 2 ⌦1(M1), ↵2, �2 2 ⌦1(M2),

Proposition 1.4.1. (M,r, h) is a K-V manifold.

Proof. Let (m1,m2) 2 M . Choose an affine coordinate system (x1, . . . , xn1) near m1

and an affine coordinate system (y1, . . . , yn2) near m2. Then

h =
X

i,j

h
1
ij
� p1@xi ⌦ @xj +

X

l,k

h
2
lk
� p2@yl ⌦ @yk

and one can check easily that h satisfies (1.2.2).

If we continue our investigation of the analogies between Poisson manifolds and
K-V manifolds, we can naturally ask if there is an analog of the Darboux-Weinstein
theorem (see [56]) in the context of K-V manifolds. To be more specific, assume
that (M,r, h) is an affine manifold endowed with a non degenerate bivector field
h. Then h is a K-V bivector field if and only if, for any m 2 M there exits an affine
coordinates system (x1, . . . , xn) around m such that (hij)1i,jn is invertible and is
the inverse of

⇣
@
2
�

@xi@xj

⌘

1i,jn

for some smooth function � around m (� is called the

potential). More generally, if we assume just h is a K-V bivector field and m 2 M

such that rankh#(m) = r. One can inquire whether there exists an affine coordinate
system (x1, . . . , xr, y1, . . . , yn�r) such that

h =
rX

i,j=1

hij(x1, . . . , xr)@xi ⌦ @xj +
n�rX

i,j=1

fij(y1, . . . , yn�r)@yi ⌦ @yj ,

where (hij)1i,jr is invertible and is the inverse of
⇣

@
2
�

@xi@xj

⌘

1i,jr

and fij(m) = 0 for

any i, j. Moreover, if the rank of h# is constant near m then the functions fij vanish.
The answer is no in general for a geometric reason. Suppose that m is regular, i.e.,

the rank of h is constant near m and suppose that there exists an affine coordinate
system (x1, . . . , xr, y1, . . . , yn�r) such that

h =
rX

i,j=1

hij(x1, . . . , xr)@xi ⌦ @xj .

This will have a strong geometric consequence, namely that Imh# = span(@x1 , . . . , @xr)
and the associated affine foliation is parallel, i.e., if X is a local vector field and Y

is tangent to the foliation then rXY is tangent to the foliation. We give now an
example of a regular K-V manifold whose associated affine foliation is not parallel,
which shows that the analog of Darboux-Weinstein is not true in general.

Example 1.4.2. We consider M = R4 endowed with its canonical affine connection r,
denote by (x, y, z, t) its canonical coordinates and consider

X = cos(t)@x + sin(t)@y + @z, Y = � sin(t)@x + cos(t)@y and h = X ⌦ Y + Y ⌦X.
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We have rXX = rYX = rXY = rY Y = 0 and hence h is a K-V bivector field, Imh# =
span{X, Y } and the rank of h is constant equal to 2. However, the foliation associated to
Imh# is not parallel since r@tY = �X + @z /2 Imh#.

However, when h has constant rank equal to dimM � 1, we have the following
result and its important corollary.

Theorem 1.4.3. Let (M,r, h) be a K-V manifold and m2M such that m is a regular point
and the rank of h#(m) is equal to n � 1. Then there exists an affine coordinate system
(x1, . . . , xn) around m and a function f(x1, . . . , xn) such that

h =
n�1X

i,j=1

hij@xi ⌦ @xj ,

and the matrix (hij)1i,jn�1 is invertible and its inverse is the matrix
�

@
2
f

@xi@xj

�
1i,jn�1

.

Corollary 1.4.4. Let (M,r, h) be a K-V manifold with h of constant rank equal to dimM�

1. Then the affine foliation associated to Imh# is r-parallel.

In order to prove Theorem 1.4.3, we need the following lemma.

Lemma 1.4.5. Let f : R2
�! R be a differentiable function such that @x(f) + f@y(f) = 0.

Then f is a constant.

Proof. Let f be a solution of the equation above. We consider the vector field Xf =
@x + f@y. The integral curve (x(t), y(t)) of Xf passing through (a, b) 2 R2 satisfies

x
0(t) = 1, y

0(t) = f(x(t), y(t)) and (x(0), y(0)) = (a, b).

Now
y
00(t) = @x(f)(x(t), y(t)) + y

0(t)@y(f)(x(t), y(t)) = 0,

and hence, the flow of Xf is given by �(t, (x, y)) = (t + x, f(x, y)t + y). The relation
�(t+ s, (x, y)) = �(t,�(s, (x, y))) implies that the map F (x, y) = (1, f(x, y)) satisfies

F (u+ tF (u)) = F (u), u 2 R2
, t 2 R.

Let u, v 2 R2 such that F (u) and F (v) are linearly independent. Then there exist s, t 2
R such that u�v = tF (u)+sF (v) and hence F (u) = F (v) which is a contradiction. So
F (x, y) = ↵(x, y)(a, b), i.e., (1, f(x, y)) = (↵(x, y)a,↵(x, y)b) and ↵ must be constant
and hence f is constant.

Proof of Theorem 1.4.3. Let (x1, . . . , xn) be an affine coordinate system near m such
that (X1, . . . , Xn�1) are linearly independent in a neighborhood of m, where Xi =

(dxi)#, Xn =
n�1X

j=1

fjXj and, by virtue of the proof of Theorem 1.3.2, for any 1  i <

j  n, [Xi, Xj] = 0. For any i = 1, . . . , n� 1, the relation [Xi, Xn] = 0 is equivalent to

Xi(fj) = hin@xn(fj) +
n�1X

l=1

hil@xl
(fj) = 0, j = 1, . . . , n� 1.
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But hin = Xn(xi) =
n�1X

l=1

flhil and hence, for any i, j = 1, . . . n� 1,

n�1X

l=1

hil(fl@xn(fj) + @xl
(fj)) = 0.

Or the matrix (hij)1i,jn�1 is invertible so we get

fl@xn(fj) + @xl
(fj) = 0, l, j = 1, . . . , n� 1. (1.4.1)

For l = j we get that fj satisfies fj@xn(fj)+@xj(fj) = 0 so, according to Lemma 1.4.5,
@xn(fj) = @xj(fj) = 0 and from (1.4.1), fj =constant. We consider y = f1x1 + . . . +
fn�1xn�1 � xn, we have (dy)# = 0 and (x1, . . . , xn�1, y) is an affine coordinate system
around m.

On the other hand, there exists a coordinate system (z1, . . . , zn) such that

(dxi)
# = @zi , i = 1, . . . , n� 1.

We deduce that

@xi =
n�1X

j=1

h
ij
@zj , i = 1, . . . , n� 1,

with h
ij = @zj

@xi
. We consider � =

n�1X

j=1

zjdxj . We have d� = 0 so, according to the

foliated Poincaré Lemma (see [13, p.56]) there exists a function f such that hij =
@
2
f

@xi@xj
.

1.5 The divergence and the modular class of a K-V man-

ifold

We define now the divergence of a K-V structure. We first recall the definition of
the divergence of multivector fields associated to a connection on a manifold.

Let (M,r) be a manifold endowed with a connection. We define divr : �(⌦p
TM) !

�(⌦p�1
TM) by

divr(T )(↵1, . . . ,↵p�1) =
nX

i=1

rei(T )(e
⇤
i
,↵1, . . . ,↵p�1),

where ↵1, . . . ,↵p�1 2 T
⇤
x
M , (e1, . . . , en) a basis of TxM and (e⇤1, . . . , e

⇤
n
) its dual basis.

This operator respects the symmetries of tensor fields.
Suppose now that (M,r, h) is a K-V manifold. The divergence of this structure is

the vector field divr(h). This vector field is an invariant of the K-V structure and has
an important property. Indeed, let dh : �(^•

TM) �! �(^•+1
TM) be the differential
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associated to the Lie algebroid structure (T ⇤
M,h#, [ , ]h) and given by

dhQ(↵1, . . . ,↵p) =
pX

j=1

(�1)j+1
↵
#
j
.Q(↵1, . . . , ↵̂j, . . .↵p)

+
X

1i<jp

(�1)i+j
Q([↵i,↵j]h,↵1, . . . , ↵̂i, . . . , ↵̂j, . . . ,↵p).

Proposition 1.5.1. dh(divr(h)) = 0.

Proof. Let (x1, . . . , xn) be an affine coordinate system. We have

dhdivr(h)(↵, �) =
nX

i=1

↵
#
.r@xi

(h)(dxi, �)� �
#
.r@xi

(h)(dxi,↵)�r@xi
(h)(dxi,r↵#�)

+r@xi
(h)(dxi,r�#↵)

=
nX

i=1

�
r↵#r@xi

(h)(dxi, �)�r�#r@xi
(h)(dxi,↵)

�

(1.2.1)
=

nX

i=1

⇣
r[↵#,@xi ]

(h)(dxi, �)�r[�#,@xi ]
(h)(dxi,↵)

⌘
.

If we take ↵ = dxl and � = dxk, we have

[@xi , (dxl)
#] =

nX

m=1

@xi(hml)@xm ,

and hence

dhdivr(h)(↵, �) =
nX

i,m=1

(@xi(hml)@xm(hik)� @xi(hmk)@xm(hil)) = 0.

Let (M,r, h) be an orientable K-V manifold and ⌦ a volume form on M . For
any f we denote by Xf = h#(df) and we define M⌦ : C1(M,R) �! C

1(M,R) by
putting for any f 2 C

1(M,R),

rXf
⌦ = M⌦(f)⌦.

It is obvious that M⌦ is a derivation, hence a vector field, and that

Mef⌦ = Xf +M⌦.

Moreover, if (x1, . . . , xn) is an affine coordinate system and µ = ⌦(@x1 , . . . , @xn)
then

rXf
⌦(@x1 , . . . , @xn) = Xf (µ) = Xln |µ|(f)µ.

So in the coordinate system (x1, . . . , xn), we have M⌦ = Xln |µ|. This implies dhM⌦ =
0. The cohomology class of M⌦ doesn’t depend on ⌦ and we call it the modular class
of (M,r, h).

Proposition 1.5.2. The modular class of (M,r, h) vanishes if and only if there exists a
volume form ⌦ such that rXf

⌦ = 0 for any f 2 C
1(M,R).
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By analogy with the case of Poisson manifolds, one can ask if it is possible to
find a volume form ⌦ such that LXf

⌦ = 0 for any f 2 C
1(M,R). The following

proposition gives a negative answer to this question unless h = 0.

Proposition 1.5.3. Let (M,r, h) be an orientable K-V manifold. Then,

1. For any volume form ⌦ and any f 2 C
1(M,R),

LXf
⌦ = [M⌦(f) + divr(h)(f)+ � h,Hess(f) �]⌦,

where Hess(f)(X, Y ) = rX(df)(Y ) and � h,Hess(f) � is the pairing between the
bivector field h and the 2-form Hess(f) = rdf .

2. There exists a volume form ⌦ such that LXf
⌦ = 0 for any f 2 C

1(M,R) if and only
if, h = 0.

Proof.

1. Let (x1, . . . , xn) be an affine coordinate system. Then,

[Xf , @xi ] =
nX

l,j=1

[@xj(f)hjl@xl
, @xi ]

= �

nX

l,j=1

�
hjl@xi@xj(f) + @xj(f)@xi(hjl)

�
@xl

,

LXf
⌦(@x1 , . . . , @xn) = (rXf

⌦)(@x1 , . . . , @xn)�
nX

i=1

⌦((@x1 , . . . , [Xf , @xi ], . . . , @xn))

= (rXf
⌦)(@x1 , . . . , @xn)

+
nX

i,j=1

�
hji@xi@xj(f) + @xj(f)@xi(hji)

�
⌦(@x1 , . . . , @xn),

and the formula follows since divr(h) =
nX

i,j=1

@xi(hji)@xj .

2. This is a consequence of the fact that M⌦ and divr(h) are derivation and

� h,Hess(fg) �= f � h,Hess(g) � +g � h,Hess(f) � +2 � h, df � dg � .

1.6 The tangent bundle of a K-V manifold

In this section, we define and study the associated Poisson tensor on the tangent
bundle of a K-V manifold. We will start this paragraph by recalling some valuable
results concerning the geometry of the tangent bundle.

Let (M,r) be an n-dimensional smooth manifold endowed with a connection
and denote by p : TM ! M the canonical projection of the tangent bundle. It
is a well known fact that one can define on TM the so called Sasaki connection r

associated to r, and also the Sasaki almost complex structure J : T (TM) ! T (TM).
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For more details, one can see [23, 58, 21]. Indeed, associated to r there exists a
splitting

T (TM) = V (M)�H(M),

such that for any u 2 TM , Tup : Hu(M) �! Tp(x)M is an isomorphism. For any
vector field X 2 �(TM) we denote by X

v
2 �(V (M)) its vertical lift and by X

h
2

�(H(M)) its horizontal lift. These are given, for any u 2 TM , by

X
v

u
=

d

dt |t=0

(u+ tXp(u)), and Tp(Xh

u
) = Xp(u).

The vector Xh

u
can also be defined using parallel transport. Indeed, let � be a smooth

curve on M starting at x 2 M and �
0(0) = Xx 2 TxM . Then

X
h

u
=

d

dt |t=0

⌧
�

0t(u), (1.6.1)

where ⌧ �0t : TxM
⇠=
! T�(t)M is the parallel transport map along �.

The Sasaki almost complex structure J : T (TM) �! T (TM) determined by r is
defined by

J(Xh) = X
v and J(Xv) = �X

h
.

It is integrable to a complex structure on TM if and only if r is flat.
Suppose now that (M,r) is an affine manifold. Since the curvature of r van-

ishes, for any X, Y 2 �(TM),

[Xh
, Y

h] = [X, Y ]h, [Xh
, Y

v] = (rXY )v and [Xv
, Y

v] = 0. (1.6.2)

As for the vector fields, for any ↵ 2 ⌦1(M), we define ↵v
,↵

h
2 ⌦1(TM) by

(
↵
v(Xv) = ↵(X) � p,

↵
v(Xh) = 0,

and

(
↵
h(Xh) = ↵(X) � p,

↵
h(Xv) = 0.

The Sasaki connection r on TM is defined by

rXhY
h = (rXY )h, rXhY

v = (rXY )v and rXvY
h = rXvY

v = 0, (1.6.3)

where X, Y 2 �(TM). This connection is torsionless and flat and hence (TM,r) is
an affine manifold. Moreover, J is parallel with respect to r.

Remark 1.6.1. All the above geometrical structures on TM could be described locally in an
easy way. In fact, let (x1, · · · , xn) be an affine coordinates system on an open set U ⇢ M .
Then we can see easily that the connection r is the canonical one for which the associated ca-
nonical coordinate system (x1, · · · , xn, y1, · · · , yn) on TU is affine (where xi(u) := xi(p(u))
and yj(u) := dxi(u) for any u 2 TU ). The complex structure is given by J(@xi) = @yi ,
J(@yi) = �@xi .

Now, let h be a symmetric bivector field on M . We associate to h a skew-symmetric
bivector field ⇧ on TM by putting

⇧(↵v
, �

v) = ⇧(↵h
, �

h) = 0 and ⇧(↵h
, �

v) = �⇧(�v
,↵

h) = h(↵, �) � p,
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for any ↵, � 2 ⌦1(M). For any ↵ 2 ⌦1(M),

⇧#(↵
v) = �(↵#)h and ⇧#(↵

h) = (↵#)v. (1.6.4)

To prove the main result of this chapter, we need the following proposition which is
a part of the folklore.

Proposition 1.6.2. Let (P,r) be a manifold endowed with a torsionless connection and ⇡
is a bivector field on P . Then the Nijenhuis-Schouten bracket [⇡, ⇡] is given by

[⇡, ⇡](↵, �, �) = 2
�
r⇡#(↵)⇡(�, �) +r⇡#(�)⇡(�,↵) +r⇡#(�)⇡(↵, �)

�
.

Theorem 1.6.3. The following assertions are equivalent:

(i) (M,r, h) is a K-V manifold.

(ii) (TM,⇧) is a Poisson manifold.

In this case, if L is a leaf of Imh# then TL ⇢ TM is a symplectic leaf of ⇧ which is also a
complex submanifold of TM . Moreover, if !L is the symplectic form of TL induced by ⇧ and
gL is the pseudo-Riemannian metric given by gL(U, V ) = !(JU, V ) then (TL, gL,!L, J) is
a pseudo-Kähler manifold.

Proof. We will use Proposition 1.6.2 to prove the equivalence. Indeed, by a direct
computation one can establish easily, for any ↵, �, � 2 ⌦1(M), the following relations

r⇧#(↵v)⇧(�
v
, �

v) = r⇧#(↵v)⇧(�
h
, �

h) = 0,

r⇧#(↵h)⇧(�
v
, �

v) = r⇧#(↵h)⇧(�
h
, �

h) = r⇧#(↵h)⇧(�
h
, �

v) = 0,

r⇧#(↵v)⇧(�
h
, �

v) = r↵#(h)(�, �) � p,

and the equivalence follows. The second part of the theorem is obvious and the only
point which needs to be checked is that gL is non-degenerate.

Remark 1.6.4.

1. The total space of the dual of a Lie algebroid carries a Poisson tensor (see appendix B).
If (M,r, h) is a K-V manifold then, according to Theorem 1.3.2, T ⇤

M carries a Lie
algebroid structure and one can see easily that ⇧ is the corresponding Poisson tensor
on TM .

2. The equivalence of (i) and (ii) in Theorem 1.6.3 deserves to be stated explicitly in the
case of Rn endowed with its canonical affine structure r. Indeed, let (hij)1i,jn be
a symmetric matrix where hij 2 C

1(Rn
,R) and h the associated symmetric bivector

field on Rn. The associated bivector field ⇧h on TRn = Cn is

⇧h =
nX

i,j=1

hij(x)@xi ^ @yj ,

where (x1 + iy1, . . . , xn + iyn) are the canonical coordinates of Cn. Then, according
to Theorem 1.3.2, (Rn

,r, h) is a K-V manifold if and only if (Cn
,⇧h) is a Poisson

manifold.

We explore now some relations between some invariants of (M,r, h) and some
invariants of (TM,⇧).
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Proposition 1.6.5. Let (M,r, h) be a K-V manifold. Then (divrh)v = divr⇧.

Proof. Fix (x, u) 2 TM and choose a basis (e1, . . . , en) of TxM . Then (ev1, . . . , e
v

n
, e

h

1 , . . . , e
h

n
)

is a basis of T(x,u)TM with ((e⇤1)
v
, . . . , (e⇤

n
)v, (e⇤1)

h
, . . . , (e⇤

n
)h) as a dual basis. For any

↵ 2 T
⇤
x
M , we have

� ↵
v
, divr⇧ � =

nX

i=1

⇣
re

v
i
(⇧)((e⇤

i
)v,↵v) +r

e
h
i
(⇧)((e⇤

i
)h,↵v)

⌘

(1.6.3)
= � ↵, divr(h) � �p =� ↵

v
, (divr(h))

v
� .

In the same way we get that � ↵
h
, divr⇧ �= 0 and the result follows.

Let (M,r, h) be a K-V manifold. For any multivector field Q on M we define its
vertical lift Qv on TM by

i↵hQ
v = 0 and Q

v(↵v

1, . . . ,↵
v

q
) = Q(↵1, . . . ,↵q) � p.

Recall that h defines a Lie algebroid structure on T
⇤
M whose anchor is h# and the

Lie bracket is given by (1.3.1). The Poisson tensor ⇧ defines a Lie algebroid structure
onT ⇤

TM whose anchor is ⇧# and the Lie bracket is the Koszul bracket

[�1,�2]⇧ = L⇧#(�1)�2 � L⇧#(�2)�1 � d⇧(�1,�2), �1,�2 2 ⌦1(TM).

We denote by dh (resp. d⇧) the differential associated to the Lie algebroid structure
on T

⇤
M (resp. T ⇤

TM ) defined by h (resp. ⇧).

Proposition 1.6.6.

(i) For any ↵, � 2 ⌦1(M) and X 2 �(TM),
(
LXh↵

h = (LX↵)h, LXh↵
v = (rX↵)v, LXv↵

h = 0 and LXv↵
v = (LX↵)h � (rX↵)h,

[↵h
, �

h]⇧ = 0, [↵v
, �

v]⇧ = �[↵, �]v
h

and [↵h
, �

v]⇧ = (D�↵)h,

where D is the connection given by (1.3.2).

(ii) (dhQ)v = �d⇧(Qv).

Proof. The relations in (i) can be established by a straightforward computation.
From these relations and the fact that ⇧#(↵h) = (↵#)v one can deduce easily that
i↵hd⇧(Qv) = 0. On the other hand, since ⇧#(↵v) = �(↵#)h and [↵v

, �
v]⇧ = �[↵, �]v

we can conclude.

Remark 1.6.7. From Propositions 1.5.1 and Proposition 1.6.6, we can deduce that d⇧(divr⇧) =
0. This is not a surprising result because r is flat and divr⇧ is a representative of the mod-
ular class of ⇧.

As a consequence of Proposition 1.6.6 we can define a linear map from the co-
homology of (T ⇤

M,h#, [ , ]h) to the cohomology of (T ⇤
TM,⇧#, [ , ]⇧) by

V : H⇤(M,h) �! H
⇤(TM,⇧), [Q] 7! [Qv].

Proposition 1.6.8. V is injective.
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Proof. An element P 2 �(^d
TTM) is of type (r, d� r) if for any q 6= r

P (↵v

1, . . . ,↵
v

q
, �

h

1 , . . . , �
h

d�q
) = 0,

for any ↵1, . . . ,↵q, �1, . . . , �d�q 2 ⌦1(M). We have
(
�(^d

TTM) =
L

d

r=0 �(r,d�r)(^d
TTM),

d⇧(�(r,d�r)(^d
TTM)) ⇢ �(r+1,d�r)(^d+1

TTM)� �(r,d+1�r)(^d+1
TTM).

Let Q 2 �(^d
TM) such that dhQ = 0 and there exists P 2 �(^d�1

TTM) such that
d⇧P = Q

v. Since Q
v
2 �(d,0)(^d

TTM) then P 2 �(d�1,0)(^d�1
TTM). Let us show

that P = T
v. For ↵1, . . . ,↵d�1, � 2 ⌦1(M), we have

0 = d⇧P (�h
,↵

v

1, . . . ,↵
v

d�1) = (�#)v.P (↵v

1, . . . ,↵
v

d�1).

So the function P (↵v

1, . . . ,↵
v

d�1) is constant on the fibers of TM and hence there exists
T 2 �(^d�1

TM) such that P (↵v

1, . . . ,↵
v

d�1) = T (↵1, . . . ,↵d�1) � p. So [Q] = 0 which
completes the proof.

1.7 Linear and affine K-V structures

As in the Poisson geometry context, we have the notions of linear and affine K-V
structures. One can see [32] for the notion of cocycle in associative algebras.

Let (V,r) be a finite dimensional real vector space endowed with its canonical
affine structure. A symmetric bivector field h on V is called affine if there exists a
commutative product • on V

⇤ and a symmetric bilinear form B on V
⇤ such that, for

any ↵, � 2 V
⇤
⇢ ⌦1(V ) and u 2 V ,

h(↵, �)(u) =� ↵ • �, u � +B(↵, �).

One can see easily that if ↵, � 2 ⌦1(V ) = C
1(V, V ⇤) then

h(↵, �)(u) =� ↵(u) • �(u), u � +B(↵(u), �(u)).

If B = 0, h is called linear.
If (x1, . . . , xn) is a linear coordinate system on V

⇤ associated to a basis (e1, . . . , en)
then

h(dxi, dxj) = bij +
nX

k=1

C
k

ij
xk,

where ei • ej =
P

n

k=1 C
k

ij
ek and bij = B(ei, ej).

Proposition 1.7.1. (V,r, h) is a K-V manifold if and only if • is associative and B is a
scalar 2-cocycle of (V ⇤

, •), i.e.,

B(↵ • �, �) = B(↵, � • �)

for any ↵, �, � 2 V
⇤.

Proof. For any ↵ 2 V
⇤ and u 2 V , ↵#(u) = L⇤

↵
u + i↵B where L↵(�) = ↵ • � and

i↵B 2 V
⇤⇤ = V . We denote by �

↵
# the flow of the vector field ↵

#. Then, for any
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↵, �, � 2 V
⇤,

r↵#(h)(�, �)(u) =
d

dt |t=0

⇣
� � • �,�

↵
#
(t, u) � +B(�, �)

⌘

= � � • �,L⇤
↵
u+ i↵B �

= � ↵ • (� • �), u � +B(↵, � • �)

and the result follows.

Conversely, we have the following result.

Proposition 1.7.2. Let (A, •, B) be a commutative and associative algebra endowed with a
symmetric scalar 2-cocycle. Then,

1. A
⇤ carries a K-V structure (r, h) where r is the canonical affine structure of A⇤ and

h is given by

h(u, v)(↵) =� ↵, u(↵) • v(↵) � +B(u(↵), v(↵)).

where ↵ 2 A
⇤
, u, v 2 ⌦1(A⇤).

2. When B = 0, the leaves of the affine foliation associated to Imh# are the orbits of the
action � of (A,+) on A

⇤ given by �(u,↵) = exp(L⇤
u
)(↵). In particular, if A4 = 0

they are affine special real manifolds.

3. The associated Poisson tensor ⇧ on TA
⇤ = A

⇤
⇥A

⇤ is the affine Poisson tensor dual
associated to the Lie algebra (A⇥A, [ , ]) endowed with the 2-cocycle B0 where

[(a, b), (c, d)] = (a • d� b • c, 0) and B0((a, b), (c, d)) = B(a, d)� B(c, b).

Proof. It is only the third point which needs to be checked. One can see easily that
[ , ] is a Lie bracket on A ⇥ A and B0 is a scalar 2-cocycle for this Lie bracket. For
any a 2 A ⇢ ⌦1(A⇤), av = (0, a) 2 A⇥A ⇢ ⌦1(A⇤

⇥A
⇤) and a

h = (a, 0). So

⇧(ah, bv)(↵, �) = h(a, b)(↵) =� ↵, a • b � +B(a, b).

On the other hand, if ⇧⇤ is the Poisson tensor dual, then

⇧⇤(ah, bv)(↵, �) = ⇧⇤((a, 0), (0, b))(↵, �)

= � (↵, �), [(a, 0), (0, b)] � +B0((a, 0), (0, b))

= � ↵, a • b � +B(a, b)

= ⇧(ah, bv)(↵, �).

In the same way one can check the others equalities.

This Proposition 1.7.2 can be used as machinery to build examples of pseudo-
Hessian manifolds. Indeed, by virtue of Proposition 1.3.3, any orbit L of the action �
has an affine structure r

L and a pseudo-Riemannian metric gL such that (L,rL
, gL)

is a pseudo-Hessian manifold.

Example 1.7.3 ([9]). All the algebras bellow are identified with Rn with its canonical basis
(ei)

n

i=1 and (e⇤
i
)n
i=1 is the dual basis. The action � of A on A

⇤ is given by �(a, µ) =
exp (L⇤

a
) (µ) and for any a 2 A, Xa is the vector fields on A

⇤ given by Xa = L
⇤
a
, where

La is the left multiplication by a. We denote by r the canonical flat torsionless connection
on A

⇤.
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1. We take A = Rn as a product of n copies of the associative, commutative algebra R.
The non vanishing product is given by eiei = ei for i = 1, . . . , n. We denote by (ai)

n

i=1

the linear coordinates of A and (xi)
n

i=1 the dual coordinates on A
⇤. We have

�

 
nX

i=1

aiei,

nX

i=1

xie
⇤
i

!
=

nX

i=1

e
aixie

⇤
i
.

Moreover, for any i = 1, . . . , n,Xei = xi@xi . The orbit of a point x 2 A
⇤ is Mx =

{
P

n

i=1 e
aixie

⇤
i
, ai 2 R}. It is a convex cone and one can see easily that if � : A⇤

! R
is the function given by

�(u) =
nX

i=1

ui ln |ui| .

Then the restriction of rd� to Mx together with the restriction of r to Mx defines the
pseudo-Hessian structure on Mx. Note here that the signature of the pseudo-Hessian
metric on Mx is exactly (p, q) where p is the number of xi such that xi > 0 and q is
the number of xi such that xi < 0. Note that if xi > 0 for i = 1, . . . , n then the metric
on Mx is definite positive and we recover the example given in [49, pp. 17].

2. We take A = C endowed with its canonical structure of commutative and associative
algebra. The non vanishing products are

e1e1 = e1, e1e2 = e2e1 = e2, e2e2 = �e1.

We denote here by (x, y) the linear coordinates on A associated to (e1, e2) and (↵, �)
the dual coordinates on A

⇤. We have

Xe1 = ↵@↵ + �@� and Xe2 = �@↵ � ↵@�,

and it is easy to check that

� (xe1 + ye2,↵e
⇤
1 + �e

⇤
2) = e

x ((↵ cos(y) + � sin(y))e⇤1 + (�↵ sin(y) + � cos(y))e⇤2) .

We deduce that we have two orbits the origin and A
⇤
\{0}. Let’s describe the pseudo-

Hessian structure of M := A
⇤
\{0}. The pseudo-Hessian metric g satisfies

g (Xe1 , Xe1) = ↵, g (Xe1 , Xe2) = �, g (Xe2 , Xe2) = �↵.

and hence
g =

1

↵2 + �2

�
↵d↵

2 + 2�d↵d� � ↵d�
2
�
.

Thus (M,r, g) is a Lorentzian pseudo-Hessian manifold. Moreover, the metric g is
flat. Now we look for a function f on M such that g = rdf , i.e.,

@
2
f

@↵2
=

↵

↵2 + �2
,
@
2
f

@�2
=

�↵

↵2 + �2
and

@
2
f

@↵@�
=

�

↵2 + �2
.

The function f given by

f(↵, �) =
1

2
↵ ln

�
↵
2 + �

2
�
+ � arctan

✓
↵

�

◆
,

satisfies these equations on the open set {� 6= 0}. Note that this function is harmonic.
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3. We take A = R3 with the commutative, associative product given by e1e1 = e2 and
e1e2 = e3 and the others products are zero. We have A3

6= 0 and A
4 = 0. We denote

by (a, b, c) the linear coordinates of A and (x, y, z) the dual coordinates of A⇤. We
have

Xe1 = y@x + z@y, Xe2 = z@x and Xe3 = 0,

and

� (ae1 + be2 + ce3, xe
⇤
1 + ye

⇤
2 + ze

⇤
3) =

✓
x+ ay +

✓
1

2
a
2 + b

◆
z, y + az, z

◆
.

The orbits of this action are the plans {z = c, c 6= 0}, the lines {z = 0, y = c, c 6= 0}
and the points {(c, 0, 0)}. The pseudo-Riemannian metric on Mc = {z = c, c 6= 0} is
given by

gc (Xe1 , Xe1) = y, gc (Xe1 , Xe2) = c and gc (Xe2 , Xe2) = 0.

This is a Lorentzian metric and one can check easily that, if �(x, y, z) = �
y
3

6z2 + xy

z

then gc is the restriction of rd� to Mc. Note that since A4 = 0 then
�
Mc,r|Mc , gc

�
is

an affine special real manifold. However, the pseudo-Hessian metric on the line Lc =
{z = 0, y = c, c 6= 0} is given by the restriction of rd�1, where �1(x, y, z) =

x
2

2y .

4. We take A = R3 with the commutative, associative product given by

e1e1 = e2, e1e3 = e1, e2e3 = e2, e3e3 = e3,

the others products are zero. We denote by (a, b, c) the linear coordinates on A and
(x, y, z) the dual coordinates on A

⇤. We have

� (ae1 + be2 + ce3, xe
⇤
1 + ye

⇤
2 + ze

⇤
3) = e

c

✓
x+ ay, y, ax+

1

2

�
a
2 + 2b

�
y + z

◆
.

The orbits have dimension 3, 2, 1 or 0. The three dimensional orbits are {y > 0} and
{y < 0}. The two dimensional orbits are {y = 0, x > 0} and {y = 0, x < 0}.
The one dimensional orbit are {y = x = 0, z > 0} and {y = x = 0, z < 0}. The
origin is the only zero dimensional orbit. Let describe the pseudo-Hessian structure on
M = {y > 0} or M = {y < 0}. We have

Xe1 = y@x + x@z, Xe2 = y@z and Xe3 = x@x + y@y + z@z,

and the pseudo-Hessian metric g on M satisfies

g (Xe1 , Xe1) = y, g (Xe1 , Xe2) = 0
g (Xe1 , Xe3) = x, g (Xe2 , Xe2) = 0, g (Xe2 , Xe3) = y and g (Xe3 , Xe3) = z.

Note that the matrix of g in (Xe1 , Xe2 , Xe3) is just the passage matrix P from (Xe1 , Xe2 , Xe3)
to (@x, @y, @z) and hence the matrix of g in (@x, @y, @z) is P�1. Thus, in the coordinates
(x, y, z), we have

g =
1

y

✓
dx

2 +
x
2
� yz

y
dy2 + 2dydz �

2x

y
dxdy

◆
.
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One can check easily that g is the restriction of rd� where �(x, y, z) = z ln |y| + x
2

2y .
This metric is of signature (+,+,�) in {y > 0} and (+,�,�) in {y < 0}.

5. We take A = R4 with the commutative, associative product given by

e1e1 = e2, e1e2 = e3, e1e3 = e2e2 = e4,

the others products are zero. We have A3
6= 0 and A

4 = 0. We denote by (a, b, c, d)
the linear coordinates on A and (x, y, z, t) the dual coordinates on A

⇤. We have

� (ae1 + be2 + ce3 + de4, xe
⇤
1 + ye

⇤
2 + ze

⇤
3 + te

⇤
4)

=

✓
x+ ay +

✓
1

2
a
2 + b

◆
z +

✓
1

6
a
3 + ab+ c

◆
t, y + az +

✓
1

2
a
2 + b

◆
t, z + at, t

◆
,

and

Xe1 = y@x + z@y + t@z, Xe2 = z@x + t@y, Xe3 = t@x and Xe4 = 0.

Let’s describe the pseudo-Hessian structure of the hyperplane Mc = {t = c, c 6= 0}
endowed with the coordinates (x, y, z). Since the matrix of gc in (Xe1 , Xe2 , Xe3) is the
passage matrix P from (Xe1 , Xe2 , Xe3) to (@x, @y, @z), we get

gc =
1

c

✓
2dxdz + dy

2
�

2z

c
dydz +

(z2 � yc)

c2
dz

2

◆
.

The signature of this metric is (+,+,�) if c > 0 and (+,�,�) if c < 0. One can
check easily that gc is the restriction of rd� to Mc, where

�(x, y, z, t) =
z
4

12t3
+

y
2

2t
�

z
2
y

2t
+

xz

t
.

Since A4 = 0,Mc is an affine special real manifold.

6. We take A = R4 with the commutative, associative product given by

e1e1 = e1, e1e2 = e2, e1e3 = e3, e1e4 = e4, e2e2 = e3, e2e3 = e4.

We have

Xe1 = x@x+y@y+z@z+t@t, Xe2 = y@x+z@y+t@z, Xe3 = z@x+t@y and Xe4 = t@x.

Thus {t > 0} and {t < 0} are orbits and hence carry a pseudo-Hessian struc-
tures. Let us determine the pseudo-Hessian metric. The same argument as above
gives that the metric is given by the inverse of the passage matrix from (Xe1 , . . . , Xe4)
to (@x, @y, @z, @t). Thus

g =
1

t

✓
2dxdt+ 2dydz �

2z

t
dydt�

z

t
dz

2 +
2 (z2 � yt)

t2
dzdt+

2zyt� xt
2
� z

3

t3
dt

2

◆
.

The signature of this metric is (+,+,�,�). One can check easily that g is the restric-
tion of rd� to M , where

�(x, y, z, t) = �
z
3

6t2
+

yz

t
+ x ln |t|.
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1.8 Multiplicative K-V structures

A K-V structure (r, h) on a Lie group G is called multiplicative if the multiplic-
ation m : (G ⇥ G,r � r, h � h) �! (G,r, h) preserves the connections and sends
h� h to h.

Lemma 1.8.1. Let G be a connected Lie group and r a connection on G such that the
multiplication m : (G ⇥ G,r � r) �! (G,r) preserves the connections. Then G is
abelian and r is bi-invariant.

Proof. We will denote by �r(G) (resp. �l(G)) the space of right invariant vector fields
(resp. the left invariant vector fields) on G. It is clear that for any X 2 �

r(G) and
Y 2 �

l(G), the vector field (X, Y ) on G⇥G is m-related to the vector field X + Y on
G:

Tm(Xa, Yb) = Xa.b+ a.Yb = Xab + Yab = (X + Y )ab

It follows that for any X1, X2 2 �
r(G) and Y1, Y2 2 �

l(G), the vector field (r �

r)(X1,Y1)(X2, Y2) is m-related to rX1+Y1(X2 + Y2), hence

Tm((rX1X2)a, (rY1Y2)b) = (r(X1+Y1)(X2 + Y2))ab

So we get

(rX1X2)a.b+ a.(rY1Y2)b = (rX1X2 +rX1Y2 +rY1X2 +rY1Y2)ab (1.8.1)

If we take Y1 = 0 = Y2 we obtain that r is right invariant. In the same way, we
get that r is left invariant. Now, if we return back to the equation (1.8.1) we obtain
that for any X 2 �

r(G) and Y 2 �
l(G) we have rX = 0 = rY . This implies that

any left invariant vector field is also right invariant ; indeed, if Y =
P

n

i=1 fiXi with
Y 2 �

l(G) and Xi 2 �
r(G) then Xjfi = 0 for all i, j = 1, ·, n. Hence the adjoint

representation is trivial and hence G must be abelian.

Another proof of this Lemma based on parallel transport is as follows,

Proof. For any � : [0, 1] �! G ⇥ G, t 7! (�1(t), �2(t)) with �(0) = (a, b) and �(1) =
(c, d),

⌧m(�)(T(a,b)m(u, v)) = T(c,d)m(⌧�(u, v)),

where ⌧� : T(a,b)(G ⇥ G) �! T(c,d)(G ⇥ G) and ⌧m(�) : TabG �! TcdG are the parallel
transports. But

T(a,b)m(u, v) = TaRb(u) + TbLa(v) and ⌧�(u, v) = (⌧�1(u), ⌧�2(v)).

So we get

⌧�1�2(TaRb(u)) + ⌧�1�2(TbLa(v)) = TcRd(⌧�1(u)) + TdLc(⌧�2(v)).

If we take v = 0 and �2(t) = b = d. We get

⌧�1b(TaRb(u)) = TcRb(⌧�1(u)),

and hence r is right invariant. In the same way, we get that r is left invariant. And
finally

⌧�1�2(TaRb(u)) = TcRd(⌧�1(u)) and ⌧�1�2(TbLa(v)) = TdLc(⌧�2(v)).
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If we take �2 = �
�1
1 we get that

⌧�1(u) = TaRa�1c(u) = TaLca�1(u).

This implies that the adjoint representation is trivial and hence G must be abelian.

Corollary 1.8.2. Let (r, h) be a multiplicative K-V structure on a simply connected Lie
group G. Then G is a vector space, r its canonical affine connection and h is linear.

Example 1.8.3. Based on the classification of complex associative, commutative algebras
given in [46], we can give a list of examples of affine K-V structures up to dimension 4.

1. On R2

h1 =

✓
x2 0
0 0

◆
, h2 =

✓
x1 x2

x2 0

◆
and h3 =

✓
x2 1
1 0

◆
.

2. On R3

h1 =

0

@
a 0 x2

0 0 0
x2 0 b

1

A , h2 =

0

@
x2 x3 a

x3 a 0
a 0 0

1

A , h3 =

0

@
a 0 x1

0 0 x2

x1 x2 x3

1

A ,

h4 =

0

@
x2 0 x2

0 0 x2 + a

x2 x2 + a x3

1

A and h5 =

0

@
x2 0 x1

0 0 x2

x1 x2 x3

1

A .

3. On R4

h1 =

0

BB@

x3 a x4 + b 0
a �x4 + c 0 0

x4 + b 0 0 0
0 0 0 0

1

CCA , h2 =

0

BB@

x2 x3 x4 a

x3 x4 a 0
x4 a 0 0
a 0 0 0

1

CCA ,

h3 =

0

BB@

x1 x2 x3 x4

x2 0 0 0
x3 0 0 0
x4 0 0 0

1

CCA , h4 =

0

BB@

x1 x2 x3 x4

x2 x4 0 0
x3 0 0 0
x4 0 0 0

1

CCA and h5 =

0

BB@

x1 x2 x3 x4

x2 x3 x4 0
x3 x4 0 0
x4 0 0 0

1

CCA .

1.9 Quadratic K-V structures

Let V be a vector space of dimension n. Denote by r its canonical affine connec-
tion. A symmetric bivector field h on V is quadratic if there exists a basis B of V such
that, for any i, j = 1, . . . , n,

h(dxi, dxj) =
nX

l,k=1

a
i,j

l,k
xlxk,

where the a
i,j

k,l
are real constants and (x1, . . . , xn) are the linear coordinates associated

to B.
For any linear endomorphism A of V we denote by eA the associated linear vector

field on V .
The key point is that if h is a quadratic K-V bivector field on V then its divergence

is a linear vector field, i.e., divr(h) = fLh where L
h is a linear endomorphism of V .
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Moreover, if F = (A, u) is an affine transformation of V then divr(F⇤h) = Â�1LhA.
So the Jordan form of Lh is an invariant of the quadratic K-V structure. By using
Maple we can classify quadratic K-V structures on R2. The same approach have
been used in [27] to classify quadratic Poisson structures on R4. Note that if h is a
quadratic K-V bivector field on Rn then its associated Poisson tensor on Cn is also
quadratic.

Theorem 1.9.1.

1. Up to an affine isomorphism, there are two quadratic K-V structures on R2 which are
divergence free

h1 =

✓
0 0
0 ux

2

◆
and h2 =

 
r
2
x
2

c
� 2rxy + cy

2 r
3
x
2

c2
�

2r2xy
c

+ ry
2

r
3
x
2

c2
�

2r2xy
c

+ ry
2

�
2r3xy
c2

+ r
4
x
2

c3
+ r

2
y
2

c

!
.

2. Up to an affine isomorphism, there are two K-V structures on R2 with the divergence

equivalent to the Jordan form
✓

a 1
0 a

◆
,

h1 =

✓
cy

2 + xy 0
0 0

◆
and h2 =

 
1
2xy + cy

2 y
2

4
y
2

4 0

!
.

3. Up to an affine isomorphism, there are five quadratic K-V structures on R2 with diag-
onalizable divergence

h1 =

✓
ax

2 0
0 by

2

◆
, h2 =

✓
ax

2 + by
2 0

0 0

◆
, h3 =

✓
ax

2
axy

axy ay
2

◆
,

h4 =

 
2r2x2

c
� 2rxy + cy

2
ry

2

ry
2 2r2y2

c

!

and

h5 =

 
(2p

2

u
+ q

2)x
2 + pqxy

u
+ q

2
y
2

4u px
2 + qxy �

pqy
2

2u

px
2 + qxy �

pqy
2

2u (2p
2

u
+ q

2)y
2 + ux

2
� 2pxy

!
.

4. Up to an affine isomorphism, there is a unique quadratic pseudo-Hessian structure on
R2 with the divergence having non real eigenvalues

h =

✓
�2pxy � ux

2 + uy
2

px
2
� py

2
� 2uxy

px
2
� py

2
� 2uxy 2pxy + ux

2
� uy

2

◆
.

Example 1.9.2. The study of quadratic K-V structures on R3 is more complicated and we
give here a class of quadratic pseudo-Hessian structures on R3 of the form eA�eI3 where eA is
linear.

1. A is diagonal:

h1 =

0

@
x
2

xy xz

xy y
2

yz

xz yz z
2

1

A and h2 =

0

@
x
2

xy 0
xy y

2 0
0 0 �z

2

1

A .
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2. A =

0

@
a 1 0
0 a 0
0 0 b

1

A :

h3 =

0

@
2x(y � px) (y � px)y + pyx pxz + (y � px)z

(y � px)y + pyx 2py2 2pyz
pxz + (y � px)z 2pyz 2pz2

1

A ,

and h4 =

0

@
2x(y + px) (y + px)y � pyx pxz + (y + px)z

(y + px)y + pyx �2py2 0
pxz + (y + px)z 0 2pz2

1

A .

1.10 Right-invariant K-V structures on Lie groups

Let (g, •) be a left symmetric algebra, such that, for any u, v, w 2 g,

ass(u, v, w) = ass(v, u, w) where ass(u, v, w) = (u • v) • w � u • (v • w).

Then [u, v] = u • v � v • u is a Lie bracket on g and L : g ! End(g), u 7! Lu is a
representation of the Lie algebra (g, [ , ]), where Lu denotes left multiplication by u.

We consider a connected Lie group G whose Lie algebra is (g, [ , ]) and we define
on G a right invariant connection by

ru�v
� = �(u • v)�, (1.10.1)

where u
� is the right vector field associated to u 2 g. This connection is flat torsion-

less hence (G,r) is an affine manifold. Let r 2 g⌦ g be a symmetric bivector and let
r
� be the associated right invariant symmetric bivector field.

Proposition 1.10.1. (G,r, r
�) is a K-V manifold if and only if, for any ↵, �, � 2 g⇤,

[[r, r]](↵, �, �) :=� �, [↵, �]#
r
� [↵#

, �
#] �= 0, (1.10.2)

where
[↵, �]r = L⇤

↵#� � L⇤
�#↵ and � L⇤

u
↵, v �= � � ↵, u • v � .

In this case, the product on g⇤ given by ↵.� = L⇤
↵#� is left symmetric, [ , ]r is a Lie bracket

and r# is a morphism of Lie algebras.

Proof. Note first that for any ↵ 2 g⇤, (↵�)# = (↵#)� and ru�↵
� = � (L⇤

u
↵)� and

hence, for any ↵, �, � 2 g⇤,

r(↵�)#(r
�)(��

, �
�) = r(L⇤

↵#�, �) + r(�,L⇤
↵#�).

So, (G,r, r
�) is a K-V manifold if and only if, for any ↵, �, � 2 g⇤,

0 = r(L⇤
↵#�, �) + r(�,L⇤

↵#�)� r(L⇤
�#↵, �)� r(↵,L⇤

�#�)

= � �, [↵, �]#
r
� ↵

#
• �

# + �
#
• ↵

#
�

= � �, [↵, �]#
r
� [↵#

, �
#] � .

Hence the first part of the proposition follows. Suppose now that [↵, �]#
r
= [↵#

, �
#]

for any ↵, � 2 g⇤. Then, for any ↵, �, � 2 g⇤,

ass(↵, �, �)� ass(�,↵, �) = L⇤
[↵,�]#r

� � L⇤
↵#L⇤

�#� + L⇤
�#L⇤

↵#� = 0.
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This completes the proof.

Definition 1.10.2.

1. Let (g, •) be a left symmetric algebra. A symmetric bivector r 2 g ⌦ g satisfying
[[r, r]] = 0 is called a S-matrix.

2. A left symmetric algebra (g, •, r) endowed with a S-matrix is called a K-V algebra.

Let (g, •, r) be a K-V algebra, [u, v] = u • v � v • u and G a connected Lie group
with (g, [ , ]) as a Lie algebra. We have shown that G carries a right invariant K-V
structure (r, r

�). On the other hand, in Section 1.6, we have associated to (r, r
�)

a flat connection r, a complex structure J and a Poisson tensor ⇧ on TG. Now we
will show that TG carries a structure of Lie group and the triple (r, J,⇧) is right
invariant. This structure of Lie group on TG is different from the usual one defined
by the adjoint action of G on g.

Let us start with a general algebraic construction which is interesting on its own.
Let (g, •) be a left symmetric algebra, put �(g) = g⇥ g and define a product ? and a
bracket on �(g) by

(a, b) ? (c, d) = (a • c, a • d) and [(a, b), (c, d)] = ([a, c], a • d� c • b),

for any (a, b), (c, d) 2 �(g). It is easy to check that ? is left symmetric, [ , ] is the
commutator of ? and hence is a Lie bracket. We define also J0 : �(g) �! �(g) by
J0(a, b) = (b,�a). It is also a straightforward computation to check that

NJ0((a, b), (c, d)) = [J0(a, b), J0(c, d)]�J0[(a, b), J0(c, d)]�J0[J0(a, b), (c, d)]�[(a, b), (c, d)] = 0.

For r 2 ⌦
2g symmetric, we define R 2 ⌦

2�(g) by

R((↵1, �1), (↵2, �2)) = r(↵1, �2)� r(↵2, �1), (1.10.3)

for any ↵1,↵2, �1, �2 2 g⇤. We have obviously that R#(↵1, �1) = (��#
1 ,↵

#
1 ).

Proposition 1.10.3. [[r, r]] = 0 if and only if, [R,R] = 0, where [R,R] is the Schouten
bracket associated to the Lie algebra structure of �(g) given by

[R,R](↵, �, �) =

I

↵,�,�

� �, [R#(↵), R#(�)] �, ↵, �, � 2 �⇤(g).

Proof. For any ↵ = (↵1,↵2), � = (�1, �2), � = (�1, �2) 2 �(g)⇤,

� �, [R#(↵), R#(�)] = � (�1, �2), [(�↵
#
2 ,↵

#
1 ), (��

#
2 , �

#
1 )] �

= � �1, [↵
#
2 , �

#
2 ] � � � �2,↵

#
2 • �

#
1 � + � �2, �

#
2 • ↵

#
1 �

= � �1, [↵
#
2 , �

#
2 ] � + � �1, (L

⇤
↵
#
2
�2)

#
� � � ↵1, (L

⇤
�
#
2
�2)

#
�,

� �, [R#(�), R#(↵)] � = � �1, [�
#
2 ,↵

#
2 ] � + � ↵1, (L

⇤
�
#
2
�2)

#
� � � �1, (L

⇤
↵
#
2
�2)

#
�

� ↵, [R#(�), R#(�)] � = � ↵1, [�
#
2 , �

#
2 ] � + � �1, (L

⇤
�
#
2
↵2)

#
� � � �1, (L

⇤
�
#
2
↵2)

#
� .

So

[R,R](↵, �, �) = �[[r, r]](�2, �2,↵1)� [[r, r]](�2,↵2, �1)� [[r, r]](↵2, �2, �1),

and the result follows.
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Let G be a Lie group whose Lie algebra is (g, [ , ]) and let ⇢ : G �! GL(g) be
the homomorphism of groups such that de⇢ = L where L : g �! End(g) is the
representation associated to •. Then the product

(g, u).(h, v) = (gh, u+ ⇢(g)(v)), g, h 2 G, u, v 2 g

induces a Lie group structure on G⇥g whose Lie algebra is (�(g), [ , ]). The complex
endomorphism J0 and the left symmetric product ? induce a right invariant complex
tensor J�

0 and a right invariant connection er given by

J
�
0 (a, b)

� = (b,�a)� and er(a,b)�(c, d)
� = �((a, b) ? (c, d))�.

Let r 2 ⌦
2g be a symmetric bivector such that [[r, r]] = 0, r� the associated right

invariant symmetric bivector field and r the flat torsionless connection given by
(1.10.1). Then (G,r, r

�) is a K-V manifold and let r, J and ⇧ be the associated
structure on TG defined in Section 1.4.

Theorem 1.10.4. If we identify TG with G ⇥ g by ug �! (g, TgRg�1ug), and denote by
⇧, r and J the images of ⇧, r and J under this identification then ⇧ = R

�, r = er and
J = J

�
0 .

To prove this theorem, we need some preparation.

Proposition 1.10.5. Let (G,r) be a Lie group endowed with a right invariant connection
and � : [0, 1] �! G a curve. Let V : [0, 1] �! TG be a vector field along �. We define
µ : [0, 1] �! g and W : [0, 1] �! g by

µ(t) = T�(t)R�(t)�1(�0(t)) and W (t) = T�(t)R�(t)�1(V (t)).

Then V is parallel along � with respect r if and only if

W
0(t)� µ(t) •W (t) = 0,

where u • v = �(ru�v
�)(e).

Proof. We consider (u1, . . . , un) a basis of g and (X1, . . . , Xn) the corresponding right
invariant vector fields. Then

8
>>><

>>>:

µ(t) =
nX

i=1

µi(t)ui, W (t) =
nX

i=1

Wi(t)ui,

�
0(t) =

nX

i=1

µi(t)Xi, V (t) =
nX

i=1

Wi(t)Xi.

Then

rtV (t) =
nX

i=1

W
0
i
(t)Xi +

nX

i=1

Wi(t)r�0(t)Xi

=
nX

i=1

W
0
i
(t)Xi +

nX

i,j=1

Wi(t)µj(t)rXjXi

=
nX

i=1

W
0
i
(t)Xi �

nX

i,j=1

Wi(t)µj(t)(uj • ui)
�

= (W 0(t)� µ(t) •W (t))�
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and the result follows having in mind that u� is the right invariant vector field asso-
ciated to u 2 g.

Let (G,r) be a Lie group endowed with a right invariant connection. Then r

induces a splitting of TTG = ker dp � H. For any tangent vector X 2 TgG, we
denote by X

v
, X

h
2 T(g,u)TG the vertical and the horizontal lift of X .

Proposition 1.10.6. If we identify TG to G ⇥ g by Xg 7! (g, TgRg�1(Xg)) then for any
X 2 TgG,

X
v(g, u) = (0, TgRg�1(X)) and X

h(g, u) = (X, TgRg�1(X) • u).

Proof. The first relation is obvious. Recall that the horizontal lift of X at ug 2 TG is
given by:

X
h(ug) =

d

dt |t=0
V (t),

where V : [0, 1] �! TG is the parallel vector field along � : [0, 1] �! G a curve such
that �(0) = g and �

0(0) = X . If we denote by ⇥R : TG �! G ⇥ g the identification
ug 7! (g, TgRg�1(ug)) then, by virtue of Proposition 1.10.5,

Tug⇥R(X
h) =

d

dt |t=0
(�(t),W (t)) = (X, TgRg�1(X) • u).

We consider now a left symmetric algebra (g, •), G a connected Lie group associ-
ated to (g, [ , ]), r the right invariant affine connection associated to •. We have seen
that G⇥ g has a structure of Lie group. We identify TG to G⇥ g and, for any vector
field X on G, we denote by X

v and X
h the vector fields on G ⇥ g obtained from

the identification of the horizontal and the vertical lift of X . For a, b 2 g, ↵, � 2 g⇤,
a
� (resp. ↵�) is the right invariant vector field (resp. 1-form) on G associated to a

(resp. ↵), (a, b)� (resp. (↵, �)�) the right invariant vector field (resp. 1-form) on G⇥g
associated to (a, b) (resp. (↵, �)).

Proposition 1.10.7. For any (a, b) 2 g⇥ g and (↵, �) 2 g⇤ ⇥ g⇤,

(a, b)� = (a�)h + (b�)v and (↵, �)� = (↵�)h + (��)v.

Proof. We have

(a, b)�(g, u) = T(e,0)R(g,u)(a, b)

=
d

dt |t=0
(exp(ta), tb)(g, u)

=
d

dt |t=0
(exp(ta)g, tb+ ⇢(exp(ta))(u))

= (a�(g), b+ a • u)

= (a�(g), TgRg�1(a�(g)) • u) + (0, TgRg�1(b�(g))

= (a�)h(g, u) + (b�)v(g, u). (Proposition 1.10.5)

The. second relation can be easily deduced from the first one.
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Proof of Theorem 3.2.7. Let ⇧ be the Poisson tensor on G ⇥ g associated to r
�. Then,

by using Proposition 1.10.7,

⇧((↵1, �1)
�
, (↵2, �2)

�) = ⇧((↵�
1 )

h + (��
1 )

v
, (↵�

2 )
h + (��

2 )
v)

= r
�(↵�

1 , �
�
2 )� r

�(↵�
2 , �

�
1 )

= r(↵1, �2)� r(↵2, �1)

= R
�((↵1, �1)

�
, (↵2, �2)

�).

In the same way,

J
�
0 (a, b)

� = (b,�a)� = (b�)h � (a�)v,

J(a, b)� = (b�)h � (a�)v,

r(a,b)�(c, d)
� = (ra�c

�)h + (ra�d
�)v

= �((a • c)�)h � ((a • d)�)v

= �((a, b).(c, d))�

= er(a,b)�(c, d)
�
.

Let (g, •) be a left symmetric algebra, (M,r) an affine manifold and ⇢ : g �!

�(TM) a linear map such that ⇢(u • v) = r⇢(u)⇢(v). Then ⇢ defines an action on M of
the Lie algebra (g, [ , ]). We consider ⇢l : �(g) �! �(TTM), (u, v) �! ⇢(u)h + ⇢

v(v).
It is easy to check that

⇢
l([a, b]) = [⇢l(a), ⇢l(b)].

Let r 2 ⌦
2g satisfying [[r, r]] = 0 and R 2 ⌦

2�(g) given by (1.10.3).

Theorem 1.10.8. The bivector field on TM associated to ⇢(r) is ⇢l(R) which is a Poisson
tensor and (M,r, ⇢(r)) is a K-V manifold.

Proof. Let (e1, . . . , en) a basis of g and Ei = (ei, 0) and Fi = (0, ei). Then (E1, . . . , En, F1, . . . , Fn)
is a basis of �(g). Then

r =
X

i,j

ri,jei ⌦ ej and R =
X

i,j

ri,j (Ei ⌦ Fj � Fi ⌦ Ej) .

So

⇢(r) =
nX

i,j=1

ri,j⇢(ei)⌦⇢(ej) and ⇢
l(R) =

nX

i,j=1

ri,j

�
⇢(ei)

h
⌦ ⇢(ej)

v
� ⇢(ei)

v
⌦ ⇢(ej)

h
�
.

Then for any ↵, � 2 ⌦1(M)

⇢
l(R)(↵v

, �
v) = ⇢

l(R)(↵h
, �

h) = 0 and ⇢
l(R)(↵h

, �
v) = ⇢(r)(↵, �) � p.

According to Proposition 1.10.3, R is a solution of the classical Yang-Baxer equation
and hence ⇢l(R) is a Poisson tensor. By using Theorem 1.6.3, we get that (M,r, ⇢(r))
is a K-V manifold.

Example 1.10.9.

1. Let g = gl(n,R) be the Lie algebra of n-square matrices. It has a structure of left
symmetric algebra given by A • B = BA. Let ⇢ : g �! �(TRn) given by ⇢(A) = A.
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Then ⇢(A • B) = rAB, where r is the canonical connection of Rn. According to
Theorem 1.10.8, any S-matrix on g gives rise to a quadratic K-V structure on Rn.

2. More generally, let (M,r) be an affine manifold and g the finite dimensional Lie
algebra of affine vector fields. Recall that X 2 g if for any Y, Z 2 �(TM),

[X,rYZ] = r[X,Y ]Z +rY [X,Z].

Since the curvature and the torsion of r vanish this is equivalent to

rrY ZX = rYrZX.

From this relation, one can see easily that, for any X, Y 2 g, X • Y := rXY 2 g and
(g, •) is an associative finite dimensional Lie algebra that acts on M by ⇢(X) = X .
Moreover, ⇢(X • Y ) = rXY . According to Theorem 1.10.8, any S-matrix on g gives
rise to a K-V structure on M .

1.11 Classification of two-dimensional K-V algebras

Using the classification of two-dimensional non-abelian left symmetric algebras
(see [12]) and the classification of abelian left symmetric algebras (see [46]), we give
a classification (over the field R ) of 2-dimensional K-V algebras. We proceed as
follows

1. For any left symmetric 2-dimensional algebra g, we determine its automorph-
ism group Aut(g) and the space of S-matrices on g, which we denote by A(g).

2. We give the quotient A(g)/ ⇠ where ⇠ is the equivalence relation

r
1
⇠ r

2
() 9 A 2 Aut(g) such that r2

]
= A�r

1
]
�A

t or 9 � 2 R such that r2 = �r
1
.
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(g, .) Aut(g) A(g)/⇠

b1,↵ 6=�1,1

e2.e1=e1; e2.e2=↵e2

✓
a 0
0 1

◆
, a 6= 0 r

1
]
=

✓
�1 0
0 0

◆
; r2

]
=

✓
0 0
0 1

◆
; r3

]
=0

b1,↵=�1

e2.e1=e1; e2.e2=� e2

✓
a 0
0 1

◆
, a 6= 0 r

1
]
=

✓
b 1
1 0

◆
; r2

]
=

✓
1 0
0 0

◆
;

r
3
]
=

✓
0 0
0 1

◆
; r4

]
= 0

b1,↵=1

e2.e1=e1; e2.e2=e2

✓
a 0
0 b

◆
, ab 6= 0 r

1
]
=

✓
1 c

c c
2

◆
; r2

]
=

✓
0 0
0 1

◆
; r3

]
= 0

b2,� 6=0,1,2 e2.e1=(��1)e1;
e1.e2=�e1; e2.e2=�e2

✓
a b

0 1

◆
, a 6= 0 r

1
]
=

✓
1 0
0 0

◆
; r2

]
=

✓
0 0
0 1

◆
; r3

]
= 0

b2,�=1

e1.e2=e1; e2.e2=e2

✓
a b

0 1

◆
, a 6= 0 r

1
]
=

✓
1 c

c c
2

◆
; r2

]
=

✓
0 0
0 1

◆
; r3

]
= 0

b2,�=2 e1.e2=2e1;
e2.e1=e1; e2.e2=2e2

✓
a b

0 1

◆
, a 6= 0 r

1
]
=

✓
1 0
0 c

◆
; r2

]
=

✓
0 0
0 1

◆
; r3

]
=0

b3

e2.e1=e1; e2.e2=e1 + e2

✓
1 b

0 1

◆
r
1
]
=

✓
1/2 1
1 1

◆
; r2

]
=

✓
1 0
0 0

◆
; r3

]
=0

b4

e1.e1=2e1; e1.e2=e2; e2.e2=e1

✓
1 0
0 �1

◆
;

✓
1 0
0 1

◆
r
1
]
=

✓
1 0
0 2

◆
; r2

]
=

✓
1 0
0 0

◆
; r3

]
= 0

b5

e1.e2=e1; e2.e2=e1 + e2

✓
1 b

0 1

◆
r
1
]
=

✓
1 0
0 0

◆
; r2

]
=0

As
1
2

e1.e1=e2

✓
a 0
b a

2

◆
, a 6= 0 r

1
]
=

✓
0 1
1 0

◆
; r2

]
=

✓
0 0
0 1

◆
; r3

]
=0

As
4
2

e1.e1=e1; e1.e2=e2; e2.e2=e2

✓
1 0
0 a

◆
, a 6= 0 r

1
]
=

✓
0 1
1 c

◆
; r2

]
=

✓
0 0
0 1

◆
;

r
3
]
=

✓
1 0
0 0

◆
; r4

]
=0
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Chapter 2

Submanifolds in K-V Geometry

Keeping in mind the analogies given in the previous chapter between K-V struc-
tures and Poisson structures, we introduce in this chapter K-V Hamiltonian vector
fields and we explore their properties. We also introduce many classes of submani-
folds in K-V geometry.

2.1 K-V Hamiltonian vector fields

In Poisson geometry, Hamiltonian vector fields play an important role (see [52])
and it is therefore natural to examine some properties of their analogue in K-V geo-
metry.

Let (M,r, h) be a K-V manifold. For any smooth function f 2 C
1(M) we asso-

ciate a vector field Xf := (df)#, which will be called the K-V Hamiltonian vector field
associated to f . The symmetry of the bivector field h leads to the following

Xf1(f2) = Xf2(f1) =� df2, Xf1 �=� df1, Xf2 �,

where f1, f2 2 C
1(M). Contrary to what happens in Poisson geometry the flow of

the vector field Xf does not generally preserve the K-V bivector field h, this can be
seen through the following example.

Example 2.1.1. Consider the K-V manifold M = (R2
,r, h) where r is the canonical affine

connection on R2 and h = x@x ⌦ @x + y@y ⌦ @y. Let f : R2
! R, (x, y) 7! x, by a direct

computation, we get that LXf
(h)(dx, dx) = �f .

More generally,

Proposition 2.1.2. For any f 2 C
1(M) and any ↵, � 2 ⌦1(M), we have

LXf
(h)(↵, �) = �rXf

(h)(↵, �) + 2 � r↵#df, �
#
� .

Proof. Let (x1, . . . , xn) be an affine local coordinates system on M . Denote by Xi =
(dxi)#. Then

LXf
(h)(dxi, dxj) = Xf .hij � h

�
LXf

dxi, dxj

�
� h

�
dxi,LXf

dxj

�

= �Xf .hij+ � dxi, [Xf , Xj] � + � dxj, [Xf , Xi] �

= �Xf .hij+ � dxi, [df, dxj]
#
� + � dxj, [df, dxi]

#
�

= �Xf .hij+ � [df, dxj], Xi � + � [df, dxi], Xj �

= �Xf .hij+ � rXjdf,Xi � � � rXf
dxj, Xi �

+ � rXidf,Xj � � � rXf
dxi, Xj � .
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Now, since rdxi = 0 and � rXdf, Y �=� rY df,X �, we get

LXf
(h)(dxi, dxj) = �rXf

(h)(dxi, dxj) + 2 � rXidf,Xj � .

As a reminder, a smooth function f 2 C
1(M) on an affine manifold (M,r) is

called affine if it is affine in local affine coordinates. In the following, we introduce
the following space.

E := {f 2 C
1(M) / � r↵#df, �

#
�= 0, 8↵, � 2 ⌦1(M)},

which is the space of smooth functions f : M ! R that are affine along the leaves of
the affine foliation, i.e., the restriction of f to any leaf L ⇢ M is affine.

Example 2.1.3. Let (A, •) be a n-dimensional commutative associative algebra. We have
seen in Proposition 1.7.2 that the dual A⇤ carries a linear K-V structure (r, h) where r

is the canonical affine connection on A
⇤ and h is the linear symmetric bivector field on A

⇤

given by
h(u, v)(↵) =� ↵, u(↵) • v(↵) �,

where ↵ 2 A
⇤ and u, v 2 ⌦1(A⇤) = C

1(A⇤
,A). Now we take A = (R2

, •) where • is
the commutative, associative product given by e1 • e1 = e1 and the others products are zero.
Denote by (x, y) the canonical dual coordinates of A⇤, so we have

(dx)# = x@x and (dy)# = 0.

According to Proposition 2.1.2 we get that for any f 2 C
1(A⇤), which depend only on the

y-variable
LXf

(h) = 0.

We know that for any K-V manifold (M,r, h) the tangent bundle (TM,⇧) is a
Poisson manifold. So we can ask the following question. When the vertical lift Xv

f

and the horizontal lift Xh

f
are Poisson vector fields on (TM,⇧)?

Proposition 2.1.4. For any f 2 C
1(M), we have

1. X
v

f
is the Hamiltonian vector field on (TM,⇧) associated to the function f � p 2

C
1(TM).

2. X
h

f
is a Poisson vector field on (TM,⇧) if and only if f 2 E .

Proof. From (1.6.4) we get Xv

f
= ⇧#((df)h) = ⇧#(d(f � p)) which leads to 1. For

the second assertion we need to compute L
X

h
f
(⇧). Let ↵, � 2 ⌦1(M), by using the

formulas proved in Proposition 1.6.6, we get that

L
X

h
f
(⇧)(↵v

, �
v) = L

X
h
f
(⇧)(↵h

, �
h) = 0.
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Furthermore we have

L
X

h
f
(⇧)(↵v

, �
h) = X

h

f
.⇧(↵v

, �
h)� ⇧(L

X
h
f
↵
v
, �

h)� ⇧(↵v
,L

X
h
f
�
h)

= �X
h

f
.(h(↵, �) � p)� ⇧((rXf

↵)v, �h)� ⇧(↵v
, (LXf

�)h)

= �(Xf .h(↵, �)) � p+ h(rXf
↵, �) � p+ h(↵,LXf

�) � p

=
�
�Xf .h(↵, �)+ � rXf

↵, �
#
� + � LXf

�,↵
#
�
�
� p

=
�
� LXf

�,↵
#
� � � ↵,rXf

�
#
�
�
� p

=
�
Xf .h(↵, �)� � �, [Xf ,↵

#] � � � ↵,rXf
�
#
�
�
� p

=
�
� rXf

↵, �
#
� � � �, [Xf ,↵

#] �
�
� p.

Now, since [↵#
, �

#] = [↵, �]#
h

and r↵#� �r�#↵ = [↵, �]h, we get

L
X

h
f
(⇧)(↵v

, �
h) =� r↵#df, �

#
� �p.

Now we consider the two vector spaces

Vh := {Xf 2 �(TM)| f 2 E} and V⇧ := {X
h

f
2 �(T (TM))| f 2 E}.

Proposition 2.1.5. Vh and V⇧ are two abelian Lie subalgebras of vector fields.

Proof. For all f1, f2 2 E, we have

[Xf1 , Xf2 ] = ([df1, df2]h)
# =

⇣
rXf1

df2 �rXf2
dff1

⌘#

= 0.

The other assumption follows from [Xh

f1
, X

h

f2
] = [Xf1 , Xf2 ]

h.

It is well known that for any affine manifold (M,r), the space of vector fields
�(TM) endowed with the product X • Y = rXY is a left symmetric algebra. It is
therefore natural to look at the behavior of the subspaces Vh and V⇧ with respect to
the left symmetric structures in �(TM) and in �(TTM).

Theorem 2.1.6. Let (M,r, h) be a K-V manifold satisfying the following condition:

f1, f2 2 E =) h(df1, df2) 2 E . (2.1.1)

Then (Vh, •) and (V⇧, •) are two commutative, associative subalgebras of (�(TM), •) and
(�(TTM), •) respectively. Moreover, the map Xf 7! X

h

f
is an isomorphism from Vh to V⇧.

Proof. Let f1, f2 2 E . For any ↵ 2 ⌦1(M), we have

� ↵, Xf1 •Xf2 � = � ↵, (Ddf1df2)
#
�

= � Ddf1df2,↵
#
�

= ↵
#
.h(df1, df2)

= � ↵, Xh(df1,df2) � .

Hence Xf1 • Xf2 = Xh(df1,df2) which is in Vh by the condition (2.1.1). The remainder
of the theorem is obvious.

Remark 2.1.7. The class of K-V manifolds satisfying condition (2.1.1) deserves a special
study.
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In the following, we provide a class of K-V manifolds satisfying condition (2.1.1).

Example 2.1.8. Let (A, •, B) be a finite dimensional commutative and associative algebra
endowed with a symmetric scalar 2-cycle. We have seen in Proposition 1.7.2 that the dual
A

⇤ carries a K-V structure (r, h) where r is the canonical affine structure on A
⇤ and h is

the affine symmetric bivector field on A
⇤ given by

h(u, v)(↵) =� ↵, u(↵).v(↵) � +B(u(↵), v(↵))

where ↵ 2 A
⇤ and u, v 2 ⌦1(A⇤). We consider the canonical coordinates system (x1, . . . , xn)

on A
⇤ associated to a basis (e1, . . . , en). Then

h(dxi, dxj) = bij +
nX

k=1

C
k

ij
xk,

where Ck

ij
=� e

⇤
k
, ei.ej � and bij = B(ei, ej). Hence a function f belongs to E if and only

if, for all i, j = 1, · · · , n,
X

l,k

hilhjk

@
2
f

@xl@xk

= 0. (2.1.2)

Let f1, f2 2 E , then

h(df1, df2) =
X

i,j

hij

@f1

@xi

@f2

@xj

.

A straightforward computation shows that

X

k,l

hilhjk

@
2
h(df1, df2)

@xk@xl

=
X

k,l,m,s

hilhjkhms

@
3
f1

@xk@xl@xm

@f2

@xs

+ hilhjkhms

@
2
f1

@xl@xm

@
2
f2

@xk@xs

+hilhjkC
k

ms

@
2
f1

@xl@xm

@f2

@xs

+ hilhjkhms

@
2
f1

@xk@xm

@
2
f2

@xl@xs

+hilhjkhms

@f1

@xm

@
3
f2

@xk@xl@xs

+ hilhjkC
k

ms

@f1

@xm

@
2
f2

@xl@xs

+hilhjkC
l

ms

@
2
f1

@xk@xm

@f2

@xs

+ hilhjkC
l

ms

@f1

@xm

@
2
f2

@xk@xs

.

Based on the fact that
X

k

hikC
k

jm
=
X

k

hjkC
k

im
together with equation (2.1.2) we get

X

k,l,m,s

hilhjkhms

@
3
f1

@xk@xl@xm

@f2

@xs

=
X

m,s

hms

@f2

@xs

@

@xm

 
X

k,l

hilhjk

@
2
f1

@xk@xl

!
�

X

k,l,s

hjk

@
2
f1

@xk@xl

@f2

@xs

 
X

m

hmsC
m

il

!

�

X

k,l,s

hil

@
2
f1

@xk@xl

@f2

@xs

 
X

m

hmsC
m

jk

!

= �

X

m,s

C
m

is

@f2

@xs

 
X

k,l

hmlhjk

@
2
f1

@xk@xl

!
�

X

m,s

C
m

js

@f2

@xs

 
X

k,l

hmkhil

@
2
f1

@xk@xl

!

= 0.
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Hence

X

k,l,m,s

hilhjkhms

@
2
f1

@xl@xm

@
2
f2

@xk@xs

=
X

k,s

hjk

@
2
f2

@xk@xs

 
X

l,m

hilhsm

@
2
f1

@xl@xm

!
= 0.

This proves that h(df1, df2) 2 E . Hence the K-V manifold (A⇤
,r, h) satisfies condition

(2.1.1).

It is natural to ask whether all K-V manifolds satisfy the condition (2.1.1). The
response is no, as the following example shows.

Example 2.1.9. Consider the K-V manifold M = (R2
,r, h) where r is the canonical affine

structure on R2 and h = x
2
@x ⌦ @x. Let f : R2

! R, (x, y) 7! x, obviously f 2 E but
h(df, df) = f

2 does not belong to the space E because

� r(dx)#df
2
, (dx)# �= f

4
6= 0.

2.2 K-V maps

In this section, we will study smooth maps between K-V manifolds that preserve
these structures.

Let (M1
,r

1) and (M2
,r

2) be two affine manifolds. Denote by pi : TM i
! M

i,
the canonical projections. Let F : M1

! M
2 be a smooth map.

Definition 2.2.1. F is said to be affine if it is affine in the changes of coordinates.

Recall that two vector fields X 2 �(TM1) and Y 2 �(TM2) are said to be F -
related if and only if, TxF (Xx) = YF (x) for all x 2 M

1.

Proposition 2.2.2. The map F is affine if and only if for any related vector fields X1
, X

2
2

�(TM1) and Y
1
, Y

2
2 �(TM2) respectively, the two vector fields r1

X1X
2
2 �(TM1) and

r
2
Y 1Y

2
2 �(TM2) are F -related.

In a more geometric terms, F is affine if and only if for every parallel vector field
X along a curve � on M

1 the image F⇤X is also parallel along the curve F � �, or
equivalently F is totally geodesic, i.e., the image F � � of each geodesic � of M1 is a
geodesic of M2 (see [33]).

Let (M i
,r

i
, h

i) for i = 1, 2 be two K-V manifolds. Denote by ⇧i the induced
Poisson bivector fields on TM

i.

Theorem 2.2.3. Let F : (M1
,r

1
, h

1) ! (M2
,r

2
, h

2) be an affine map. Then the following
assertions are equivalent

(i) F is a K-V map, i.e., for any ↵, � 2 ⌦1(M2), we have

h
1(F ⇤

↵, F
⇤
�) = h

2(↵, �) � F. (2.2.1)

(ii) The tangent map TF : (TM1
,⇧1) ! (TM2

,⇧2) is a Poisson map.

(iii) For any one form ↵ 2 ⌦1(M2), the vector fields (F ⇤
↵)#1 2 �(TM1) and ↵

#2 2

�(TM2) are F -related.

(iv) For any f 2 C
1(M2), the Koszul-Vinberg Hamiltonian vector fields Xf 2 �(TM2)

and Xf�F 2 �(TM1) are F -related.
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In order to show this theorem, we need the following lemma.

Lemma 2.2.4. Let F : (M1
,r

1) ! (M2
,r

2) be an affine map. Then we have

1. For any F -related vector fields X 2 �(TM1) and Y 2 �(TM2), their respective
vertical lifts Xv and Y

v are TF -related. The same thing happens to their horizontal
lifts Xh and Y

h.

2. For any ↵ 2 ⌦1(M2), we have

(F ⇤
↵)v = (TF )⇤(↵v) and (F ⇤

↵)h = (TF )⇤(↵h).

Proof. 1. Let x 2 M
1 and u 2 TxM

1,

Tu(TF )(Xv

u
) =

d

dt |t=0

TxF (u+ tXx)

=
d

dt |t=0

TxF (u) + tTxF (Xx)

=
d

dt |t=0

TxF (u) + tYF (x)

= Y
v

TF (u).

Hence X
v and Y

v are TF -related. Now let � : I ! M
1 be a curve with �(0) = x

and �
0(0) = Xx. According to (1.6.1) we get that

Tu(TF )(Xh

u
) =

d

dt |t=0

T�(t)F (⌧ �0t(u)).

From the commutativity of the parallel transport maps, we obtain

Tu(TF )(Xh

u
) =

d

dt |t=0

⌧
F��
0t (TF (u)) = Y

h

TF (u).

2. Now from this first point, we deduce that for any X 2 �(TM1) and ↵ 2

⌦1(M2), we have

� (TF )⇤↵v
, X

v
� = � ↵

v
, Y

v
� �TF

= � ↵, Y � �p2 � TF

= � ↵, Y � �F � p1

= � F
⇤
↵, X � �p1

= � (F ⇤(↵))v, Xv
� .

Furthermore,

� (TF )⇤(↵v), Xh
�=� ↵

v
, Y

h
� �TF = 0 =� (F ⇤(↵))v, Xh

� .

This proves that (TF )⇤(↵v) = (F ⇤(↵))v. Similarly, we get (TF )⇤(↵h) = (F ⇤(↵))h.
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Proof of Theorem 2.2.3. Suppose that (i) is satisfied. According to the Lemma 2.2.4
we get that for any ↵, � 2 ⌦1(M2),

⇧1((TF )⇤(↵h), (TF )⇤(�h)) = ⇧1((F ⇤
↵)h, (F ⇤

�)h)

= 0

= ⇧2(↵h
, �

h) � TF.

Similarly, we get ⇧1((TF )⇤(↵v), (TF )⇤(�v)) = ⇧2(↵v
, �

v)�TF . Furthermore, we have

⇧1((TF )⇤(↵h), (TF )⇤(�v)) = ⇧1((F ⇤
↵)h, (F ⇤

�)v)

= h
1(F ⇤

↵, F
⇤
�) � p1

= h
2(↵, �) � F � p1

= h
2(↵, �) � p2 � TF

= ⇧2(↵h
, �

v) � TF.

Hence we get (ii).
Conversely suppose that (ii) is satisfied. Because TF is Poisson map we get that

for any ↵, � 2 ⌦1(M2),

⇧2(↵h
, �

v) � TF = ⇧1((TF )⇤(↵h), (TF )⇤(�v)).

According to Lemma 2.2.4 we have

h
2(↵, �) � p2 � TF = h

1(F ⇤
↵, F

⇤
�) � p1.

Since p2 � TF = F � p1, we get

h
2(↵, �) � F � p1 = h

1(F ⇤
↵, F

⇤
�) � p1.

Then from the surjectivity of p1, the equality (2.2.1) follows.
To prove that (i) and (iii) are equivalent, it suffices to see that that (2.2.1) becomes

(F ⇤
�)(X) = �(Y ) �F . Which is equivalent to say that the two vector fields X and Y

are F -related.
The equivalence between (iii) and (iv) is obvious.

Remark 2.2.5. Obviously one can see that if F is a K-V map. Then

TF : (TM1
, J

1) ! (TM2
, J

2),

is a pseudo-holomorphic map, i.e., J2
� T (TF ) = T (TF ) � J1.

Example 2.2.6.

1. Let (M i
,r

i
, h

i) for i = 1, 2 be two K-V manifolds. We consider the K-V structure
(r, h) on the product manifold M

1
⇥ M

2 (as described in Proposition 1.4.1). Then
the canonical projections

pi : (M
1
⇥M

2
,r, h) ! (M i

,r
i
, h

i),

are a K-V map.
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2. Let (G,r, h) be a simply connected Lie group equipped with a K-V structure. Then
the multiplication map

m : (G⇥G,r�r, h� h) �! (G,r, h)

is a K-V map if and only if, G is a vector space, r its canonical affine connection and
h is linear (As seen in Corollary 1.8.2).

3. Let (Ai, •i, Bi) for i = 1, 2 be two commutative, associative algebras endowed with
two symmetric scalar 2-cocycle. Denote by (A⇤

,r, h
i) its associated K-V manifolds.

We consider an affine map F : A1 ! A2, that satisfy

F (u •1 v) = F (u) •2 F (v) and B1(u, v) = B2(F (u), F (v)),

where u, v 2 A1. Then

F
⇤ : (A⇤

2,r, h
2) ! (A⇤

1,r, h
1),

is a K-V map.

4. Let (g, •, r1) be a K-V algebra. Denote by (G,r) the associated affine manifold to the
left symmetric algebra (g, •). Let F : g ! g be a morphism of left symmetric algebra.
Define a symmetric bivector r2 2 ⌦

2g by setting

r
2(↵, �) := r

1(F ⇤
↵, F

⇤
�),

for any ↵, � 2 g⇤. Let F̃ : G ! G be the morphism of Lie group which integ-
rates F , and r

i� be the right invariant symmetric bivector field associated to r
i. Then

(G,r, r
2�) is a K-V manifold. Moreover

F̃ : (G,r, r
1�) ! (G,r, r

2�),

is a K-V map.

As a consequence of the first point in Example 2.2.6 and Theorem 2.2.3 we obtain

Corollary 2.2.7. The canonical diffeomorphism

 := Tp1 ⇥ Tp2 : (T (M
1
⇥M

2),⇧) ! (TM1
⇥ TM

2
,⇧1

� ⇧2),

is a Poisson map, where ⇧ is the Poisson bivector associated to the K-V bivector field h =
h
1
� h

2.

Proof. We know that the skew-symmetric bivector field ⇧1
�⇧2 is the unique Poisson

structure on the product manifold TM
1
⇥ TM

2 such that the canonical projections

epi : (TM1
⇥ TM

2
,⇧1

� ⇧2) ! (TM i
,⇧i),

are Poisson maps. Since the one-forms given by ep⇤
i
↵
h

i
and ep⇤

i
↵
v

i
, where ↵i 2 ⌦1(M i),

span the vector space of one-forms on TM
1
⇥ TM

2. Then for any ↵1, �1 2 �(T ⇤
M

1),
we have

⇧1
� ⇧2

�
ep⇤1↵h

1 , ep⇤1�v

1

�
�  = ⇧1(↵h

1 , �
v

1) � ep1 �  
= ⇧1(↵h

1 , �
v

1) � Tp1.
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According to Theorem 2.2.3 it follows that Tpi : (T (M1
⇥ M

2),⇧) ! (TM i
,⇧i) are

Poisson maps. Therefore, we have

⇧1
� ⇧2

�
ep⇤1↵h

1 , ep⇤1�v

1

�
�  = ⇧

�
Tp

⇤
1↵

h

1 , T p
⇤
1�

h

1

�

= ⇧
�
 

⇤(ep⇤1↵h

1), 
⇤(ep⇤1�v

1)
�
.

Similarly, we verify that we have the same last equality for all types of one-forms
that span the vector space of one-forms on TM

1
⇥ TM

2. This implies that  is a
Poisson map.

We finish this section by giving some proprieties about K-V maps.

Proposition 2.2.8. Let (M i
,r

i
, h

i) for i = 1, 2, 3 be a K-V manifolds, � : (M1
,r

1
, h

1) !
(M2

,r
2
, h

2) a Koszul-Vinberg map and  : (M2
,r

2
, h

2) ! (M3
,r

3
, h

3) an affine map.
Then

1. For any x 2 M
1, rank(h1

#(x)) � rank(h2
#(�(x))).

2. If (M2
,r

2
, h

2) is a pseudo-Hessian manifold and � is surjective, then � is a submer-
sion map.

3. If  is a K-V map, then  � � is a K-V map.

4. If  � � is a K-V map, and � is surjective, then  is a K-V map.

5. If � is a diffeomorphism, then ��1 is a K-V map.

2.3 K-V submanifolds

By similarity to the Poisson submanifolds studied in [47, 35, 55], we shall intro-
duce in this section a class of submanifolds in the context of K-V manifolds.

Let (M,r, h) be a K-V manifold. We say that an immersed submanifold ◆ : N ,!

M is a K-V submanifold of (M,r, h), if it can be equipped with a flat torsionless
connection r

N and a K-V bivector field h
N such that the immersion ◆ : N ,! M

becomes a K-V map. In particular, (N,r
N) is an affine submanifold as studied in

[45].
For any vector subspace V of a finite-dimensional vector space E we denote by

V
� the annihilator of V in E

⇤.

Proposition 2.3.1. Given an immersed affine submanifold ◆ : (N,r
N) ,! (M,r), there

is at most one K-V bivector field h
N on N that makes (N,r, h

N) into a K-V submanifold.
This happens if and only if any of the following equivalent conditions holds.

1. For any x 2 N , Im(h#(◆(x))) ⇢ Tx◆(TxN).

2. For any f 2 C
1(M), the K-V Hamiltonian vector field Xf is tangent to ◆(N).

3. For any x 2 N , h#((Tx◆(TxN))�) = 0.

If N is a closed submanifold. Then these conditions are also equivalent to

4. For any f 2 C
1(M) and g 2 J (N) := {g 2 C

1(M)| g|N = 0}, h(df, dg) 2 J (N).
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Proof. If ◆ : (N,r
N
, h

N) ,! (M,r, h) is a K-V map, then the two bivector fields h

and h
N are ◆-related, i.e., for any x 2 N ,

Tx◆ � h
N

#(x) � (Tx◆)
⇤ = h#(◆(x)).

Since Tx◆ is injective, this shows that hN is unique. It also shows that 1 is satisfied if
(N,r

N
, h

N) is a K-V submanifold.
Next, suppose that ◆:(N,r

N) ,! (M,r) is an affine immersion that satisfies
Im(h#(i(x))) ⇢ Tx(i)(TxN). We claim that there exists a unique smooth bivector
field h

N in N such that h#(◆(x)) factors as

T
⇤
◆(x)M T◆(x)M

T
⇤
x
N TxN.

h#(◆(x))

(Tx◆)⇤

h
N
#(x)

Tx◆

Since we already know that Im(h#(◆(x))) ⇢ Tx(◆)(TxN), it is enough to check that
for any ↵ 2 (Tx◆(TxN))� we have ↵# = 0. In fact, we find for any � 2 T

⇤
◆(x)M ,

h�,↵
#
i = h↵, �

#
i = 0,

which proves the claim (the smoothness of hN is automatic).
Now observe that the skew-symmetric bivector field ⇧N on TN associated to

(rN
, h

N) and the Poisson bivector field ⇧ on TM associated to (r, h) are T ◆-related,
this implies that the Schouten brackets [⇧N

,⇧N ] and [⇧,⇧] are also T ◆-related. Hence

[⇧N
,⇧N ] = 0.

According to Theorem 1.3.2 (N,r
N
, h

N) is a K-V manifold. This shows that if 1
hold, then N has a unique K-V structure (rN

, h
N), such that the immersion ◆ :

(N,r
N
, h

N) ,! (M,r, h) is a K-V map.
The equivalence between 1 and 2 follows from the fact that

Im(h#(◆(x))) = span{h#(◆(x))(df)|f 2 C
1(M)}.

The equivalence between 2 and 3 follows from observing that for any ↵ 2 (Tx◆(TxN))�

and � 2 T
⇤
◆(x)M , we have h�,↵

#
i = h↵, �

#
i. So h#((Tx◆(TxN))�) = 0 if and only

if, h#(◆(x))(T ⇤
◆(x)M) ⇢ Tx◆(TxN). Finally, notice that if N is a closed submanifold,

a vector field X 2 �(TM) is tangent to N if and only if, for any f 2 J (N), we
have X(f) 2 J (N). Hence, the result follows from the first part and the fact that
h(df, dg) = Xg(f).

Now let (N,r) be an affine submanifold (M,r, h) and h
N be a symmetric bi-

vector field on N .

Corollary 2.3.2. The following statements are equivalent.

1. (N,r
N
, h

N) is a K-V submanifold.

2. (TN,⇧N) is a Poisson submanifold of (TM,⇧).
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Example 2.3.3.

1. Take M = (R2
,r, h

2) endowed with its canonical affine structure and the K-V bi-
vector h2 = x

2
@x ⌦ @x + y

2
@y ⌦ @y. We consider the following affine immersion

F : R ! R2
, x 7! (�x, µx),

where (�, µ) 6= (0, 0) and R is endowed with its canonical affine structure. Then the
only way to make F as a K-V map is to take � = 0 or µ = 0 and h

1 = x
2
@x ⌦ @x.

2. Take M = (Rm
,r, h

m) and N = (Rm�k
⇥{0k},r, h

m�k) endowed with its canonical
affine structures and the K-V bivectors

h
m =

mX

i,j=1

xixj@xi ⌦ @xj and h
m�k =

m�kX

i,j=1

xixj@xi ⌦ @xj .

Then N is a K-V submanifold of M .

3. Consider (Rn
,r, h) endowed with its canonical affine connection and

h =
mX

i,i=1

fi(xi)@xi ⌦ @xi ,

where fi 2 C
1(R). Then N = Rm�k

⇥ {0k} as an affine submanifold (Rn
,r, h) is a

K-V submanifold if and only if, fi(0) = 0, for i = k + 1, . . . , n.

4. Let (M,r, h) be a K-V manifold and f 2 C
1(M) an affine function, i.e., rdf = 0,

such that Xf (g) = 0, for all g 2 C
1(M). Then all the smooth level sets of f are K-V

submanifolds. Indeed, since Xg(f) = Xf (g) = 0, shows that all K-V Hamiltonian
vector fields are tangent to the level sets of f .

5. Let (A⇤
,r, h) be a linear K-V manifold and I ⇢ (A, •) be an ideal. Then I

�
⇢ A

⇤ is
a K-V submanifold.

6. Let (g, •, r) be K-V algebra and h ⇢ (g, •) be a left symmetric subalgebra such that
Im(r#) ⇢ h. Denote by (G,r, h) the associated K-V manifold to (g, •, r) and by
(H,r

H) be the associated affine Lie subgroup to (h, •). Then H is a K-V submanifold.

In what follows, we show that a K-V structure can be defined by its affine foli-
ation instead of the K-V bivector.

Theorem 2.3.4. Let (M,r) be an affine manifold, and F a general foliation such that

1. Each leaf L of F is endowed with a pseudo-Hessian structure (rL
, gL) and (L,rL) is

an affine submanifold of (M,r).

2. If f 2 C
1(M), the vector field Xf defined by Xf (x) = the gradient vector field of f |L

on (L,rL
, gL) at x is a smooth vector field on M where L is the leaf passing through

x.

Then (M,r) has a unique K-V bivector field h whose affine foliation is F . Moreover, each
leaf (L,rL

, h
L) is a K-V submanifold of (M,r, h) where hL = g

�1
L

.
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Proof. We define a symmetric bivector on M by putting for all ↵, � 2 ⌦1(M) and
x 2 M ,

h(↵, �)(◆(x)) = h
L(◆⇤↵, ◆⇤�)(x),

where L is the affine leaf passing through x 2 M and ◆ : L ,! M is the canonical
injection. The smoothness of h follows automatically from 2. From 1 and 2 one can
deduce that for any one forms ↵, �, � 2 ⌦1(M), we have

r↵#(h) (�, �) (◆(x)) = r
L

(◆⇤↵)#L (h
L) (◆⇤�, ◆⇤�) (x)

= r
L

(◆⇤�)#L (h
L) (◆⇤↵, ◆⇤�) (x)

= r�#(h) (↵, �) (◆(x)).

Let us now examine the relation between the concept of K-V submanifold and
affine foliation.

Proposition 2.3.5. Let (M,r, h) be a K-V manifold with affine foliation F . An affine
submanifold (N,r

N) ⇢ (M,r) is a K-V submanifold if and only if, for each leaf L 2 L the
intersection L\N is an open subset of L. Hence, the affine foliation of (N,r

N
, h

N) consists
of the connected components of the intersection L \N .

Proof. An affine submanifold (N,r
N) ⇢ (M,r) is a K-V submanifold if and only if,

Im(h#(x)) ⇢ TxN, 8x 2 N.

It follows that for a K-V submanifold N ⇢ M , each affine leaf of (N,r
N
, h

N) is also
an integral submanifold of (M,r, h). Hence, each affine leaf of (N,r

N
, h

N) is an
open subset of an affine leaf of F .

Conversely, if for each affine leaf L 2 F the intersection L \N is an open subset
of L. Then for any x 2 N , we have Im(h#(x)) = TxL ⇢ TxN , where L 2 F is the
affine leaf passing through x. This shows that N is a K-V submanifold.

Remark 2.3.6. Let (M,r, g) be a pseudo-Hessian manifold. Then the only K-V submani-
folds are the open subsets of M .

Finally, we give the relation between K-V maps and the affine foliation.

Proposition 2.3.7. Let F : (M1
,r

1
, h

1) ! (M2
,r

2
, h

2) be a K-V map. Then, for each
pseudo-Hessian leaf L of (M2

,r
2
, h

2), the set L \ Im(F ) is open in L. In particular, if
Im(F ) is an affine submanifold, then it is a K-V submanifold of (M2

,r
2
, h

2).

Proof. Let x 2 M
1 and set y = F (x). Denote by L the affine leaf of (M2

,r
2
, h

2)
containing y. Any point in L can be reached from y by piecewise smooth curves
consisting of integral curves of K-V Hamiltonian vector field Xf .

Given f 2 C
1(M), according to Theorem 2.2.3, the vector fields Xf and Xf�F

are F -related. Hence, if �2(t) 2 M
2 and �1(t) 2 M

1 are the integral curves of Xf

and Xf�F satisfying �2(0) = y and �1(0) = x, we have �2(t) = F (�1(t)), for all small
enough t. It follows that a neighborhood of y in L is contained in the image of F .

Corollary 2.3.8. Let (M,r, h) be a K-V manifold. If N1
, N

2
⇢ M are two K-V submani-

folds which intersect transversely then N
1
\N

2
⇢ M is also a K-V submanifold.
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Proof. Let � : I ! N
1
\ N

2 be a curve with �(0) = x and �(1) = y. We take
u 2 Tx(N1

\ N
2) = TxN

1
\ TxN

2. Since N
1 and N

2 are affine submanifolds of M
then ⌧

�(u) 2 TyN
1
\ TyN

2 = Ty(N1
\ N

2) where ⌧ � : TxM ! TyM is the parallel
transport along �. This show that N1

\N
2 is an affine submanifold of M . Applying

the first assertion of Proposition 2.3.1 to N
1 and N

2, we get that for all x 2 N
1
\N

2,
Im(h#(x)) ⇢ TxN

1
\ TxN

2 = Tx(N1
\ N

2). Hence N
1
\ N

2 is a K-V submanifold of
(M,r, h).

In general, K-V submanifolds don’t have functoriality under K-V maps which
are explained by the following example.

Example 2.3.9. Consider the K-V map

F : (R3
,r, h

1) ! (R2
,r, h

2)

(x, y, z) 7�! (x+ y �

p

2z, x+ y �

p

2z),

where r is the canonical affine structure of Rn,

h
1 = @x ⌦ @x + @y ⌦ @y � @z ⌦ @z and h

2 = 0.

The affine submanifold N := {(x,�x)| x 2 R} ⇢ R2 is a transversal to the map F .
Moreover, F�1(N) = {(x, y, z)| x + y �

p
2z = 0} ⇢ R3 is a hyperplane, hence F�1(N)

cannot be a K-V submanifold of R3, since the only one are the open subset of R3.

2.4 K-V transversals

We recall from [47] that a Poisson transversal of a Poisson manifold (P, ⇡) is a
submanifold N ⇢ P such that, at every point x 2 N , we have

TxP = TxN + ⇡#(TxN
�). (2.4.1)

Definition 2.4.1. A K-V transversal of a K-V manifold (M,r, h) is an affine submanifold
N ⇢ M such that, at every point x 2 N , we have

TxM = TxN + h#(TxN
�). (2.4.2)

Note that the equality rank(TN�) = rank(TNM) � rank(TN) implies that condi-
tion (2.4.2) is equivalent to the direct sum decomposition

TNM = TN � h#(TN
�). (2.4.3)

The main reason to consider K-V transversals is that they have naturally induced
K-V structures. Indeed, let N be a K-V tranversal of (M,r, h). Then the decomposi-
tion for TNM and the dual decomposition for T ⇤

N
M gives a sequence of bundle maps

T
⇤
N

p
⇤

�! T
⇤
N
M

h#
�! TNM

p

�! TN. (2.4.4)

The resulting bundle map T
⇤
N ! TN is symmetric and so it is of the form h

N

# for a
unique symmetric bivector field h

N on N . Hence we get that

Proposition 2.4.2. (N,r, h
N) is a K-.V manifold.

To show this proposition we need the following lemma.
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Lemma 2.4.3. Let N be a K-V tranversal of (M,r, h). Then TN is a Poisson transversal
submanifold of (TM,⇧).

Proof. Let x 2 M , ↵, � 2 �(T ⇤
M) and X 2 �(TM) such that ↵x 2 TxN

�. Let u 2 TxN ,
for all Z 2 �(TN),

� (↵h)u, (Z
h)u �=� ↵x, Zx �= 0,

and
� (↵v)u, (Z

v)u �=� ↵x, Zx �= 0,

Hence (↵h)u, (↵v)u 2 Tu(TN)�. On the other hand, there exist Y 2 �(TN) and � 2

�(T ⇤
M) such that �x 2 TxN

� and Xx = Yx + �
#
x

. Hence, we have

� (�v)u, (X
v)u � = � �x, Xx �

= � �x, Yx + �
#
x
�

= � (�)v
u
, (Y v)u + (�#

x
)v
u
�

= � (�)v
u
, (Y v)u + ⇧#(�

h

u
) � .

This implies that (Xv)u = (Y v)u + ⇧#(�hu). Similarly, we get that (Xh)u = (Y h)u �

⇧#(�vu). Hence the equality Tu(TM) = Tu(TN)+⇧#(Tu(TN)�) follows from the fact
that

Tu(TM) = span
�
(Xv)u, (X

h)u|X 2 �(TM)
 
.

Proof of Proposition 2.4.2. Let ⇧N be the skew-symmetric bivector field associated to
the pair (r, h

N), one can see also that ⇧N coincide with the bundle map given by
the following composition maps

T
⇤(TN)

Tp
⇤

�! T
⇤
TN

(TM)
⇧#
�! TTN(TM)

Tp

�! T (TN).

According to the Lemma 2.4.3 and [47, Proposition 2.13], ⇧N is a Poisson bivector
field on TN , hence we get that (r, h

N) is a K-V structure on N .

It is important to note that for a K-V transversal N in (M,r, h), with induced
K-V structure h

N , the inclusion map ◆ : (N,r, h
N) ,! (M,r, h) is not in general a

K-V map (Unless is an open set in M ). This will be clear in the next example.

Example 2.4.4. Take M = (R3
,r, h) endowed with its canonical affine structure and h =

x@x ⌦ @x + y@y ⌦ @y. Obviously (M,r, h) is a K-V manifold and

N := {(0, 0, z)| z 2 R} ⇢ (M,r, h),

is a K-V transversal. However, the induced K-V bivector field on N vanish identically.

K-V transversal behave functorially under pullbacks by K-V maps. This turns
out to be a very useful property.

Proposition 2.4.5. Let F : (M1
,r

1
, h

1) ! (M2
,r

2
, h

2) be a K-V map and let N2
⇢ M

2

be a K-V transversal. Then F is transverse to N
2 and N

1 := F
�1(N2) is a K-V transversal

in M
1. Moreover, F restricts to a K-V map between the induced K-V structure on N

1 and
N

2.

Proof. Let x 2 N
1 and y = F (x) 2 N

2. Because F is a K-V map we get that for all
↵ 2 T

⇤
y
M

2,
↵
#2 = TxF ((TxF

⇤
↵)#1). (2.4.5)
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Therefore, h2
#(T

⇤
y
M

2) ⇢ TxF (TxM
1). Since N

2 is a K-V transversal this implies that

TyM
2 = TyN

2 + h
2
#(T

⇤
y
M

2) = TyN
2 + TxF (TxM

1).

This shows that F is transverse to N
2. In particular, N1 is a submanifold of M1.

The affinity of N1 follows from [37, Theorem 2]. Let v 2 TxM
1, and decompose

TxF (v) = u + ↵
#2 , with u 2 TyN

2 and ↵ 2 (TyN
2)�. Then, F ⇤

↵ 2 (TxN
1)�, and from

(2.4.5) we get that the vector w := v � (TxF
⇤
↵)#1 is mapped by TxF to u. Hence

w 2 TxN
1. This shows that

v = w + (TxF
⇤
↵)#1 2 TxN

1 + h
1
]
((TxN

1)�).

Therefore N
1 is a K-V transversal.

According to the Lemma 2.4.3 we get that TN2
⇢ (TM2

,⇧2) is a Poisson trans-
versal. And from [47, Proposition 2.20] it follows that

TF : (TN1
,⇧N

1
) ! (TN2

,⇧N
2
),

is a Poison map. Therefore

F : (N1
,r

1
, h

N
1
) ! (N2

,r
2
, h

N
2
),

is a K-V map.

Corollary 2.4.6. Let (M,r, h) be a K-V manifold, (N1
,r

1
, h

1) ⇢ M be a K-V transversal
and (N2

,r
2
, h

2) ⇢ M be a K-V submanifold. Then

1. N
1 and N

2 intersect transversally.

2. N
1
\N

2 is a K-V submanifold of N1.

3. N
1
\N

2 is a K-V transversal in N
2.

4. The two induced K-V structures on N
1
\N

2 coincide.

Now we give the relation between K-V transversal and the affine foliation.

Proposition 2.4.7. Let (M,r, h) be a K-V manifold with affine foliation F . An affine
submanifold N ⇢ M is a K-V transversal if and only if, for all L 2 F , the intersection
L \ N is a K-V submanifold of L. Hence, the affine foliation of

�
N,r, h

N
�

consists of the
connected components of the intersection L \N .

Proof. The condition on affine submanifold N ⇢ M to be a K-V transversal is

TNM = TN � h# (TN�) .

This last condition is equivalent to have both the following conditions satisfied

(i) TNM = TN + h# (TN�).

(ii) TN \ h# (TN�) = 0.

Condition (i) says that N is transverse to the affine leaves and condition (ii) (provided
(i) is satisfied) says that the kernel of the pullback of gL to L \N is trivial. So L \N

is a K-V submanifold of L.
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We finish this section with the following example.

Example 2.4.8. Consider Rn endowed with its canonical affine structure r and the stand-
ard K-V bivector field

h =
nX

i=

@

@xi

⌦
@

@xi

.

Let F : (Rn
,r, h) ! (Rm

,r, h) be an affine map. Obviously, F is a K-V map. Moreover,
for every regular value x 2 Rm of F the affine submanifold F

�1(x) ⇢ Rn is a K-V trans-
versal.

2.5 Coisotropic K-V submanifolds

Let (P, ⇡) be a Poisson manifold. A submanifold N ⇢ P is called coisotropic sub-
manifold if and only if, ⇡#(TN�) ⇢ TN . Now we have a similar statement for K-V
manifolds, we consider a K-V manifold (M,r, h) and an affine submanifold N of
M .

Proposition 2.5.1. The following assertions are equivalent

1. h#(TN�) ⇢ TN .

2. TN is a coisotropic submanifold of (TM,⇧).

Proof. The equivalence follows from the fact that ↵|TN
= 0 if and only if,

↵
h

|T (TN)
= ↵

v

|T (TN)
= 0,

for any ↵ 2 ⌦1(M).

Definition 2.5.2. A coisotropic K-V submanifold N ⇢ M is an affine submanifold such
that h#(TN�) ⇢ TN .

K-V submanifolds are a subclass of coisotropic Koszul-Vinberg submanifolds.

Proposition 2.5.3. Let (M,r, h) be a K-V manifold. For any affine closed submanifold
N ⇢ M , the following conditions are equivalent

(i) N is a coisotropic K-V submanifold.

(ii) For every f, g 2 J (N), where J (N) is the vanishing ideal we have Xf (g) 2 J (N).

(iii) For every f 2 J (N) the Hamiltonian vector field Xf is tangent to N .

Proof. Let’s prove that (i) =) (ii). Let f, g 2 J (N). Obviously, for any x 2 N ,
we have dxf, dxg 2 TxN

�. Since N ⇢ M is a coisotropic K-V submanifold then
h(x)(dxf, dxg) = 0, so h(df, dg) 2 J (N).

Let’s prove that (ii) =) (iii). Assume that J (N) is stable under h. Let f, g 2

J (N), for all x 2 N ,
Xf (g)(x) = h(x)(dxf, dxg) = 0.

The closedness of the submanifold N implies that Xf is tangent to N .
Let’s prove that (iii) =) (i). Again the closedness of the submanifold N implies

that TxN
� is generated by elements dxf where f 2 J (N). So we conclude that for

any ↵, � 2 TN
�, h(↵, �) = 0. Therefore, N is coisotropic.
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Proposition 2.5.4. Let F : (M1
,r

1
, h

1) ! (M2
,r

2
, h

2) be a K-V map and assume that
F is transverse to a coisotropic K-V submanifold N

2
⇢ M

2. Then F
�1(N2) ⇢ M

1 is a
coisotropic K-V submanifold.

Proof. Firstly the affinity of F�1(N2) is guaranteed ( this follows from [37, Theorem
2]). Hence the result can be deduced directly by applying [47, Propostion 2.34] to
the Poisson map TF : (TM1

,⇧1) ! (TM2
,⇧2).

There is one more important property of coisotropic objects and which shows
their relevance in K-V geometry. In order to express it, we introduce the follow-
ing notation. Let (M1

,r
1
, h

1) and (M2
,r

2
, h

2) be a K-V manifold. Denote by (M1
⇥

M
2
,r, h) the K-V manifold such that the canonical projections p1 : (M1

⇥M
2
,r, h) !

(M1
,r

1
, h

1) and p2 : (M1
⇥M

2
,r, h) ! (M2

,r
2
,�h

2) are K-V maps.

Proposition 2.5.5. For a smooth map F : (M1
,r

1
, h

1) ! (M2
,r

2
, h

2), the following
conditions are equivalent

(i) F is a K-V map.

(ii) Graph(F ) ⇢ M
1
⇥M

2 is a coisotropic K-V submanifold.

This proposition is a consequence of the following lemma which is a generaliz-
ation of the following fact. A map F : Rn

! Rm is affine if and only if, its graph is
an affine subspace of Rn+m. Now let (M1

,r
1) and (M2

,r
2) be two affine manifolds

and F : (M1
,r

1) ! (M2
,r

2) is a smooth map.

Lemma 2.5.6. F is an affine map if and only if its graph is an affine submanifold of (M1
⇥

M
2
,r

1
�r

2).

Proof. Let �̃ : [0, 1] ! Graph(F ), �̃ = (�, F (�)) where � is a curve on M
1 such that

�(0) = p and �(1) = q. Hence, for any u 2 TpM
1 we have

⌧
�̃(u, TpF (u)) = (⌧ �(u), ⌧F (�)(TpF (u))),

where ⌧ �̃ is the parallel transport along the curve �̃, seen as a curve on M
1
⇥ M

2.
Hence, TqF (⌧ �(u)) = ⌧

F (�)(TpF (u)) if and only if ⌧ �̃(u, TpF (u)) 2 T(q,F (q))Graph(F ).
This shows that F is an affine map if and only if it commutes with parallel transport
if and only if Graph(F ) is an affine submanifold of (M1

⇥M
2
,r

1
�r

2).

Now let’s explore more proprieties of coisotropic K-V subamanifold. For that we
endowed the space �(TN�) with the product

↵ • � = D↵�.

Proposition 2.5.7. Let N ⇢ (M,r, h) be a coisotropic submanifold. Then (TN�
, N, •, ⇢)

is a left symmetric algebroid, where ⇢ is the restriction of h# to the subbundle TN�
⇢ T

⇤
N
M .

Moreover, for any x 2 N , the vector space gx = ker ⇢x is a commutative associative algebra.

Proof. What we need to show is that the product • is well defined and the other
assertions are a direct consequence of this fact. Let X be a vector field on M which
is tangent to N and ↵, � 2 �(TN�). Then

� D↵�, X � = �X.(� ↵, �
#
�)+ � ↵,rX�

#
� + � �,rX↵

#
�

+h#(↵).(� �, X �)� � �,r↵#X � .
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Using the affinity of N together with the condition h#(TN�) ⇢ TN , we get that
� D↵�, X �= 0, hence D↵� 2 �(TN�).

Example 2.5.8.

1. N is a K-V submanifold if and only if ⇢ = 0.

2. If x 2 M is a point at which the K-V structure vanishes, then {x} is coisotropic.

3. Let ◆ : H ,! A be a subalgebra of the associative, commutative algebra A. Then
(◆⇤)�1({0}) ⇢ A

⇤ is a coisotropic K-V submanifold, where A
⇤ is endowed with its

canonical linear K-V structure.

Recall that two submanifolds N1
, N

2
⇢ M are said to have a clean intersection if

N
1
\ N

2 is a submanifold of M and T (N1
\ N

2) = TN
1
\ TN

2. A submanifold has
a clean intersection with a foliation if it intersects cleanly every leaf of the foliation.

Proposition 2.5.9. Let N be an affine submanifold of a K-V manifold (M,r, h) which
has a clean intersection with its affine foliation F . Then N is a coisotropic submanifold of
(M,r, h) if and only if, for each affine leaf L 2 F the intersection L \ N is a coisotropic
submanifold of N .

Proof. Assume that N ⇢ M is an affine submanifold which is transverse to the affine
foliation F . This means that for each L 2 F the inclusion ◆ : L ,! M is transverse
N . Now

(a) If N is coisotropic in M , it follows that ◆�1(N) = L \ N is coisotropic in N ,
since the inclusion is a K-V map.

(b) If L ⇢ N is coisotropic in L, then we have

h
L

#(T (L \N)�) ⇢ T (L \N) = TL \ TN,

where the annihilator is taking in T
⇤
L.

It follows that for any ↵ 2 ⌦1(M) such that ↵|T (L\N)
= 0, we have ↵#

2 �(TN). But
(TL \ TN)� = TL

� + TN
�, so we conclude that h#(TN�) ⇢ TN , which means that

N is coisotropic.



50

Chapter 3

Homogeneous spaces with invariant

K-V structures

The study of invariant structures (such as pseudo-Riemannian metrics, symplectic,
Hessian, or contact structures . . .) on homogeneous manifolds is an important step
in any geometrical study and this was a motivation for many interesting contribu-
tions, one can see for instance [43, 44, 16, 8, 49]. In this chapter, we undertake the
study of invariant K-V structures on homogeneous manifolds.

3.1 K-V transformations

3.1.1 Infinitesimal K-V transformations

Let (M,r) be an affine manifold. A vector field X 2 �(TM) is called an infinites-
imal affine transformation if it satisfies

[LX ,rY ] = r[X,Y ],

for any vector field Y 2 �(TM). The set a↵(M,r) of complete infinitesimal affine
transformations of M is a Lie subalgebra of �(TM) of dimension at most n2 + n,
where n = dimM . It is the Lie algebra of the Lie group A↵(M,r) of affine trans-
formations (M,r) (see [33, 34]).

Let (M,r, h) be a K-V manifold. Denote by A↵h(M) the subgroup of A↵(M) con-
sisting of K-V transformations of (M,r, h). This group will be called the group of K-V
transformations. A K-V vector field X 2 �(TM) is an infinitesimal affine transforma-
tion satisfying LXh = 0. Denote by a↵h(M,r) the space of complete infinitesimal
K-V transformations.

Proposition 3.1.1. Let (M,r, h) be a connected K-V manifold. Then

1. A↵h(M) is a closed subgroup of A↵(M).

2. A↵h(M) is a Lie group and a↵h(M,r) is its Lie algebra.

Proof. 1. Let ('n)n2N be a sequence of elements of A↵h(M) which converges to
' 2 A↵(M). Since A↵(M) is a Lie transformation group, we get

'
⇤
h = lim

n!1
'
⇤
n
h = lim

n!1
h = h.

2. Clearly a↵h(M,r) is a Lie subalgebra of a↵(M,r) and X 2 a↵h(M,r) if and
only if, 'X

t
2 A↵h(M) for all t 2 R. Hence, according to [34, Theorem 3.1 pp.

13] we obtain the result.
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Let (M,r, h) be a K-V manifold. Denote by Aut⇧(TM) the group of diffeo-
morphisms of TM that preserves the Poisson bivector ⇧ associated to the pair (r, h).
Denote by Aut⇧(TM) the group of diffeomorphisms F : M ! M such that TF :
TM ! TM preserves the Poisson bivector ⇧ associated to the pair (r, h). Then
according to [2, Theorem 3.1 ], we have

Corollary 3.1.2. A↵h(M) = A↵(M) \ Aut⇧(TM).

Now we give a class of K-V manifolds for which the Lie group A↵h(M) can be
computed.

Let (A, •) be a finite dimensional associative, commutative algebra. Denote by
(r, h) the canonical K-V structure on A

⇤ introduced in [10]. Recall that r is the
canonical flat torsionless connection of A⇤ and h is the K-V bivector field defined by

h(↵, �)(µ) :=� µ,↵(µ) • �(µ) �,

where ↵, � 2 ⌦1(A⇤) = C
1(A⇤

,A) and µ 2 A
⇤. Denote by Aut(A, •)⇤ the subgroup

of GL(A⇤) given by
Aut(A, •)⇤ := {g

⇤
| g 2 Aut(A, •)},

and (A2)� := {µ 2 A
⇤
, µ|A2 = 0}.

Proposition 3.1.3. A↵h(A⇤) is a semi-direct product

A↵h(A
⇤) = (A2)� o Aut(A, •)⇤.

Moreover, if we suppose that A is unitary. Then A↵h(A⇤) = Aut(A, •)⇤.

Proof. Let F 2 A↵h(A⇤) then there exists a unique isomorphism g of A and a unique
✏ 2 A

⇤ such that F = g
⇤ + ✏. Since F preserve h then for any µ 2 A

⇤ and ↵, � 2

⌦1(A⇤),

� µ, (g � ↵ � F (µ)) • (g � � � F (µ)) �=� g
⇤(µ) + ✏, (↵ � F (µ)) • (� � F (µ)) � .

From the bijectivity of g⇤ and F it follows that, for any u, v 2 A,

� µ, g(u) • g(v) �=� g
⇤(µ) + ✏, u • v � .

In this last equation we replace µ by tµ, where t 2 R, and we take its derivative with
respect to t we get

� µ, g(u) • g(v) �=� g
⇤(µ), u • v � .

This shows that A↵h(A⇤)⇢(A2)� o Aut(A, •)⇤. The other inclusion is obvious.
If A is unitary then A

2=A. Hence we have A↵h(A⇤) = {0}o Aut(A, •)⇤.

Let us give some more examples where we can compute A↵h(M).

Example 3.1.4. We consider M = (R2
,r) endowed with its canonical affine structure

and denote by (x, y) its canonical affine coordinates. Then A↵(M) = R2 o GL(R2). We
enumerate A↵h(R2) for some K-V bivector fields.

1. The bivector field h := y@x ⌦ @x is K-V and

A↵h(M) =

⇢✓✓
c

0

◆
,

✓
a b

0 a
2

◆◆
| a 2 R⇤

, b, c 2 R
�
.
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2. The bivector field h = x@x ⌦ @x + y@x ⌦ @y is K-V and

A↵h(M) = R\{0}.

3. The bivector field h = y@x ⌦ @x + @x ⌦ @y is K-V and

A↵h(M) =

⇢✓✓
b

2a

◆
,

✓
1 a

0 1

◆◆
| a, b 2 R

�
.

4. The bivector field h = x
2
@x ⌦ @x + y

2
@y ⌦ @y is K-V and

A↵h(M) =

⇢✓✓
0
0

◆
,

✓
a 0
0 b

◆◆
;

✓✓
0
0

◆
,

✓
0 a

b 0

◆◆
| a, b 2 R⇤

�
.

3.1.2 K-V actions

Let M be a smooth, connected manifold and Di↵(M) the group of diffeomorphisms
of M . A smooth action of a Lie group G on M is a group morphism � : G ! Di↵(M)
such that the induced map

G⇥M
�

�! M, (g, x) 7! �(g, x) = �g(x) = g · x.

is smooth. Each smooth action � : G⇥M ! M induce an action of G on TM given
by

G⇥ TM �! TM, (g, u) 7! T (�g)(u).

Let (M,r, h) be a K-V manifold and G a Lie group acting smoothly on M . We say
that the action is a K-V action if �(G) ⇢ A↵h(M).

Let (M,r, h) be a K-V manifold and G is a Lie group acting smoothly on (M,r)
by affine transformations. Then, according to [2, Theorem 3.1], we have

Proposition 3.1.5. The action of G on (M,r, h) is a K-V action if and only if the action of
G on TM is made by Poisson transformations.

Obviously the natural action of A↵h(M) on (M,r, h) is a K-V action. We can
build a naturally K-V action as the following example shows.

Example 3.1.6. Let A 2 Mn(R) and A := R[A] be the unitary commutative, associative
subalgebra of Mn(R) generated by A. Denote by G(A) the subgroup of GLn(R) given by

G(A) := {g 2 GLn(R)| gAg�1
2 A}.

Obviously G(A) is a closed subgroup of GLn(R) hence it is a Lie group, which acts on A by
automorphisms through conjugation

G(A)⇥A ! A, (g, u) 7! ⌧g(u) = g.u := gug
�1
.

On the other hand, consider the dual vector space A⇤ endowed with the contragradient action

G(A)⇥A
⇤
! A

⇤
, (g, µ) 7! �g(µ) := (⌧g�1)⇤(µ),

and its canonical K-V structure (r, h) (see [1]). The action � induces an action of G(A) on
⌦1(A⇤) = C

1(A⇤
,A) given by g.↵ = ⌧g � ↵ � (⌧g�1)⇤. Hence � is a K-V action.
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3.1.3 Covering K-V transformations

Let � be a discrete group acting smoothly, freely, and properly on M . Then the
orbit space M/� is a smooth manifold and the canonical projection p : M ! M/� is
a covering map (see [36, pp. 91]). A tensor field on M/� can be seen as a �-invariant
tensor field on M . In particular a �-invariant vector field X on M gives rise to a
vector field on M/� denoted by p⇤X which is p-related to X .

Now let (r, h) be a K-V structure on M such that � ⇢ A↵h(M). Then there exists
a unique K-V structure (r0

, h
0) on M/� such that

p : (M,r, h) ! (M/�,r0
, h

0),

is a K-V map.
Conversely, let (r, h) be a K-V structure on M/�. Then the structure (r, h) can

be uniquely lifted to a �-invariant K-V structure (er,eh) on M .
In summary, we have established the following result.

Proposition 3.1.7. There is a natural one-to-one correspondence between �-invariant K-V
structures on M and K-V structures on M/�.

The above Proposition 3.1.7 can be illustrated as follows.

Example 3.1.8 (Construction by suspension). Let (N,r, h) be a K-V manifold and � 2

A↵h(N). We define an action of Z on R⇥N by setting n.(t, x) := (t+n, �
n(x)). Obviously

Z acts freely and properly on R ⇥ N . Hence the quotient space M := R ⇥Z N is a smooth
manifold. Now we endow R ⇥ N with the K-V structure given by the product structure
(R,r�

, 0) ⇥ (N,r, h) (see [1, Proposition 2.9]), where r� is the canonical flat torsionless
connection on R. Hence M can be endowed with a K-V structure.

We say that a K-V manifold is complete when the connection is complete. From
Theorem 3.1.7 and [57, Corollary 1.9.6 pp. 45] we get the following corollary.

Corollary 3.1.9. Complete K-V manifolds are just the quotient manifold Rn
/�, where � is

a subgroup of affine diffeomorphisms of Rn, which preserve a K-V structure (r, h) on Rn

acting freely and properly discontinuously on Rn.

Example 3.1.10. Denote by r the canonical connection on R2 and h the K-V bivector field
on R2 given by

h# =

✓
cos(2⇡x) � cos(2⇡x)
� cos(2⇡x) cos(2⇡x)

◆
.

The K-V structure (r, h) is Z2-invariant with respect to the linear action of Z2 on R2.
Hence we get a K-V structure (r0

, h
0) on T2 := R2

/Z2. The diffeomorphism � : T2
!

T2
, [(x, y)] 7! [(x, y +

p
2)] preserve (r0

, h
0). Hence it follows from the construction by

suspension that the compact manifold M := R⇥Z T2 can be endowed with a K-V structure.

3.2 Invariant K-V structures on homogeneous affine man-

ifolds

A G-invariant K-V structure on a homogeneous manifold M := G/H is a K-V
structure (r, h) on M , such that the left action of the Lie group G on G/H preserves
both r and h. This is also equivalent to the fact that the group �(G) := {�g/ g 2 G}

is a subgroup of the Lie group A↵h(G/H).
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Now we give an algebraic characterisation of K-V bivector fields on homogen-
eous affine manifolds. Let (M := G/H,r) be a G-homogeneous affine manifold.
Denote by

L : g ! End(g/h),

the Lie algebra representation associated to r, and L
⇤ : g ! End((g/h)⇤) its contra-

gredient representation.
Let h be a G-invariant symmetric bivector field on M , r 2 ⌦

2g/h its associated
H-invariant symmetric bivector and er 2 ⌦

2g any symmetric bivector satisfying q �

er# � q
⇤ = r#, where q : g ! g/h is the canonical projection.

We introduce a product •er on (g/h)⇤, a bracket [, ]er on (g/h)⇤, and a trilinear map
[[r, r]] : ⌦3(g/h)⇤ ! R by the following formulas

✏
1
•er ✏

2 := L
⇤
er#(q⇤✏1)(✏

2), [✏1, ✏2]er := ✏
1
•er ✏

2
� ✏

2
•er ✏

1
,

and
[[r, r]](✏1, ✏2, ✏3) :=� ✏

3
, r#

�
[✏1, ✏2]er

�
� q

�
[er#(q⇤✏1), er#(q⇤✏2)]

�
� .

Lemma 3.2.1.

1. The trilinear map [[r, r]] only depends on r.

2. The (3, 0)-tensor [h, h] on M given by

[h, h](↵, �, �) :=� �, (r↵#�)# �
�
r�#↵

�#
� [↵#

, �
#] �

is G-invariant and its associated trilinear map is [[r, r]].

Proof. 1. Let er1, er2 2 ⌦
2g be two symmetric bivectors such that

q � eri,# � q
⇤ = r#.

Hence

r
�
✏
3
, [✏1, ✏2]er1 � [✏1, ✏2]er2

�
= � ✏

1
, Ler1,#(q⇤✏2)�er2,#(q⇤✏2)(r#(✏

3)) �

� � ✏
2
, Ler1,#(q⇤✏1)�er2,#(q⇤✏1)(r#(✏

3)) � .

Since er1,#(q⇤✏i)� er2,#(q⇤✏i) 2 h and from equation (A.4.1) it follows that

r
�
✏
3
, [✏1, ✏2]er1 � [✏1, ✏2]er2

�
= � ✏

1
, ader1,#(q⇤✏2)�er2,#(q⇤✏2)(r#(✏

3)) �

� � ✏
2
, ader1,#(q⇤✏1)�er2,#(q⇤✏1)(r#(✏

3)) �

=� r(✏3, ad
⇤
er1,#(q⇤✏2)�er2,#(q⇤✏2)(✏

1))

+ r(✏3, ad
⇤
er1,#(q⇤✏1)�er2,#(q⇤✏1)(✏

2)).

Now, from equation (A.3.1) we obtain

r
�
✏
3
, [✏1, ✏2]er1 � [✏1, ✏2]er2

�
=r(✏1, ad

⇤
er1,#(q⇤✏2)�er2,#(q⇤✏2)(✏

3))

� r(✏2, ad
⇤
er1,#(q⇤✏1)�er2,#(q⇤✏1)(✏

3)).

=� � ✏
3
, q([er1,#(q⇤✏2)� er2,#(q⇤✏2), er1,#(q⇤✏1)]) �

+ � ✏
3
, q([er1,#(q⇤✏1)� er2,#(q⇤✏1), er2,#(q⇤✏2)]) �

= � ✏
3
, q([er1,#(q⇤✏1), er1,#(q⇤✏2)]) �

� � ✏
3
, q([er2,#(q⇤✏1), er2,#(q⇤✏2)]) � .
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This shows that [[r, r]] only depends on r.

2. From the G-invariance of h we get that for any g 2 G, (g.↵)# = g
�1
.↵

#
. The

G-invariance of r implies that for any g 2 G,

� g.�,r(g.↵)#(g.�)
#
�=� �,r↵#�

#
�, � g.�, (r(g.↵)#(g.�))

#
�=� �, (r↵#�)# � .

Hence, for any g 2 G,

[h, h](g.↵, g.�, g.�) = [h, h](↵, �, �).

Which means that [h, h] is G-invariant. Now, we will compute the value of
[h, h] at ē. From (A.4.3), we get

(r↵#�)#ē = �e

�
r#

�
deF

�(er#(q⇤✏1)) + ✏
1
•er ✏

2
��

,

where ✏1 = ��1
e
(↵ē), ✏2 = ��1

e
(�ē). According to (A.4.2), we have

(r↵#�)#
ē
�
�
r↵#�

#
�
ē
=�e(deF

�
#
(er#(q⇤✏1))� r#(deF

�(er#(q⇤✏1)))
+ Ler#(q⇤✏1)(r#(✏

2))� r#(✏
1
•er ✏

2)).

On the other hand, for any g 2 G,

F
↵
#
(g) = g

�1
.↵

#(ḡ) = (g�1
.↵(ḡ))# = r#(F

↵(g)).

Hence we get
deF

↵
#
(er#(q⇤✏1)) = r#(deF

↵(er#(q⇤✏1))).

This implies that

(r↵#�)#
ē
�
�
r↵#�

#
�
ē
= �e(Ler#(q⇤✏1)(r#(✏

2))� r#(✏
1
•er ✏

2)).

This shows that
[h, h]ē(↵, �, �) = [[r, r]](✏1, ✏2, ✏3),

where ✏3 = ��1
e
(�ē).

Definition 3.2.2. Let (G/H,r) be a G-homogeneous affine manifold. An H-invariant
symmetric bivector r 2 ⌦

2(g/h) satisfying [[r, r]] = 0 is called an H-invariant S-matrix on
g/h.

From the above Definition 3.2.2 we can see that K-V structures on an affine Lie
group (G,r) corresponds to symmetric bivectors r 2 ⌦

2g, satisfying [[r, r]] = 0 (see
[1]). In what follows we give a more general situation which is our main result in
this section.

Theorem 3.2.3. Let (G/H,r) be a G-homogeneous affine manifold, h a symmetric G-
invariant bivector field and r 2 ⌦

2g/h its associated H-invariant symmetric bivector. Then
h is a K-V bivector field if and only if r is an H-invariant S-matrix.

Proof. Lemma 3.2.1 implies that [h, h] is G-invariant and [h, h]ē = [[r, r]]. Hence h is
a K-V bivector field if and only if, [[r, r]] = 0.
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Now, we are going to give a situation where we can apply this Theorem 3.2.3. Let
G be a connected Lie group endowed with a bi-invariant flat torsionless connection
D and H a connected Lie subgroup of G. Suppose that the Lie algebra h := Lie(H)
is a left ideal of (g, •), where • is the canonical associative product associated to D

and put lu(v) := u • v. The linear map

L : g ! End(g/h), u 7! Lu(v + h) = q(u • v),

is well defined and it is a Lie algebra representation, which obviously satisfies the
conditions of Nomizu’s Theorem. Therefore, there is a unique G-invariant flat tor-
sionless connection r on G/H such that

ru⇤v
⇤ := (v • u)⇤.

Moreover the canonical projection p : (G,D) ! (G/H,r) is an affine map.

Proposition 3.2.4. Under the above hypothesis, let s be an Ad(H)-invariant S-matrix on
(g, •), and consider the symmetric bivector, r# := q � s# � q

⇤. Then r is an H-invariant
S-matrix on g/h, and the projection p : G ! G/H is a K-V map.

Proof. For any ✏1, ✏2 2 (g/h)⇤ and u 2 g,

� q
⇤
L
⇤
s#(q⇤✏1)✏

2
, u �= � � ✏

2
, s#(q

⇤
✏
1) • u+ h �=� l

⇤
s#(q⇤✏1)q

⇤
✏
2
, u � .

Hence
q
⇤ �[✏1, ✏2]s

�
= l

⇤
s#(q⇤✏1)q

⇤
✏
2
� l

⇤
s#(q⇤✏2)q

⇤
✏
1
.

Since s is an S-matrix on (g, •) we get

s#

⇣
l
⇤
s#(q⇤✏1)q

⇤
✏
2
� l

⇤
s#(q⇤✏2)q

⇤
✏
1
⌘
= [s#(q

⇤
✏
1), s#(q

⇤
✏
2)].

Hence
r#([✏

1
, ✏

2]s) = q � s# � q
⇤ �[✏1, ✏2]s

�
= q([s#(q

⇤
✏
1), s#(q

⇤
✏
2)]).

The following example is an illustration of the above result.

Example 3.2.5. Let G = GL
+
3 (R) and H be the connected closed Lie subgroup of G given

by

H =

8
<

:

0

@
1 0 b

0 1 c

0 0 a

1

A

������
a 2 R⇤

+, b, c 2 R

9
=

;.

Denote by g = M3(R) and h = V ect(E13, E23, E33) the Lie algebras of G and H respect-
ively, where (Eij) is the canonical basis of M3(R). Obviously, h is a left ideal of (g, •), where
• is the canonical associative product of M3(R). Using a software program, we can show
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that the only ad(h)-invariant S-matrix on (g, •) are

s
1
# =

0

BBBBBBBBBBBB@

↵ 0 0 0 ↵ 0 0 0 ↵

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
↵ 0 0 0 ↵ 0 0 0 ↵

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
↵ 0 0 0 ↵ 0 0 0 ↵

1

CCCCCCCCCCCCA

s
2
# =

0

BBBBBBBBBBBB@

↵ 0 0 0 0 0 0 0 0
0 0 0 ↵ 0 0 0 0 0
0 0 0 0 0 0 ↵ 0 0
0 ↵ 0 0 0 0 0 0 0
0 0 0 0 ↵ 0 0 0 0
0 0 0 0 0 0 0 ↵ 0
0 0 ↵ 0 0 0 0 0 0
0 0 0 0 0 ↵ 0 0 0
0 0 0 0 0 0 0 0 ↵

1

CCCCCCCCCCCCA

.

Hence we get two H-invariant S-matrix on g/h, r1, and r
2 respectively associated to s1 and

s
2

r
1
# =

0

BBBBBB@

↵ 0 0 ↵ 0 0
0 0 0 0 0 0
0 0 0 0 0 0
↵ 0 0 ↵ 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1

CCCCCCA
r
2
# =

0

BBBBBB@

↵ 0 0 0 0 0
0 0 ↵ 0 0 0
0 ↵ 0 0 0 0
0 0 0 ↵ 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1

CCCCCCA
.

Hence we get two non-equivalent G-invariant K-V bivector fields on the 6-dimensional affine
manifold G/H , h1 and h

2 respectively associated to r
1 and r

2.

Let (G/H,r) be a G-homogeneous affine manifold, g a G-invariant pseudo-
Riemannian metric on G/H and denote by ' its associated H-invariant pseudo-
Euclidean scalar product on g/h. According to the Theorem 3.2.3, we get the follow-
ing corollary which is an improvement of [49, Lemma 9.2].

Corollary 3.2.6. g is a G-invariant pseudo-Hessian metric on (G/H,r) if and only if, for
all u, v, w 2 g,

'([u, v] + h, w + h) = '(u+ h, Lv(w + h))� '(v + h, Lu(w + h)). (3.2.1)

Proof. Denote by r the inverse of '. From Theorem 3.2.3 it follows that g is a G-
invariant pseudo-Hessian metric if and only if, for any ✏1, ✏2, ✏3 2 (g/h)⇤,

� ✏
3
, r#

�
[✏1, ✏2]er

�
� q

�
[er#(q⇤✏1), er#(q⇤✏2)]

�
�= 0,

where er 2 ⌦
2g is any symmetric bivector satisfying q � er# � q

⇤ = r#.
If we take u + h = r#(✏1), v + h = r#(✏2) and w + h = r#(✏3) in the last equation,

we obtain

� ✏
1
, Lv(w + h) � � � ✏

2
, Lu(w + h) �=� ✏

3
, [u, v] + h � .

Hence

'(u+ h, Lv(w + h))� '(v + h, Lu(w + h)) = '(w + h, [u, v] + h).

The following result is known for the Hessian manifolds [49, Theorem 9.2]. The
next theorem tells us that this result remains true if we suppose just h is non-degenerate.
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Theorem 3.2.7. Let G/H be a G-homogeneous space of a semisimple Lie group G. Then
G/H does not admit any non trivial G-invariant pseudo-Hessian structure.

Proof. Suppose that G/H admits a non trivial G-invariant pseudo-Hessian structure
(r, g). Denote by dL the coboundary operator for the cohomology of the Lie algebra
g with coefficients in (g/h, L). Regarding q : g ! g/h as a 1-dimensional (g/h, L)-
cochain we have,

(dLq)(u, v) = Lu(q(v))� Lv(q(u))� q([u, v]) = 0,

that is q is a (g/h, L)-cocycle. Since H
1(g, (g/h, L)) = 0 because of the semisimplicity

of g, there exists w0 2 g such that

q = dL(w0 + h),

which means that, for any u 2 g,

u+ h = Lu(w0 + h).

Now, let z 2 g. Since [g, g] = g, there exists u, v 2 g such that z = [u, v]. Then,
according to the formula (3.2.1), we get that for any w 2 h

'(z + h, w + h) = '(u+ h, Lv(w + h))� '(v + h, Lu(w + h)).

If we take w = w0 in this last equation, we obtain

'(z + h, w0 + h) = '(u+ h, Lv(w0 + h))� '(v + h, Lu(w0 + h))

= '(u+ h, v + h)� '(v + h, u+ h)

= 0.

Since ' is non degenerate, this implies that w0 2 h, and then h = g, which is a
contradiction.

In what follows we give a characterization of K-V structures on reductive ho-
mogeneous affine manifolds. Let (G/H,r) be a reductive G-homogeneous affine
manifold, with the decomposition, g = h � m, Ad(H)(m) = m. Denote by b the
associated products to r and bu : m ! m, the map given by

� b⇤
u
(⇠), v �= � � ⇠, bu(v) � .

Hence the Lie algebra representation L : g ! End(g/h) associated to b is given by

Lu(v + h) = [uh, vm] + b(um, vm) + h.

Theorem 3.2.8. Let (G/H,r) be a reductive G-homogeneous affine manifold, with the
decomposition, g = h � m, Ad(H)(m) = m. Then there is a one to one correspondence
between G-invariant K-V bivector field h on (G/H,r) and H-invariant symmetric bivector
s 2 ⌦

2m satisfying,

s#

⇣
b⇤
s#(✏1)(✏

2)� b⇤
s#(✏2)(✏

1)
⌘
= [s#(✏

1), s#(✏
2)]m.

Proof. Let h be a G-invariant symmetric bivector field on (G/H,r), and s 2 ⌦
2m its

associated H-invariant symmetric bivector. Denote by r 2 ⌦
2g/h the H-invariant
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symmetric bivector given by,

r# := q � ◆ � s# � ◆
⇤
� q

⇤
,

where ◆ : m ,! g is the inclusion map. From Theorem 3.2.3 it follows that h is a K-V
bivector field if and only if, [[r, r]] = 0.

Now, let’s compute the brackets [[r, r]]. For that, we take the symmetric bivector
er 2 ⌦

2g given by
er# = ◆ � s# � ◆

⇤
.

One can easily see that q � er# � q
⇤ = r#. Hence, for any ✏1, ✏2 2 (g/h)⇤ and u 2 m we

have,

� L
⇤
er#(q⇤✏1)(✏

2), u+ h � = � � ✏
2
, Ler#(q⇤✏1)(u+ h) �

= � � ✏
2
, bs#((q�◆)⇤✏1)(u) + h �

=� b⇤
s#((q�◆)⇤✏1)((q � ◆)

⇤
✏
2), u � .

If we take ⇠1 = (q � ◆)⇤✏1, ⇠2 = (q � ◆)⇤✏2 and ⇠
3 = (q � ◆)⇤✏3, we obtain

(q � ◆)⇤
⇣
L
⇤
er#(q⇤✏1)(✏

2)
⌘
= b⇤

s#(⇠1)(⇠
2).

Hence

[[r, r]](✏1, ✏2, ✏3) =� ⇠
3
, s#

⇣
b⇤
s#(⇠1)(⇠

2)� b⇤
s#(⇠2)(⇠

1)
⌘
� [s#(⇠

1), s#(⇠
2)]m � .

Hence, [[r, r]] = 0 if and only if

s#

⇣
b⇤
s#(⇠1)(⇠

2)� b⇤
s#(⇠2)(⇠

1)
⌘
= [s#(⇠

1), s#(⇠
2)]m.

In what follows, we bring some corollaries, which are a direct consequence of
Theorem 3.2.8.
Corollary 3.2.9. Let � ⇢ G be a discrete subgroup of a connected Lie group G. Then there is
a one-to-one correspondence between the G-invariant K-V structures on G/� and the pairs
(•, s), where • is an �-invariant left symmetric compatible product on g and s 2 ⌦

2g is an
�-invariant S-matrix on (g, •).
Example 3.2.10. Denote by

H3 =

8
<

:

0

@
1 a c

0 1 b

0 0 1

1

A

������
a, b, c 2 R

9
=

;

the 3-dimensional Heisenberg Lie group and by � the lattice in H3 given by

� =

8
<

:� :=

0

@
1 m p

0 1 n

0 0 1

1

A

������
m,n, p 2 Z

9
=

;.

The Lie algebra of H3 is given by

h3 = {e1, e2, e3|[e1, e3] = e2},



60 Chapter 3. Homogeneous spaces with invariant K-V structures

where

e1 =

0

@
0 1 0
0 0 0
0 0 0

1

A , e2 =

0

@
0 0 1
0 0 0
0 0 0

1

A , e3 =

0

@
0 0 0
0 0 1
0 0 0

1

A .

One can easily check that the product given by e1 • e3 = e2 is an �-invariant associative
product on h3. And a direct computation shows that the only �-invariant S-matrix on
(h3, •) are

s#(e
⇤
1) = s#(e

⇤
3) = 0, s#(e

⇤
2) = �e2.

Hence, each s induce an H3-invariant K-V bivector field on the compact homogeneous affine
manifold H3/�.

Corollary 3.2.11. Let (G/H,r) be a reductive G-homogeneous affine manifold with de-
composition: g = h � m, Ad(H)(m) = m. Then there exists a one to one correspond-
ence between G-invariant pseudo-Hessian metric g on (G/H,r) and H-invariant pseudo-
Euclidean scalar product h, i on m satisfying,

h[u, v]m, wi = hu, bv(w)i � hv, bu(w)i.

Corollary 3.2.12. Let G/H be a symmetric G-homogeneous space with canonical decom-
position: g = h � m, Ad(H)(m) = m, [m,m] ⇢ h. Then there exists a one to one corres-
pondence between G-invariant K-V structure (r, h) on G/H and the pair (•, s) where • is
an H-invariant commutative product on m satisfying,

[bu, bv] = ad[u,v],

and s is an H-invariant symmetric bivector on m satisfying,

� ✏
1
, b(s#(✏

2), s#(✏
3)) �=� ✏

2
, b(s#(✏

1), s#(✏
3)) � .

Corollary 3.2.13. Let G/H be a symmetric G-homogeneous space with canonical decom-
position: g = h � m, Ad(H)(m) = m, [m,m] ⇢ h. Then there exists a one-to-one cor-
respondence between G-invariant pseudo-Hessian structure (r, g) on G/H and the pair
(•; h·, ·i) where • is an H-invariant commutative product on m satisfying,

[bu, bv] = ad[u,v],

and h·, ·i is an H-invariant pseudo-Euclidean scalar product on m satisfying,

hu • v, wi = hv, u • wi.

Example 3.2.14 (GL+
n
(R)-Homogeneous K-V structure on S

++
n

(R)).
Denote by S

++
n

(R) the space of real symmetric positive definite which is an open subset of
Sn(R), the vector space of real symmetric n ⇥ n-matrices. We know that the connected Lie
group G := GL+

n
(R) acts transitively on S

++
n

(R), g · x := gxg
t. The isotropy subgroup in

In is H := SOn(R). Hence we have the following identification

G/H
⇠
��! S

++
n

(R), ḡ 7! gg
t
.

The Lie algebra of H is h = son(R) and with m := Sn(R) we have a canonical decomposition,
g = h�m, Ad(H)(m) ⇢ m, [m,m] ⇢ h. Define the following product

• : m⇥m ! m, u • v := uv + vu.
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And the canonical scalar product

h·, ·i : m⇥m ! R, hu, vi := tr(ut
v).

Obviously the pair (•, h·, ·i) satisfies the conditions of the Corollary 3.2.13. Hence we get
a G-invariant Hessian structure (r, g) on G/H . By pushing forward (r, g) under the
identification G/H

⇠
��! S

++
n

(R) we get a G-invariant Hessian structure (r, g) on S
++
n

(R).
And one can see that r is the restriction of the canonical flat torsion less connection of Sn(R)
to the open subset S++

n
(R), and g is the canonical metric of S++

n
(R).

Now we are going to apply Corollary 3.2.12 to the manifold G seen as a sym-
metric (G ⇥ G)-homogeneous space, where the action is given by (a, b).x := axb

�1.
The isotropy group of e is H := diag(G) = {(a, a)/ a 2 G}, which is isomorphic
to G. The Lie algebra Lie(G ⇥ G) = g � g can be decomposed as, h � m, where
h := {(u, u)/ u 2 g} and m := {(u,�u)/ u 2 g}. The adjoint representation

Ad : H ! GL(m), Ad(a,a)(u,�u) = (Ada(u),�Ada(u)),

which is equivalent to the usual adjoint representation of the Lie group G ! GL(g)
when H is identified with G and m ⇠= g as a vector space. In addition, we have
[m,m] ⇢ h. So, from the Proposition A.4.3 we get

Corollary 3.2.15. Let G be a connected Lie group endowed with a bi-invariant flat tor-
sionless connection r. Then there exists a one to one correspondence between the following
sets

1. Bi-invariant K-V structures on G.

2. Ad(G)-invariant symmetric bivectors s on g satisfying,

� ✏
1
, b(s#(✏

2), s#(✏
3)) �=� ✏

2
, b(s#(✏

1), s#(✏
3)) � .

3. Ad(G)-invariant S-matrices s on (g, b0).

3.3 SL2(R)-invariant K-V structures on SL2(R)-homogeneous

surfaces

Denote by SL2(R) the Lie group of 2 ⇥ 2-matrices with determinant equal to 1. Its
Lie algebra sl2(R) is given by

sl2(R) = (e1, e2, e3| [e1, e2] = 2e2; [e1, e3] = �2e3; [e2, e3] = e1) ,

where
e1 :=

✓
1 0
0 �1

◆
, e2 :=

✓
0 1
0 0

◆
, e3 :=

✓
0 0
1 0

◆
.

Let’s consider the two following closed subgroup of SL2(R)

N :=

⇢✓
1 t

0 1

◆
| t 2 R

�
, H :=

⇢✓
t 0
0 1/t

◆
| t 2 R⇤

+

�
.

Denote by n the Lie algebra of N and h the Lie algebra of H .
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Lemma 3.3.1.

1. There exists a unique non trivial SL2(R)-invariant flat torsionless connection on the
SL2(R)-homogeneous space SL2(R)/N .

2. There is no non trivial SL2(R)-invariant flat torsionless connection on the SL2(R)-
homogeneous space SL2(R)/H .

Proof. 1. A direct computation shows that the only Lie algebra representation
L : sl2(R) ! End(sl2(R)/n) satisfying the conditions of Nomizu’s Theorem
A.4.1 is given by
(
Le1(e1 + h) = e1 + h

Le1(e3 + h) = �e3 + h,

(
Le2(e1 + h) = 0,

Le2(e3 + h) = e1 + h,
and

(
Le3(e1 + h) = e3 + h

Le3(e3 + h) = 0.

Hence the result follows from Nomuzi’s Theorem A.4.1.

2. Since SL2(R) is a semisimple real Lie group and SL2(R)/H is reductive SL2(R)-
homogeneous space. The results follow from [24].

Remark 3.3.2. The unique non trivial SL2(R)-invariant flat trosionless connection on
SL2(R)/N is the pullback of the canonical flat torsionless connection on R2

\{0} under the
diffeomorphism SL2(R)/N

⇠
��! R2

\{0}, ḡ 7! g(1, 0)t.

Let ⌃ be a surface on which SL2(R) acts effectively and transitively and x 2 ⌃ be
a fixed point. According to [14] there is twos situation,

1. If ⌃ is non-compact. Then

(a) If the isotropy subgroup at x is isomorphic to H . Then ⌃ is SL2(R)-
equivariantly diffeomorphic to SL2(R)/H .

(b) If the isotropy subgroup at x is isomorphic to N . Then ⌃ is SL2(R)-
equivariantly diffeomorphic to SL2(R)/N .

2. If ⌃ is compact. Then ⌃ is SL2(R)-equivariantly diffeomorphic to S1
⇥ S1.

Hence, according to Lemma 3.3.1 and Theorem 3.2.3, we get the following theorem.

Theorem 3.3.3. Under the above assumptions, we have.

1. If the isotropy subgroup at x is isomorphic to N . Then there is a unique non trivial
SL2(R)-invariant K-V structure on ⌃.

2. If the isotropy subgroup at x is isomorphic to H . Then there is no non trivial SL2(R)-
invariant K-V structure on ⌃.

We recall that the Hopf torus does not admit any non trivial Hessian metric [49,
Corollary 7.4 pp. 129]. Now, we consider the Z-action on C⇤ given by

 : Z⇥ C⇤
! C⇤

, (a, z) 7! a.z := e
2⇡a

z.

The orbit space C⇤
/Z can be identified with the two torus S1

⇥ S1 via the following
diffeomorphism

f : C⇤
/Z

⇠=
�! S1

⇥ S1
, [z] 7! (

z

|z|
, e

i ln(|z|)).
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This allows us to transfer the action  to an SL2(R)-action on S1
⇥S1, such that f be-

comes an equivariant diffeomorphism. Moreover the unique non trivial K-V struc-
ture on C⇤ := R2

\{0} given by Theorem 3.3.3 is Z-invariant. Therefore, it induces a
non trivial K-V structure on S1

⇥ S1 denoted by (r, h).

Theorem 3.3.4. (r, h) is the unique non trivial SL2(R)-invariant K-V structure on S1
⇥S1.

Proof. Let (r, h̄) be a SL2(R)-invariant K-V structure on S1
⇥ S1. The projection

p : C⇤
! S1

⇥ S1
, z 7!

� z

|z|
, e

i ln(|z|)�
,

is a Z-cover and it is SL2(R)-equivariant. Then its lift a K-V structure (er,eh) on C⇤ :=

R2
\{0}. From Proposition 3.1.7 it follows that (er,eh) is SL2(R)-invariant. Finally

Theorem 3.3.3 permits us to conclude.

3.4 Description of the regular affine foliation

We recall that any K-V manifold (M,r, h) is foliated by an affine foliation, moreover,
each leaf carries a pseudo-Hessian structure [1, Theorem 3.3]. The G-invariance of
the K-V bivector field implies that the affine foliation is regular.

Let M=G/H be a G-homogeneous manifold endowed with a G-invariant K-V
structure (r, h). Denote by r 2 ⌦

2g/h the H-invariant symmetric bivector associ-
ated to h, er 2 ⌦

2g any symmetric bivector such that q � er# � q
⇤ = r#, this means the

commutativity of the following diagram

T
⇤
ē
M TēM

(g/h)⇤ g/h

g⇤ g

h#,�

�⇤
e

r#

q
⇤

�e

er#

q

.

And a := q
�1(Im(r#)) be the vector subspace of g.

Proposition 3.4.1. a is a Lie subalgebra of g.

Proof. Let u, v 2 a, and ✏
1
, ✏

2
2 (g/h)⇤ such that er#(q⇤✏1) + k1 = u, er#(q⇤✏2) + k2 = v,

where k1, k2 2 h. Then we have

[u, v] + h = [er#(q⇤✏1) + k1, er#(q⇤✏2) + k2] + h

= q
�
[er#(q⇤✏1), er#(q⇤✏2)]

�
+ q � adk1(er#(q⇤✏2))� q � adk2(er#(q⇤✏1))

= q
�
[er#(q⇤✏1), er#(q⇤✏2)]

�
+ adk1(r#(✏

2))� adk2(r#(✏
1)).

Since [[r, r]] = 0 and r is H-invariant, we get

[u, v] + h = r#

�
[✏1, ✏2]er

�
� r#(ad

⇤
k1
✏
2) + r#(ad

⇤
k2
✏
1).

Hence [u, v] 2 a.
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Denote by A the connected immersed Lie subgroup of G which integrates the Lie
subalgebra a of g.

Lemma 3.4.2. For any b 2 H we have cb(A) = A, where cb(a) = bab
�1.

Proof. Since A is connected, then it suffices to show that Adb(a) = a for any b 2 H .
Since Adb is an isomorphism, it suffices to show that Adb(a) ⇢ a. Let u 2 a, then
there exists ✏ 2 (g/h)⇤ such that q(u) = u+ h = r#(✏). Hence

q(Adb(u)) = Adb(q(u))

= Adb(r#(✏))

= �r#(Ad
⇤
b�1(✏)).

Hence Adb(u) 2 a.

From the G-invariance of the K-V bivector field h it follows that E:=Imh# ⇢ TM

is a homogeneous G-vector subbundle. Hence we get the following isomorphism of
homogeneous G-vector bundle

G⇥H Eē

⇠=
�! E, (g, u) 7! Tē(�g)(u).

Now, from Lemma 3.4.2 it follows that for any b 2 H , we have

Adb(a) = a, Adb(h) = h.

Then we get a linear representation

Ad : H ! End(V ),

where V := a/h. Hence
G⇥H V ! M,

is a homogeneous G-vector bundle.

Theorem 3.4.3. The regular affine foliation E is given by the homogenous G-vector bundle
isomorphism

G⇥H V
⇠=

�! E, (g, u+ h) 7! Tē(�g) � Tep(u).

Proof. Denote by  : V ! Eē, u+ h 7! Tep(u). Obviously,  is a linear isomorphism
of vector spaces. In particular, we get the following commutative diagram

V V

Eē Eē

 

Ada

Tē(�a)

 

.

Hence the two linear representations � : H ! End(Eē) and Ad : H ! End(V ) are
equivalent. This means that the bundle map

G⇥H V �! E, (g, u+ h) 7! Tē(�g) � Tep(u),

is an isomorphism of homogeneous G-vector bundles over M .
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In the following, we describe the leaf spaces.

Proposition 3.4.4.

1. The pseudo-Hessian leaf F ḡ passing through ḡ 2 M is given by

F
ḡ = {gaH, a 2 A} = cg(A).gH

2. For any ḡ 2 M the pseudo-Hessian leaf F ḡ is a cg(A)-homogeneous pseudo-Hessian
manifold, which is isomorphic to the homogeneous space A/H .

3. The leaf spaces M/F can be identified with G/A through the map gA 7! F
ḡ.

4. If we assume that (G,H) is a reductive pair with decomposition:

g = h�m, Ad(H)(m) = m.

Then (A,H) is a reductive pair with decomposition:

a = h� (a \m), Ad(H)(a \m) = a \m.

5. If we assume that (G,H) is a symmetric pair with canonical decomposition:

g = h�m, Ad(H)(m) = m, [m,m] ⇢ h.

Then (A,H) is a symmetric pair with canonical decomposition:

a = h� (a \m), Ad(H)(a \m) = (a \m), [a \m, (a \m)] ⇢ h.

Proof. 1. Let b 2 H . From Lemma 3.4.2 it follows that

cgb(A).gbH = cg(cb(A)).gH = cg(A).gH.

Hence cg(A).gH is well defined. Now, let’s compute TēF
ē.

TēF
ē = Tep(a)

= �e � q(a)

= �e � r#((g/h)
⇤)

= �e � r# � �⇤
e
(T ⇤

ē
M)

= h#,ē(T
⇤
ē
M).

Hence, for any a 2 A,

TāF
ē = Tē(�a)(TēF

ē)

= Tē(�a) � h#,ē(T
⇤
ē
M)

= Tē(�a) � h#,ē � T
⇤
ē
(�a)(T

⇤
ā
M)

= h#,ā(T
⇤
ā
M).

This shows that the leaf passing through ē is given by

F
ē = {aH, a 2 A} = A .



66 Chapter 3. Homogeneous spaces with invariant K-V structures

Hence the leaf passing through any ḡ 2 M is given by

F
ḡ = �g(F

ē) = {gaH, a 2 A} = cg(A).H .

2. Let g 2 G. Since cg(A) is a subgroup of G it follows that cg(A) act on F
ḡ by

K-V transformation, which also act transitively on F
ḡ. Hence F

ḡ is a cg(A)-
homogeneous pseudo-Hessian manifold.

3. Let g0 = gba, where b 2 H and a 2 A. From Lemma 3.4.2 we get that

F
ḡ0 = {gbaa

0
H, a 2 A} = {gbaH, a 2 A} = {gaH, a 2 A} = F

ḡ
.

This means the map gAH 7! F
ḡ is well defined. The other assumptions on this

map are obvious.

As a corollary of Proposition 3.4.4 we get.

Corollary 3.4.5. The following assertions are equivalent:

1. The leaf passing through ē is closed in M .

2. A is closed in G.

3. The leaf space M/F is a Hausdorff space.

Now, we give a characterization of the A-invariant pseudo-Hessian structure
(rē

, g
ē) on A/H . For that, we consider the following notation

• L : g ! End(g/h) the Nomizu representation associated to r.

• L
ē : a ! End(a/h) the Nomizu representation associated to r

ē.

• '
ē the pseudo-Euclidean scalar product on a/h associated to the pseudo-Hessian

metric g
ē.

• ◆ : a/h ,! g/h, u + h 7! u + h and ◆̃ : TēF
ē
,! TēM the canonical injections.

Hence we have the following commutative diagram:

TēF
ē

TēM

a/h g/h

◆̃

◆

�ē
e �e

Proposition 3.4.6.

1. L
ē is the unique map satisfying, for any u 2 a,

◆ � L
ē

u
= Lu � ◆.

2. For any u, v 2 a,
'
ē(u+ h, v + h) := r(✏1, ✏2),

where ✏1, ✏2 2 (g/h)⇤ such that r#(✏1) = u+ h, r#(✏2) = v + h.
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Proof. 1. Let u, v 2 a,

◆̃ � �ē

e
(Lē

u
(v + a \ h)) = ◆̃((rē

v⇤u
⇤)

ē
)

= (rv⇤u
⇤)

ē

= �e(L
ē

u
(v + h)).

Then
�e � ◆(L

ē

u
(v + h)) = �e(L

ē

u
(v + h)).

Hence we get
◆ � L

ē

u
= Lu � ◆.

The uniqueness of Lē follows from the injectivity of ◆.

2. For any ↵, � 2 ⌦1(M), we have

g
ē(h#(↵), h#(�)) = h(↵, �).

Let u, v 2 a and ✏
1
, ✏

2
2 (g/h)⇤ such that r#(✏1) = u+ h, r#(✏2) = v + h. Hence

'
ē(u+ h, v + h) = g

ē(�ē

e
(u+ h),�ē

e
(v + h))

= h((�⇤
e
)�1(✏1), (�⇤

e
)�1(✏2))

= r(✏1, ✏2).
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Chapter 4

Perspectives

1. According to [section 2.5, chapter 2] it would be very interesting to see whether
coisotropic reduction can be done in this situation, and which information can
be gained in the reduced space once singularities can be controlled. Or is there
an analog of Meyer-Marsden-Weinstein reduction using Lie group actions in
this general setting?

2. In mathematics, very often while working with a certain class A of objects, we
want to distinguish the pairs A, eA 2 A which are compatible in a certain sense.
Examples include:

(a) Poisson structures.

(b) Nijenhuis operators.

(c) Poisson-Nijenhuis structures.

For each of these situations it makes sense to introduce the following problems:

(a) Define compatible K-V structures. (Such definition should entail the com-
patibility of Poisson structures).

(b) Determine compatibility between K-V and Nijenhuis tensors. (This makes
sense to introduce the notions of K-V-Nijenhuis structures).

3. The integrability of Lie algebroids is a longstanding problem of differential
geometry that has been solved in [18]. It is known that Lie’s third theorem
fails to hold for Lie algebroids. More precisely, for any Lie groupoids we can
associate a Lie algebroids for the converse there is some computable obstruc-
tions which given in [18] and in [19] for the special case’s of Poisson manifolds,
moreover, in the case’s of Poisson manifolds if a Poisson manifold is integrable
than its Lie groupoid is a symplectic Lie groupoid. Thinking at the similarity
between K-V manifolds and Poisson manifolds one can ask:

(a) Is there any others obstructions to the integrability of K-V manifolds?

(b) If a K-V manifold is integrable what is the geometric structures on its Lie
groupoid which integrate the K-V strcuture?
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Appendix A

Homogeneous spaces

In this appendix, we collect some technical results needed in chapter 3. Some of
these results are well-known and we basically just cite them here, some other are
modifications of well-known results or even new, but technical in nature. For more
details about the geometry of homogeneous spaces, one can consult [31, 15].

Appendix A.1 Tensor fields on homogeneous manifold

From now on, G is a connected Lie group with Lie algebra g, H ⇢ G is a closed
subgroup with Lie algebra h and M := G/H .

Denote by p : G ! M, p(g) = ḡ = gH the canonical projection and ē = H . The
homogeneous action of G on M is given by

� : G⇥M ! M, (g, g0) 7! g · g0 = �g(g0) = gg0. (A.1.1)

The isotropy representation is given by

AdM : H ! GL(TēM), a 7! Tē(�a).

Hence we have a bundle isomorphism

G⇥H TēM
⇠=

�! TM, (g,Xē) 7! g ·Xē = Tē(�g)(Xē),

where G ⇥H TēM is the orbit space of G ⇥ T�M under the action of H given by
(a, v).h = (ah, h�1

v). This fact will be explained below in a more general setting of
G-vector bundles over M .

The tangent linear map Tep : g ! TēM is surjective and then induces a linear
isomorphism

�e : g/h
⇠=

�! TēM, �e(u+ h) = Tep(u). (A.1.2)

For any a 2 H , we have a commutative diagram

g/h g/h

TēM TēM

�e

Ada

Tē(�a)

�e

,

where Ada(v + h) = Ada(v) + h. This means that the isotropy representation AdM is
equivalent to the representation Ad : H ! GL(g/h). Hence, we get the following
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bundle isomorphism

� : G⇥H g/h
⇠=

�! TM, (g, u+ h) 7! Tē�g � Tep(u).

Which means that the tangent bundle TM ! M is identified with the vector bundle
associated to the H-principal bundle G ! M and the representation Ad : H !

GL(g/h). In particular, for any g 2 G we have a canonical isomorphism

�g : g/h
⇠=

�! TgM, �g(u+ h) = Tē�g � Tep(u). (A.1.3)

The tangent bundle TM ! M , the cotangent bundle T ⇤
M ! M , and more generally

for each p, q 2 N with p+ q > 0 the (p, q)-tensor bundle:

T
p,q
M := ⌦

p
TM ⌦⌦

q
T

⇤
M ! M

are examples of homogeneous G-vector bundles (Definition A.1.1). The action of G
on T

(p,q)
M is given by

�̃ : G⇥ T
(p,q)

M ! T
(p,q)

M, (A.1.4)

where

�̃g(u1 ⌦ · · ·⌦ up ⌦ l1 ⌦ · · ·⌦ lq) := g.u1 ⌦ · · ·⌦ g.up ⌦ g.l1 ⌦ · · ·⌦ g.lq.

The smooth sections of the (p, q)-tensor bundle are called (p, q)-tensor fields, and are
denoted by T

p,q
M := �(T p,q

M). In particular ⌦1(M) := T
0,1
M is the space of differ-

ential 1-forms and �(TM) := T
1,0
M is the space of vector fields. There is a canonical

linear isomorphism between T
p,q
M and the space of C1(M)-multilinear maps

⌦1(M)⇥ · · ·⇥ ⌦1(M)| {z }
p factors

⇥�(TM)⇥ · · ·⇥ �(TM)| {z }
q factors

�! C
1(M) (A.1.5)

Definition A.1.1 (Homogeneous vector bundles).
A homogeneous G-vector bundle over M is a vector bundle ⇡ : E ! M , together with an
action of G on E, such that

1. ⇡ is a G-equivariant map, i.e. ⇡(g · u) = g · ⇡(u)

2. If g 2 G and x 2 M then g : ⇡�1(x) ! ⇡
�1(gx) is linear map.

The main examples are the associated vector bundles ⇡ : G ⇥H V ! M , where
H ! GL(V ) is a finite dimensional linear representation, ⇡[a, v] = aH and the action
of G is given by g · [a, v] = [ga, v]. Conversely, every G-vector bundle is of this type.
Indeed, if we start with a homogeneous G-vector bundle ⇡ : E ! M and we put
V = ⇡

�1(eH), then by definition ⇡(g · u) = g · ⇡(u) and in particular ⇡(h · v) = eH

for any h 2 H, v 2 V . So the left action of G on E restricts to a linear representation
H ! GL(V ) and the map G ⇥ V ! E, (g, u) 7! g · u, factors to an isomorphism of
G-vector bundles

G⇥H V
⇠=
! E.

In summary, we have a correspondence between the category of G-vector bundles
over M and the category of linear representations H ! GL(V ). In particular, the
tensor bundle T

(p,q)
M ! M is identified with the G-vector bundle

G⇥H (g/h)p,q ! M,
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where (g/h)p,q := ⌦
p(g/h) ⌦ ⌦

q(g/h)⇤. Hence, there is a natural linear isomorphism
between the space of tensor fields T

p,q
M and the space of smooth maps F : G !

(g/h)p,q which are H-equivariant.
For any u 2 g we assign the fundamental vector field u

⇤
2 �(TM),

(u⇤)g =
d

dt |t=0

exp(�tu)gH.

The associated H-equivariant map F : G ! g/h is given by

F (g) = g
�1

· u
⇤
g

= ��1
e
(g�1 d

dt |t=0

(exp(�tu))gH)

= ��1
e
(
d

dt |t=0

(exp(�tAdg�1u))H)

= �Adg�1(u) + h.

Appendix A.2 Invariant tensor fields

The canonical actions (A.1.1) and (A.1.4) induce an action of G on the space of tensor
fields T p,q

M ,
g.⌧ := �̃g � ⌧ � �g�1 .

Here ⌧ is considered as a section of the vector bundle T
p,q
M ! M , but when it is

interpreted as a C
1(M)-multilinear mappings (cf. A.1.5) the action becomes

g.⌧(!1, · · · ,!p, X
1
, · · · , X

q) := ⌧(g.!1, · · · , g.!p, g.X
1
, · · · , g.X

q) � �g�1 .

A tensor field ⌧ 2 T
p,q
M will be called G-invariant if g.⌧ = ⌧ for any g 2 G. We

consider the Lie derivative of any tensor field ⌧ with respect to the fundamental vector
field u

⇤,
(Lu⇤⌧)x :=

d

dt |t=0

[exp(�tu).⌧ ]x.

Hence ⌧ is G-invariant if and only if, Lu⇤⌧ = 0 for any u 2 g.
The following classical result, reduces the question of G-invariant tensor fields

on M to the problem of H-invariant tensors on the finite-dimensional vector space
g/h. More precisely, as explained in [15, Theorem 1.4.4 p.55], we have

Theorem A.2.1. There is a natural isomorphism between the space (T p,q(M))G of G-
invariant tensor fields of type (p, q) on M and the vector space ((g/h)p,q)H of H-invariant
tensors of type (p, q) on g/h.

Appendix A.3 Invariant Symmetric bivector fields

Let h be a symmetric bivector field on G/H . Then the following conditions are
equivalent

1. h is G-invariant, i.e., for any g 2 G and ↵, � 2 ⌦1(G/H),

h(�⇤
g
↵,�

⇤
g
�) = h(↵, �) � �g.
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2. For any g 2 G,
h#,g = Tē(�g) � h#,ē � (Tē(�g))

⇤
.

3. If G is connected. For any u 2 g,

Lu⇤h = 0.

On the other hand, the H-invariance of a symmetric bivector r 2 ⌦
2(g/h) means

that one of the following equivalent conditions is satisfied

1. For any "i 2 (g/h)⇤ , a 2 H,

r(Ad
⇤
a
("1),Ad

⇤
a
("2)) = r("1, "2).

2. If H is connected, for any u 2 h,

r(ad
⇤
u
("1), "2) = �r("1, ad

⇤
u
("2)). (A.3.1)

If r is an H-invariant symmetric bivector on g/h, then its associated G-invariant
symmetric bivector field h is defined by

h(↵, �)(g) = r(�⇤
g
↵g,�

⇤
g
�g).

Appendix A.4 Invariant flat torsionless connections

A connection r on TM ! M is said to be G-invariant if for any X, Y 2 �(TM) and
g 2 G,

g · (rXY ) = rg·Xg · Y .

This means that for any g 2 G, the transformation �g : M ! M preserves r. In
particular, if r is a G-invariant flat torsionless connection on M , then the canonical
action of the Lie group Aff(M,r) on M is transitive and (M,r) is a homogeneous
affine manifold [49, 59, 43]

The following theorem is due to Nomizu [41] in the case of reductive pair (G,H)
and the connection is not necessarily flat, but in the general context, we refer the
reader to [15, 28].

Theorem A.4.1 (Nomizu). There is a one-to-one correspondence between G-invariant flat
torsionless connections on M and Lie algebra representations

L : g ! End(g/h),

satisfying
1. For any u, v 2 g,

Lu(v + h)� Lv(u+ h) = [u, v] + h. (A.4.1)

2. For any u 2 g, a 2 H ,
LAda(u) = Ada � Lu � Ada�1 .

Let’s clarify this correspondence. Denote by r a G-invariant flat torsionless con-
nection on M , the corresponding representation L is given by:

Lu(v + h) = ���1
e

(Au⇤(ē)(�e(v + h))) ,
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where u
⇤
2 �(TM) is the fundamental vector field induced by exp(�tu), Au⇤ the

Koszul operator given by Au⇤ := Lu⇤ � ru⇤ and �e is the canonical isomorphism
A.1.2.

Conversely, the connection r corresponding to L is given by

(rXY )g = �g

⇣
X̃g.F

Y + L
g�1·X̃g

(F Y (g))
⌘
, (A.4.2)

where F
Y : G ! g/h is the H-equivariant function associated to the vector field

Y , the expression of �g is given by (A.1.3) and X̃g 2 TgG is any vector satisfying
p⇤(X̃g) = Xg. In particular, we have

(ru⇤v
⇤)g = �g

⇣
LAdg�1 (v)(Adg�1(u) + h)

⌘
.

The dual connection associated to L is given by

(rX↵)g = (��1
g
)⇤
⇣
X̃g.F

↵ + L
⇤
g�1·X̃g

(F ↵(g))
⌘
, (A.4.3)

where F
↵ : G ! (g/h)⇤ is the H-equivariant function associated to the one form

↵, X̃g 2 TgG is any vector satisfying p⇤(X̃g) = Xg and L
⇤ be the contragredient

representation of L.
In the case of reductive homogeneous space we have the following consequence

of Theorem 3.1.7 (see [28]).

Corollary A.4.2. If (G,H) is a reductive pair with the decomposition g = h�m, Ad(H)(m) =
m. Then there is a one-to-one correspondence between G-invariant flat torsionless connec-
tions on M and bilinear products

b : m⇥m ! m, (u, v) 7! bu(v) = b(u, v)

satisfying

1. b(u, v)� b(v, u) = [u, v]m, 1

2. [bu, bv] = b[u,v]m + ad[u,v]h ,

3. Ada (b(u, v)) = b (Ada(u),Ada(v)), for any a 2 H .

The connection r corresponding to b is determined by

(ru⇤v
⇤)g = �g ([Adg�1(v)h,Adg�1(u)m] + b(Adg�1(v)m,Adg�1(u)m) + h)) .

This last correspondence allows us to give the following characterization of bi-
invariant flat torsionless connections (if they exist) on Lie groups. Denote by u

l the
left invariant vector field associated to u 2 g.

Proposition A.4.3. Let G be a connected Lie group endowed with a connection r. Then
the following assertions are equivalent

1. r is a bi-invariant flat torsionless connection on G.

2. The product b : g ⇥ g ! g, b(u, v) := 2
�
rulv

l
�
e
� [u, v], is an Ad(G)-invariant

commutative product on g satisfying

b(u, b(v, w))� b(v, b(u, w)) = [[u, v], w]. (A.4.4)
1We denote by wh (resp. wm) the projection of w on h (resp. on m).
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3. The product b0 : g ⇥ g ! g given by b0(u, v) :=
�
rulv

l
�
e
, is an associative product

on g satisfying
b0(u, v)� b0(v, u) = [u, v].

Proof. The equivalence between 1 and 2 is a direct consequence of Corollary 3.7.
Now assume that 2 is satisfied. We pose

b0(u, v) :=
1

2
(b(u, v) + [u, v]) .

Obviously,
b0(u, v)� b0(v, u) = [u, v].

Let’s show that the product b0 is associative. The Ad(G)-invariance of the product b
implies that for all u, v, w 2 g, we have

b([u, v], w) + b(v, [u, w]) = [u, b(v, w)].

Hence

b0(b0(u, v), w) =
1

2
b0(b(u, v) + [u, v], w)

=
1

4
(b(b(u, v), w) + [b(u, v), w] + b([u, v], w) + [[u, v], w])

=
1

4
(b(w, b(u, v))� b([w, u], v)� b(u, [w, v]) + b([u, v], w) + [[u, v], w]) .

A similar computation gives

b0(u, b0(v, w)) =
1

4
(b(u, b(w, v)) + b([u, v], w) + b(v, [u, w]) + b(u, [v, w])� [[v, w], u]) .

Hence

b0(b0(u, v), w)� b0(u, b0(v, w)) =
1

4
([[w, u], v] + [[u, v], w] + [[v, w], u]) = 0.

Conversely, assume that 3 is satisfied. We pose

b(u, v) := 2b0(u, v)� [u, v].

Obviously b(u, v) � b(v, u) = 0. Let’s show that the product b is Ad(G)-invariant.
From the associativity of b0 and since b0(u, v)� b0(v, u) = [u, v], it follows that

b0([u, v], w) + b0(v, [u, w]) = [u, b0(v, w)].

Since G is connected, then for any g 2 G,

b0(Adg(u),Adg(v)) = Adg(b
0(u, v)).

Now let’s show that b satisfies (A.4.4).

b(u, b(v, w)) = 2b(u, b0(v, w)� [v, w])

= 4b0(u, b0(v, w))� 2[u, b0(v, w)]� 2b0(u, [v, w]) + [u, [v, w]]

= 4b0(b0(u, v), w)� 2b0([u, v], w)� 2b0(v, [u, w])� 2b0(u, [v, w]) + [u, [v, w]].
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In a similar way, we get

b(v, b(u, w)) = 4b0(b0(v, u), w)� 2b0([v, u], w)� 2b0(u, [v, w])� 2b0(v, [u, w])+ [v, [u, w]].

Finally, we have

b(u, b(v, w))� b(v, b(u, w)) = [u, [v, w]] + [v, [w, u]] = [[u, v], w],

which completes the proof.
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Poisson. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics
328.8 (1999): 687-690.

[23] P. DOMBROWSKI. On the geometry of the tangent bundle. J. Reine Angew. Math.
210 (1962), 73-78.

[24] H. DOI. Non existence of torsion free flat connections on reductive homogeneous
spaces. Hiroshima Mathematical Journal 9.2 (1979): 321-322.

[25] V. G. DRINFELD. On Poisson homogeneous spaces of Poisson-Lie groups. Theo.
Math. Phys. 95 (2) (1993), 226 - 227.

[26] J. P. DUFOUR AND N. T. ZUNG. Poisson structures and their normal forms. Vol.
242. Springer Science and Business Media, 2006.

[27] J. P. DUFOUR AND A. HARAKI. Rotationnels et structures de Poisson quadratiques.
C. R. Acad. Sci. Paris Série. I Math., 312(1):137-140, 1991.

[28] A. ELDUQUE. Reductive homogeneous spaces and nonassociative algebras. Commu-
nications in Mathematics 28(2020) 199–229.

[29] R. L. FERNANDES. Lie algebroids, holonomy and characteristic classes. Adv. in
Math. 170 (2002), 119–179.

[30] P. M. D. FURNESS. Affine foliations of codimension one. Q. J. Math. 25 (1974), no.
1, 151–161.

[31] W. GREUB, S. HALPERIN AND R. VANSTONE. Lie groups, principal bundles and
characteristic classes. Volume 2. Connections, curvature and cohomology. 1973.

[32] C. KASSEL. Homology and cohomology of associative algebras. A concise introduction
to cyclic homology. Thematic school . August 2004 at ICTP, Trieste (Italy), 2006.

[33] S. KOBAYASHI AND K. NOMIZU. Foundations of differential geometry. Vol. 1. No.
2. New York, London, 1963.

[34] S. KOBAYASHI. Transformation groups in differential geometry. Springer Science
and Business Media, 2012.



78 BIBLIOGRAPHY

[35] C. LAURENT-GENGOUX, S. MATHIEU AND X. PING. Lectures on Poisson group-
oids. Lectures on Poisson Geometry. Geom. Topol. Monogr 17 (2011): 473-502.

[36] M. J. LEE. Introduction to Smooth Manifolds. Springer, New York, NY, 2013. 1-31.

[37] M. LINDEN AND H. RECKZIEGEL. On affine maps between affinely connected man-
ifolds. Geometriae Dedicata 33.1 (1990): 91-98.

[38] J. LIU, Y. SHENG, Z. CHEN, AND C. BAI. Left symmetric algebroids. Math. Nachr.
289 (2016), no. 14–15, 1893–1908.

[39] K. MACKENZIE. Lie Groupoids and Lie Algebroids in Differential Geometry, London
Math. Soc. Lecture Notes Ser. 124, Cambridge Univ. Press, Cambridge, 1987.

[40] M. NGUIFFO BOYOM. Cohomology of Koszul–Vinberg algebroids and Poisson man-
ifolds I, Lie algebroids. Banach Center Publications, vol. 54, Institute of Mathem-
atics Academy of Sciences Warszawa, 2001.

[41] K. NOMIZU. Invariant affine connections on homogeneous spaces. American Journal
of Mathematics 76.1 (1954):33-65.

[42] K. NOMIZU AND T. SASAKI. Affine differential geometry. Cambridge Univ. Press.
1994.

[43] B. OLIVER. Prehomogeneous affine representations and flat pseudo-Riemannian man-
ifolds. Handbook of Pseudo-Riemannian Geometry and Supersymmetry (2010):
731-817.

[44] B. OLIVER AND V. CORTES. Symplectic lie groups. Société mathématique de
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