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Problem: Classification of three manifolds.
Heegaard splitting of three manifolds.
Three manifolds as the surgered three sphere: theorem of
Lickorish Wallace (1964).
Three manifolds as branched covers of the three sphere.

Remark : in dimensions less than or equal to 3, the P.L. and
differentiable classification of manifolds are both equivalent the
topological one.
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Theorem
Any orientable closed 3-manifold has a Heegaard splitting.

That is if M is a such 3-manifold, there exists an integer g ≥ 0
such that

M = Hg
1 ∪∂Hg Hg

2 ,

where Hg
i , i = 1,2 are two copies of the hadlebody Hg .

Proof : this theorem can be easily achieved in the context of
P.L. topology. Else, one can use Morse theory.

�

Examples :
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Dehn Twist

Let F be a connected compact oriented surface. Let α a simple
closed embedded in F , and let A be an annulus neighbourhood
of α.

The standard annulus is S1 × [0,1] with some fixed orientation.

Definition
A Dehn twist of F along the curve α is any homeomorphism
isotopic to the homeomorphism τ : F −→ F defined such that
τ
|F\

◦
A

is the identity and, parametrising A as S1 × [0,1] in an

orientation-preserving manner, τ|A is given by
τ(eiθ, t) = (ei(θ−2πt), t).

Remark : A Dehn twists provides nontrivial examples of
orientation preserving homeomorphims of a surface of genus
g ≥ 1 not isotopic to the identity.
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Theorem (Dehn-Lickorish theorem)
Any orientation-preserving homeomorphism of an oriented
2-manifold (without boundary) is isotopic to the composition of
Dehn twists.

Corollary (Rokhlin’s theorem)
Any closed orientable 3-manifold bounds a 4-manifold.
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Let L = ∪n
i=1Ki be a link with n components in S3.

Let Ni be a
regular neighborhood of the component Ki in S3.
Let Ji be a simple closed curve on ∂Ni . The pair (L,∪n

i Ji) is
called a framed link.
For each i we consider a homeomorphism

hi : ∂Ni −→ ∂Ni
mi 7−→ hi(mi) = Ji

where mi is the meridian curve of ∂Ni .
We consider the manifold

ML = S3 \ ∪n
i=1

◦
Ni ∪h ∪n

i=1Ni , h = ∪ihi .

Definition

The 3-manifold ML is said to be obtained by surgery on S3

along the framed link (L,∪n
i Ji)
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Remark : We consider the meridian mi of ∂Ni and chose a
prefered parallel li on ∂Ni . Each isotpy class of a simple closed
curve on ∂Ni is completely determined by a pair (p,q) of
coprime integers. Then, for each i , 1 ≤ i ≤ n, Ji = (p,q).

Then the rational
pi

qi
is called the surgery instruction on the

component Ki or the surgery coefficient or the framing index.
An integer surgery is a surgery where qi = 1.
Examples : if L is the trivial knot then:

1 The surgery∞ is the identity
2 the 0 surgery gives S1 × S2.
3 the (p,q) surgery gives L(p,q).

Theorem (Lickorish)
Any closed connected orientable 3-manifold can be obtained
from S3 by integer surgery along a framed link L.
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The first Kirby move It consists in adding to (or deleting
from) the given framed link L ∈ S3 an unknotted circle with
framing ±1 provided that is unlinked with the other
components of L.

The second Kirby move

Theorem (Kirby)

Two links in S3 with integer framings produce the same
3-manifold if and only if they can be obtained from each other
by a finite sequence of first and second Kirby moves and
isotopies.
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Let L = ∪n
i=1Ki be a link in S3. For each i , let Ni be a regular

neighborhood of the component Ki in S3. We denote by X the
exterior of the link, that is

X = S3 \ ∪n
i=1

◦
Ni .

We have H1(X ) ' Zn, where the generators are the meridians
of the Ni .

Definition

Let K1 and K2 be two simple closed oriented curves in S3. We
denote by lk(K1,K2) the number of ones that K2 describes the
meridian of a tubular neighborhood of K1 (i.e. the number of
ones that K2 turns around K1). It is an invariant of the link
L = K1 ∪ K2.

If L = ∪n
i=1Ki , we denote by lk(L) =

∑
i<j lk(Ki ,Kj).
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denote by lk(K1,K2) the number of ones that K2 describes the
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ones that K2 turns around K1). It is an invariant of the link
L = K1 ∪ K2.
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The Hurewicz homomorphism gives the epimorphism

ϕ : π1(X ) � H1(X ) ' Zn → Z
α 7−→ lk(α,L) =

∑
i lk(α,Ki)

where the second map sends each meridian to 1 ∈ Z.Then, for
each integer k ≥ 2, we get an epimorphism

ϕk : π1(X ) � Zk .

So, for each integer k ≥ 2 we have a covering space X̃k of X
with k sheets, called the k -fold cyclic covering space of X .
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Remark : Kerϕ induces a covering X̃∞ of X with fiber Z called
the abelian covering or the infinite cyclic covering.
H1(X∞) is called the Alexander module of K which is a
A = Z[t , t−1]-module. We call a presentation of X , an exact
sequence

Ap → An → H1(X̃∞)→ 0.

If we consider a Seifert surface of the link. If V is the
associated matrix called the Seifert matrix, then tV − V T is a
presentation of the Alewander module.
The polynomial

∆L(t) = det(tV − V T )

is the very known interesting invariant called the Alexander
polynomial of the link L.
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Now for each k ≥ 2, the epimorphism ϕk induces a covering
space X̃k of X such that

π1(X̃k ) = kerϕk and Aut(X̃k ) ' π1(X )/ kerϕk ' Zk .

Remark :
π1(X̃∞) = kerϕ = [kerϕ, kerϕ].

π1(X̃k ) = kerϕk = [kerϕk , kerϕk ].
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Geometric achievement of the cyclic coverings

Let L be a link in S3.
Let F be a Seifert surface of L.
Let X the exterior of L in S3.
Let Y be the exterior X cut along F . We get two copies of F
denoted by F− and F+.
We make a coutable copies of Y , so we get a family (Yi)i∈Z.
The copy Yi contains F−i and F+

i respectively copies of F− and
F+.

1 For each i , we glue Yi to Yi+1 by the identification of F+
i

with F−i+1. Then we get a space X∞.
2 For each i , 0 ≤ i ≤ k − 1, we glue Yi to Yi+1 by the

identifying F+
i with F−i+1. Furthermore, we glue Yk to Y0 by

identifying F+
k to F−0 .
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Proposition
We have the following commutative diagram of coverings

X∞ → Xk
↘ ↙

X
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Branched coverings of surfaces

Definition

A continuous map p : M2 −→ N2 is said to be a branched
covering if there exists a finite set of points {x1, . . . , xn} ⊂ N2

such that the set p−1({x1, . . . , xn}) is discrete and the
restriction of p to the set M2 \ p−1({x1, . . . , xn}) is a covering.
The points {x1, . . . , xn} are called the branched points of p.

Proposition

Let D2 = {z ∈ C : |z| ≤ 1} and let

p : D2 −→ D2

z 7−→ zk .

Then p is a k-fold branched covering with the branch point
z = 0.
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Remark : If p is a k -fold branched covering and U is a
sufficiently small disk neighborhood of a branch point y , then
p−1(U) consists of one or several disks Di such that the
restriction of p to each of them is equivalent to the covering
z 7−→ zmi in the proposition. Each point x of Di is said to have
the branching index mi . Then k =

∑
mi .

Example : Consider the map

f : C \ {0} −→ C
z 7−→ f (z) = 2(z + 1

z ).

This map is a 2-fold branched covering with branch points ±4.
The preimages of these points are the points ±1, and the
branching index of each is 2.
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Theorem

For every closed connected orientable surface M2 there exists
a branched covering p : M2 −→ S2.

Theorem

For every closed connected orientable surface M2 with genus
g ≥ 1, there exists a branched covering p : M2 −→ S2 with
exactly three branch points.
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Branched coverings of 3-manifolds

Definition
Let M and N two compact 3-manifolds with proper one
dimensional submanifolds J ⊂ M and L ⊂ N. Then a continous
map p : M −→ N is said to be a branched covering with
branch sets J and L if

1 components of preimages of open sets of N are a basis for
the topology of M, and

2 p(J) = L, p(M \ J) = N \ L, and N \ L is exactly the set of
points in N which have neighborhoods U such that p sends
each component of p−1(U) homeomorphicaly on U.
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Remarks :

1 The restriction p : M \ J → N \ K is a covering called the
associated unbranched covering.

2 Each branch point x in J has a branching index k ,
meaning that p is k to one near x , and this number is
constant on components of J.

Examples :
1 A branched cover S3 −→ S3 branched over S1 may be

obtained by suspending the unbranched k -fold cover
S1 −→ S1 2 times. figure for S2

2 qk : S1 × D2 −→ S1 × D2 wich assigns to each (z1, z2) the
element (z1, zk

2 ).

Theorem (Alexander branched cover theorem)
Let M be a closed oriented 3-manifold. Then there exists a
branched covering p : M → S3.
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Let L be an n component link in S3. Consider the k -fold cyclic
covering pk : X̃k −→ X of the exterior X . Recall that ∂X̃k is a
disjoint union of torus such that the restriction of pk to each of
them is exactly the covering map

S1 × S1 : −→ S1 × S1

(z1, z2) 7−→ (z1, zk
2 )

Now if we glue to X̃k the cover space of qk we get a closed
connected orientable manifold denoted by Mk which is a
branched cover of S3 associated to the k -fold cyclic covering of
S3.

Definition
The 3-manifold Mk is called the k -fold cyclic branched cover of
S3 branched over L.
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Theorem (Hilden-Montesinos theorem)
For any closed oriented 3-manifold M, there exists a 3-fold
covering p : M → S3 of the 3-sphere by this manifold branching
along a knot.

Proof Let p : M → N be

Lemma

:

Definition

A 1-submanifold L of the sphere S3 will be said universal if any
closed orientable 3-manifold M there exists a covering
p : M → S3 branching along L.

Theorem
The Borromeo rings constitute a universal link.

Remarks : The trefoil is not universal, however The figure eight
knot is.

H. Abchir Three Manifolds as Branched Covers of S3



Introduction
Branched coverings

3-manifolds as branched covers of S3

Theorem (Hilden-Montesinos theorem)
For any closed oriented 3-manifold M, there exists a 3-fold
covering p : M → S3 of the 3-sphere by this manifold branching
along a knot.

Proof Let p : M → N be

Lemma

:

Definition

A 1-submanifold L of the sphere S3 will be said universal if any
closed orientable 3-manifold M there exists a covering
p : M → S3 branching along L.

Theorem
The Borromeo rings constitute a universal link.

Remarks : The trefoil is not universal, however The figure eight
knot is.

H. Abchir Three Manifolds as Branched Covers of S3



Introduction
Branched coverings

3-manifolds as branched covers of S3

Theorem (Hilden-Montesinos theorem)
For any closed oriented 3-manifold M, there exists a 3-fold
covering p : M → S3 of the 3-sphere by this manifold branching
along a knot.

Proof Let p : M → N be

Lemma

:

Definition

A 1-submanifold L of the sphere S3 will be said universal if any
closed orientable 3-manifold M there exists a covering
p : M → S3 branching along L.

Theorem
The Borromeo rings constitute a universal link.

Remarks : The trefoil is not universal, however The figure eight
knot is.

H. Abchir Three Manifolds as Branched Covers of S3



Introduction
Branched coverings

3-manifolds as branched covers of S3

Theorem (Hilden-Montesinos theorem)
For any closed oriented 3-manifold M, there exists a 3-fold
covering p : M → S3 of the 3-sphere by this manifold branching
along a knot.

Proof Let p : M → N be

Lemma

:

Definition

A 1-submanifold L of the sphere S3 will be said universal if any
closed orientable 3-manifold M there exists a covering
p : M → S3 branching along L.

Theorem
The Borromeo rings constitute a universal link.

Remarks : The trefoil is not universal, however The figure eight
knot is.

H. Abchir Three Manifolds as Branched Covers of S3


	Introduction
	Heegaard splitting
	3-manifolds as the surgered S3

	Branched coverings
	Cyclic coverings of the link complement
	Branched coverings
	Cyclic branched covers of S3

	3-manifolds as branched covers of S3

