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1 Etude de propriétés globales des variétés différentielles.

2 Trouver et étudier des invariants topologiques des variétés.
3 Riemann, Weyl, Whitney, Milnor.
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Objects

Definition

Let A be a subset of Rn. A map f : A→ Rk is said to be
differentiable at x ∈ A if there exist an open subset U of Rn and
a differential map F : U → Rk such that F|U∩A = f .
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Hn = {(x1, . . . , xn) ∈ Rn|xn ≥ 0}, n ≥ 1.

Definition
A smooth manifold of dimension n is a topological Haussdorff
space M with a countable basis such that

1 each point x in M has an open neighborhood U which is
homeomorphic to an open subset of the space Hn by a
homeomorphism ϕ:

ϕ : U → ϕ(U) ⊂ Hn.

2 if (Ui)i∈I is the set of such neighborhoods, each
homeomorphism ϕj ◦ ϕ−1

i is C∞, where

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Ui).

H. Abchir Introduction to Differential Topology



Motivations
Background

Submanifolds Achievements
Embedding theorem

The category C∞

Embedded Submanifolds
Differentiable Maps Properties

Hn = {(x1, . . . , xn) ∈ Rn|xn ≥ 0}, n ≥ 1.

∂Hn = {(x1, . . . , xn) ∈ Rn|xn = 0}, n ≥ 1.

∂M = {x ∈ M|∃ a chart (ϕ,U), x ∈ U, ϕ(x) ∈ ∂Hn}.

intM = {x ∈ M|∃ a chart (ϕ,U), x ∈ U, ϕ(x) ∈ intHn}.

M = ∂M t intM.
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Examples -:
1 Dn, ∂Dn = Sn−1.
2 S1 × D2, ∂(S1 × D2) = S1 × S1.
3 The Moebius band M whose boundary is a circle.
4 The exterior X of a knot in S3. ∂X = S1 × S1.
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Morphisms

Let M and N two smooth manifolds respectively of dimension m
and n.
A map f : M → N is smooth at a point x ∈ M if there exist chart
(U, ϕ) of M at x and a chart (ψ,V ) of N at f (x) such that the
composition ψ ◦ f ◦ ϕ−1 is smooth as a map from an open
subset of Hm to a subset of Hn. The map is smooth if it is
smooth at each point x ∈ M.
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From local to global

Definition
Let M be a smooth manifold, and let U = (Ui)i∈I be an arbitrary
open cover of M. A partition of unity subordinate to U is a
collection of smooth functions {ψi : M → [0,1]}i∈I with the
following properties:

(i) supp ψi ⊂ Ui .
(ii) The set {supp ψi}i∈I is locally finite.
(iii)

∑
i∈I ψi(x) = 1 for all x ∈ M.

Theorem
If M is a smooth manifold and U = (Ui)i∈I is any open cover of
M there exists a smooth partition of unity subordinate to U .
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Proposition

If M is a smooth manifold and {Ui} is an open covering of M
then there is an open covering {Vi} such that, ∀i ,Vi ⊂ Ui .

Definition
If M is a smooth manifold, A ⊂ M is a closed subset, and U an
open subset of M containing A, a continuous function
ψ : M → [0,1] is called a bump function for A supported in U if
ψ = 1 on A and supp ψ ⊂ U

Theorem (Existence of Bump Functions)
Let M be a smooth manifold. For any closed subset A ⊂ M and
any open set U containing A, there exists a smooth bump
function for A supported in U.
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Submanifolds

Definition
A subset V of Rn is a submanifold of dimension k if each point
of V belongs to the domain of a chart ϕ : U → Rn of Rn such
that

V ∩ U = ϕ−1(Hk )

Definition
Let M be an n-manifold with or without boundary. A subset S of
M is called an embedded submanifold of dimension k if each
point x ∈ S belongs to the domain of a chart ϕ : U → Rn of M
such that ϕ(U ∩ S) is a submanifold of Rn of dimension k in the
sens just defined.
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Definition
A submanifold S of a manifold M is said a neat submanifold if
∂S = S ∩ ∂M.
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Let M be a smooth manifold. We assume that the notion of
tangent bundle TM = ∪x∈MTxM is known.
Let M and N be two smooth manifolds. Let f : M → N be a
smooth map, we denote by Tx f its derivative at x .
We recall the following definitions:

Definition
The rank of f at x is the rank of the linear map
Tx f : TxM → Tf (x)N. The map f is said to have constant rank if
it has the same rank at every point x ∈ M.
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Theorem (Rank Theorem for Manifolds)
Suppose M and N are smooth manifolds of dimensions m and
n, respectively, and f : M → N be a smooth map of constant
rank k. For each x ∈ M, there exist coordinate charts ϕ aroud x
and ψ around f (x) so that the map ψfϕ−1 is represented by

ψfϕ−1 : Rm → Rn

(x1, . . . , xm) 7−→ (x1, . . . , xk ,0, . . . ,0)
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Definition
1 The map f is said to be a submersion at a point x ∈ M if

the linear map Tx f is surjective, i.e. if rank Tx f = dim N.
2 The map f is said to be an immersion at a point x ∈ M if

the linear map Tx f is injective, i.e. if rank Tx f = dim M.
3 The map f is said to be an embedding if it is an immersion

at each point x ∈ M that is also a homeomorphism onto its
image f (M).

Examples -
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Remark -A topological embedding which is smooth is not
necesseraly a smooth embedding.
Example -

Proposition
Let f : M −→ N be an injective immersion. If either of the
following conditions holds, then f is an embedding with closed
image:

(i) M is compact.
(ii) f is a proper map.

Example -the inclusion Sn ↪→ Rn+1 is an embedding.
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Definition
Let f : M → N be a smooth map. A point x ∈ M is said to be a
regular point of f if Tx f is surjective. It is a critical point
otherwise.
A point y ∈ N is said to be a regular value of f if the set f−1(y)
consists of regular points or if f−1(y) is an emptyset. It is a
critical value otherwise.

Theorem
Let M and N be a manifolds with boundary. Let f : M → N be a
smooth map. If y ∈ N \ ∂N is a regular value for both f and f|∂M ,
then f−1(y) is a neat submanifold of M.

H. Abchir Introduction to Differential Topology



Motivations
Background

Submanifolds Achievements
Embedding theorem

Regular Value Theorem
Transversality

Theorem (Sard’s theorem.)
If f : M −→ N is any smooth map, the set of critical values of f
has measure zero in N.

Remark -: The set of regular values of a differential map
f : M → N is dense in N.
Example -:

1 O(n).
2 Each knot bounds a surface in S3.
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Definition
Let M and N be two differential manifolds.Let S be a
k -dimensional submanifold of N. A differentiable map
f : M −→ N is called transverse to S if

Tx f (TxM) + Tf (x)S = Tf (x)N, ∀x ∈ f−1(S).

Theorem
Let B be a submanifold of N and f : M −→ N is a smooth map.
Suppose ∂B = ∅ and f , f|∂M are both transverse to B. Then
f−1(B) is a submanifold with boundary f−1(B) ∩ ∂M.
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Proof.

Show that f−1(S) is locally a submanifold.
Let x ∈ f−1(S), there exists a chart (V , ψ) of N at y = f (x) such
that V ∩ S is a submanifold of N and ψ(V ∩ S) = W ∩ Rn−k

where W is an open subset of Rn containing 0 and
Rn−k = Rn−k × {0}.
Let π : Rn → Rk be the projection on the last coordinates .
Then π ◦ ψ(V ∩ S) = 0. Now if U = f−1(V ) ∩ f−1(S), and
g = π ◦ ψ ◦ f , then U = g−1(0).
Since dgx = d(π ◦ ψ)y ◦ dfx and d(π ◦ ψ)y is surjective, if
v ∈ Rk , then there exists u ∈ TyN such that d(π ◦ ψ)y (u) = v .
Since f t Z , u = dx f (w1) + w2 where w1 ∈ TxM and w2 ∈ TyZ .
Hence d(π ◦ ψ)y (u) = d(π ◦ ψ)y ◦ dfx (u) + 0 because
TyZ = Ty (Z ∩ U) = ker d(π ◦ ψ)y .
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Corollary
Let A and B be two submanifolds of a manifold M such that

TxA + TxB = TxM, ∀x ∈ A ∩ B.

Then A ∩ B is a submanifold of M such that
codimA ∩ B = codimA + codimB. One says that A and B are
transverse to each other.

Proof.
apply the last theorem to the inclusion map iA : A ↪→ M.

Example -
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The major task of this section is to show the following theorem

Theorem (Whitney)
Let M be a compact n-manifold. Then there is an embedding of
M in R2n+1.
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First step

Theorem
Let M be a compact n-manifold. Then there is an embedding of
M in Rm(n+1) for some positive integer m.

Proof -We will start by proving the theorem in the special case
of a compact n-manifold M. Then M has a finite set of charts.
We denote

Bn(0, r) = {x ∈ Rn | |x | < r}

H. Abchir Introduction to Differential Topology
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Lemma
Let M be a smooth manifold. Every open cover (Ui) of M has a
regular refinement (Wi), i.e.

(i) the cover (Wi) is countable and locally finite.
(ii) Each Wi is open and is the domain of a smooth coordinate

map ϕi : Wi → Rn whose image is Bn(0,3) ⊂ Rn.
(iii) The collection (Ui) still covers M, where Ui = ϕ−1

i (Bn(0,1))
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Then, starting with an atlas of M, we associate it with a finite
regular refinement as in the lemma: (ϕi ,Ui)1≤i≤m.
Let

λ : Rn → [0,1]

be a bump function for Bn(0,1) supported in Bn(0,2).
Define smooth maps

λi : M → [0,1]

x 7−→ λi(x) =

{
λ ◦ ϕi on Ui

0 on M \ Ui

It follows that the closed sets Bi = λ−1(1) ⊂ Ui cover M.
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Define maps

fi : M → Rn

x 7−→ fi(x) =

{
λi(x)ϕi(x) if x ∈ Ui

0 if x ∈ M \ Ui

Put
gi = (fi , λi) : M → Rn × R = Rn+1.

and
g = (g1, . . . ,gm) : M → Rm(n+1).

We note that g is an injective immersion. Then g is an
embedding.
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Second Step

From the first step, it follows that we can consider M as a
submanifold of some Rp.

If p ≤ 2n + 1, there is nothing more to prove: hence we
assume p > 2n + 1.
It is sufficient to prove that such an M embeds in Rp−1. By
repeating the argument, the manifold M will eventually
embed in R2n+1.
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Suppose M ⊂ Rp, with p > 2n + 1.

Identify Rp−1 with {(x1, . . . , xp)|xp = 0}.
If v ∈ Rp \ Rp−1, denote by πv : Rp → Rp−1 the projection
parallel to v .
Are there some vectors v for which πv|M is an embedding?
Since M is compact, it suffices to find vectors v such that πv is
an injective immersion.
We limit our search to unit vectors.
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For πv to be injective, means that if x and y are in M,
x 6= y , then

v 6= x − y
| x − y |

(1)

The requirement that πv be an immersion: ∀z ∈ TM, z 6= 0,

v 6= z
| z |

(2)
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The condition 1 is studied by means of the map

σ : M ×M \∆ → Sp−1

(x , y) 7−→ σ(x , y) = x−y
|x−y |

Then v satisfies (1) iff v is not in the image of σ!
Note that dim(M ×M \∆) = 2n < dim Sp−1.

Lemma (Corollary of Sard Theorem)
Let g : A→ B be a smooth map. If dim B > dim A then the
complement of the image of g is dense in B.

By applying the lemma to σ, we get that every nonempty open
subset of Sp−1 contains v which is not in the image of σ.
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The condition 2 holds for all z ∈ TM provided it holds whenever
|z| = 1. Let

T1M = {z ∈ TM : |z| = 1}

which is a compact submanifold of TM of dimension 2n − 1. To
see that one can consider the map

ν : TM → R
z 7−→ |z|2

and then notice that T1M = ν−1(1) where 1 is a regular value of
ν.
We then apply the last lemma to the restriction to T1M of the
projection of M × Rp onto Sp−1.

τ ; T1M → Sp−1
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Theorem
Let M be an dimensional manifold which is compact. Then
there is a neat embedding of M into H2n+1.
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