On Quasi-Alternating Links

H. Abchir

Hassan II University. Casablanca

March, 26 2016

э

Links Diagrams Reidemeister theorem

Plan

Links, Diagrams and the Reidemeister Theorem

- Links
- Diagrams
- Reidemeister theorem
- 2 Some Invariants
- Quasi-alternating links
 - Definition and examples
 - Detection of some non quasi-alternating links

Questions

ヘロト 人間 ト ヘヨト ヘヨト

Links Diagrams Reidemeister theorem

Definition

A link *L* with *n* components is a submanifold of \mathbb{R}^3 or S^3 which is homeomorphic to the disjoint union of *n* circles $S^1 \sqcup ... \sqcup S^1$. If n = 1, we call *L* a knot and denote it by *K*.

ヘロト ヘアト ヘビト ヘビト

Links Diagrams Reidemeister theorem

Definition

A link *L* with *n* components is a submanifold of \mathbb{R}^3 or S^3 which is homeomorphic to the disjoint union of *n* circles $S^1 \sqcup ... \sqcup S^1$. If n = 1, we call *L* a knot and denote it by *K*.

Notation: We denote by $L = K_1 \sqcup ... \sqcup K_n$ a link with *n* components.

$$S^1 \sqcup ... \sqcup S^1 \hookrightarrow \mathbb{R}^3$$
 or S^3

ヘロン 人間 とくほ とくほ とう

Some Invariants Quasi-alternating links Questions Links Diagrams Reidemeister theorem

Examples -:

H. Abchir On Quasi-Alternating Links

Links Diagrams Reidemeister theorem

E DQC

Links Diagrams Reidemeister theorem

Isotopy equivalence

For convenience, we restrict ourselves to smooth knots.

イロト 不得 とくほ とくほ とう

E DQC

Links Diagrams Reidemeister theorem

Isotopy equivalence

For convenience, we restrict ourselves to smooth knots.

Definition

Two knots K_1 and K_2 are **ambient isotopic** if there exists a family of diffeomorphisms $h_t : \mathbb{R}^3 \to \mathbb{R}^3$, $t \in [0, 1]$ such that $h_0 = id_{\mathbb{R}^3}$ and $h_1(K_1) = K_2$. If they are so, we say that K_1 and K_2 are equivalent.

Proposition

Two knots K_1 and K_2 are equivalent if and only if there exists a preserving orientation diffeomorphism $h : \mathbb{R}^3 \to \mathbb{R}^3$ such that $h(K_1) = h(K_2)$.

ヘロト ヘアト ヘビト ヘビト

Some Invariants Quasi-alternating links Questions Links Diagrams Reidemeister theorem

Example -:

H. Abchir On Quasi-Alternating Links

Some Invariants Quasi-alternating links Questions Links Diagrams Reidemeister theorem

Figure : Nœuds isotopes.

ヘロト 人間 とくほとくほとう

Some Invariants Quasi-alternating links Questions Links Diagrams Reidemeister theorem

Plan

Links, Diagrams and the Reidemeister Theorem

- Links
- Diagrams
- Reidemeister theorem
- 2 Some Invariants
- Quasi-alternating links
 - Definition and examples
 - Detection of some non quasi-alternating links

Questions

ヘロト 人間 ト ヘヨト ヘヨト

э

Links Diagrams Reidemeister theorer

Definition

Let *K* be a knot. Let \mathcal{P} be a plane in the space. Let *p* be a perpendicular projection on \mathcal{P} . We say that p(K) is a **regular projection** of *K* on \mathcal{P} if it satisfies

- the tangent lines to the knot at all points are projected onto lines on the plane. (i.e. the projections of the tangents never degenerate into points);
- No more than two distinct points of the knot are projected on one and the same point of the plane;
- The set of crossing points (those on which two points project) is finite and at each crossing point the projections of the two tangents do not coincide.

Definition

A diagram D of a knot K is its image by a regular projection.

Some Invariants Quasi-alternating links Questions Links Diagrams Reidemeister theorer

Figure : Forbidden projections.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Links Diagrams Reidemeister theorem

Plan

Links, Diagrams and the Reidemeister Theorem

- Links
- Diagrams
- Reidemeister theorem
- 2 Some Invariants
- Quasi-alternating links
 - Definition and examples
 - Detection of some non quasi-alternating links

Questions

ヘロト 人間 ト ヘヨト ヘヨト

Some Invariants Quasi-alternating links Questions Links Diagrams Reidemeister theorem

Definition

Two diagrams D_1 and D_2 of a knot *K* are said equivalent if we can obtain D_1 from D_2 by a finite sequence of

- ambient plane isotopies and
- **2** Ω_1 -moves, Ω_2 -moves and Ω_3 -moves.

イロト イポト イヨト イヨト

Some Invariants Juasi-alternating links Questions Links Diagrams Reidemeister theorem

Figure : Reidemeister moves.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Links Diagrams Reidemeister theorem

Theorem

Two knot diagrams correspond to isotopic knots if and only if one can be obtained from the other by a finite sequence of Reidemeister moves and plane isotopies.

ヘロト ヘアト ヘビト ヘビト

Links Diagrams Reidemeister theorem

Theorem

Two knot diagrams correspond to isotopic knots if and only if one can be obtained from the other by a finite sequence of Reidemeister moves and plane isotopies.

Corollary

There is a one-to-one correspondence between the equivalence classes of knots and the equivalence classes of diagrams.

ヘロト 人間 ト ヘヨト ヘヨト

Some Invariants Quasi-alternating links Questions Links Diagrams Reidemeister theorem

Operation on Links: The connected sum

イロト 不得 とくほと くほとう

Links Diagrams Reidemeister theorem

Some families of links:

Alternating knots.

Figure : Alternating links.

② Torus knot $T_{(p,q)}$ where p and q are coprime integers.

Questions

On Quasi-Alternating Links

★ ≥ > < ≥</p>

The crossing and the unknotting numbers

• The crossing number c(L).

 In fact for each positive integer c ≤ 3 there exists an (irreductible) knot such that c(K) = c.

•
$$c(T(p,q)) = (p-1)q$$
.

2 The unknotting number u(L).

•
$$u(T(p,q)) = \frac{1}{2}(p-1)(q-1).$$

The 3-coloring number.

Figure : Nœud Tréfle colorié.

The determinant of a link

H. Abchir On Quasi-Alternating Links

ヘロト 人間 とくほとくほとう

The determinant of a link

Let *L* be a link in S^3 with *n* components.

イロト 不得 とくほと くほとう

∃ <2 <</p>

The determinant of a link

Let *L* be a link in S^3 with *n* components. Let *F* be a Seifert surface of *L*.

ヘロン ヘアン ヘビン ヘビン

The determinant of a link

Let *L* be a link in S^3 with *n* components. Let *F* be a Seifert surface of *L*. We know that

$$H_1(F,\mathbb{Z})=\oplus_{i=1}^{2g+n-1}\mathbb{Z}.$$

・ロト ・ 理 ト ・ ヨ ト ・

The determinant of a link

Let *L* be a link in S^3 with *n* components. Let *F* be a Seifert surface of *L*. We know that

$$H_1(F,\mathbb{Z})=\oplus_{i=1}^{2g+n-1}\mathbb{Z}.$$

Consider an embedding

$$F \times [-1,+1] \hookrightarrow S^3$$

such that $F = F \times \{0\}$.

ヘロン 人間 とくほ とくほ とう

The determinant of a link

Let *L* be a link in S^3 with *n* components. Let *F* be a Seifert surface of *L*. We know that

$$H_1(F,\mathbb{Z}) = \oplus_{i=1}^{2g+n-1}\mathbb{Z}.$$

Consider an embedding

$$F \times [-1,+1] \hookrightarrow S^3$$

such that $F = F \times \{0\}$. We denote F^{\pm} the surface

$$F^{\pm} = F \times \{\pm 1\}$$

ヘロン 人間 とくほ とくほ とう

If α is a curve in *F*, its copy in *F*[±] is denoted by α^{\pm} .

ヘロト 人間 とくほとくほとう

If α is a curve in F, its copy in F^{\pm} is denoted by α^{\pm} . If $\{a_i\}$ is a basis of $H_1(F)$, we consider the integers $lk(a_i, a_j^+)$ and then the square matrix $M = (lk(a_i, a_j^+))$ called the Seifert matrix of L:

$$\begin{array}{cccc} \Theta: & H_1(F) \times H_1(F) & \longrightarrow & \mathbb{Z} \\ & & (a_i, a_j) & \longmapsto & \textit{lk}(a_i, a_j^+) \end{array}$$

ヘロト 人間 ト ヘヨト ヘヨト

If α is a curve in F, its copy in F^{\pm} is denoted by α^{\pm} . If $\{a_i\}$ is a basis of $H_1(F)$, we consider the integers $lk(a_i, a_j^+)$ and then the square matrix $M = (lk(a_i, a_j^+))$ called the Seifert matrix of L:

$$\begin{array}{rcl} \Theta: & H_1(F) \times H_1(F) & \longrightarrow & \mathbb{Z} \\ & (a_i, a_j) & \longmapsto & \textit{lk}(a_i, a_j^+) \end{array}$$

Definition

The determinant of a link *L*, written det *L* is the positive integer $|\det(M + M^T)|$.

$$\det L := |\det(M + M^T)|$$

Theorem

Let M be a Seifert matrix of a link L constructed from a Seifert matrix F spanning L. Then det L is a link invariant.

Example -:

Figure : Seifert Matrix of the Trefoil

ヘロト 人間 とくほとくほとう

Example -:

Figure : Seifert Matrix of the Trefoil

$$M = \begin{pmatrix} lk(a_1, a_1^+) & lk(a_1, a_2^+) \\ lk(a_2, a_1^+) & lk(a_2, a_2^+) \end{pmatrix} = \begin{pmatrix} +1 & -1 \\ 0 & +1 \end{pmatrix}$$

ヘロト 人間 とくほとくほとう

Example -:

Figure : Seifert Matrix of the Trefoil

$$M = \begin{pmatrix} lk(a_1, a_1^+) & lk(a_1, a_2^+) \\ lk(a_2, a_1^+) & lk(a_2, a_2^+) \end{pmatrix} = \begin{pmatrix} +1 & -1 \\ 0 & +1 \end{pmatrix}$$
$$\det K = 3$$

ヘロト 人間 とくほとくほとう

Theorem

For any link L we have

$$\det(-L) = \det L = \det(L^*).$$

Theorem

For any link L we have

$$\det(-L) = \det L = \det(L^*).$$

Theorem

If $L_1 \sqcup L_2$ is a split link then

$$\det(L_1 \sqcup L_2) = 0.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Theorem

For any link L we have

$$\det(-L) = \det L = \det(L^*).$$

Theorem

If $L_1 \sqcup L_2$ is a split link then

$$\det(L_1\sqcup L_2)=0.$$

Theorem

If a link can be factorised as $L_1 \# L_2$ then

$$\det(L_1 \# L_2) = \det L_1 \det L_2.$$

・ロト ・四ト ・ヨト ・ヨト
Definition and examples Detection of some non quasi-alternating links

イロト イポト イヨト イヨト

Plan

- Links
- Diagrams
- Reidemeister theorem
- 2 Some Invariants
- 3 Quasi-alternating links
 - Definition and examples
 - Detection of some non quasi-alternating links

Questions

Definition and examples Detection of some non quasi-alternating links

Motivation

H. Abchir On Quasi-Alternating Links

<ロト <回 > < 注 > < 注 > 、

э.

Definition and examples Detection of some non quasi-alternating links

イロト 不得 とくほ とくほとう

3

Motivation

Quasi-alternating links was introduced by Ozsvath and Szabo in 2003 [6].

Definition and examples Detection of some non quasi-alternating links

Motivation

Quasi-alternating links was introduced by Ozsvath and Szabo in 2003 [6].

Definition

A closed three-manifold Y is called an L-space if $H_1(Y; \mathbb{Q}) = 0$ and $\widehat{HF}(Y)$ is a free abelian group whose rank coincides with the number of elements in $H_1(Y; \mathbb{Z})$ denoted by $|H_1(Y; \mathbb{Z})|$

ヘロト ヘ戸ト ヘヨト ヘヨト

Definition and examples Detection of some non quasi-alternating links

Motivation

Quasi-alternating links was introduced by Ozsvath and Szabo in 2003 [6].

Definition

A closed three-manifold Y is called an L-space if $H_1(Y; \mathbb{Q}) = 0$ and $\widehat{HF}(Y)$ is a free abelian group whose rank coincides with the number of elements in $H_1(Y; \mathbb{Z})$ denoted by $|H_1(Y; \mathbb{Z})|$

The most important property of quasi-alternating links is the fact that their double branched covers are *L*-spaces, and then are rational homology 3-spheres with the simplest Heegaard Floer homology.

イロト イポト イヨト イヨト

Definition and examples Detection of some non quasi-alternating links

Motivation

Quasi-alternating links was introduced by Ozsvath and Szabo in 2003 [6].

Definition

A closed three-manifold Y is called an L-space if $H_1(Y; \mathbb{Q}) = 0$ and $\widehat{HF}(Y)$ is a free abelian group whose rank coincides with the number of elements in $H_1(Y; \mathbb{Z})$ denoted by $|H_1(Y; \mathbb{Z})|$

The most important property of quasi-alternating links is the fact that their double branched covers are *L*-spaces, and then are rational homology 3-spheres with the simplest Heegaard Floer homology.

The converse statement is not true, but quasi-alternating links are recognised recently as an important class of knots and links.

Definition and examples Detection of some non quasi-alternating links

Definition

The set \mathcal{Q} of quasi-alternating links is the smallest set of links which satisfies the following properties:

- the unknot belongs to Q.
- If L is a link with a diagram D containing a crossing c s.t.
 - both smoothings of the diagram *D* at the crossing *c*, L_0 and L_∞ as in the figure 8 belong to Q and
 - det $L = det(L_0) + det(L_\infty)$;

then *L* is in Q and we say that *L* is quasi-alternating at the crossing *c* with quasi-alternating diagram *D*.

Figure : 8 Smoothing of the crossing of H. Abchir On Quasi-Alternating Links

Definition and examples Detection of some non quasi-alternating links

Proposition

If L is a non split alternating link (then alternating if a knot) then it is quasi-alternating.

イロン イボン イヨン イヨン

ъ

Definition and examples Detection of some non quasi-alternating links

Proposition

If L is a non split alternating link (then alternating if a knot) then it is quasi-alternating.

Proof.

イロン イボン イヨン イヨン

ъ

Definition and examples Detection of some non quasi-alternating links

Proposition

If L is a non split alternating link (then alternating if a knot) then it is quasi-alternating.

Proof.

Example -The 9_{47} knot has a diagram which is quasi-alternating at a crossing *c*.

イロン イボン イヨン イヨン

э

Definition and examples Detection of some non quasi-alternating links

The first non alternating knot in the standard knot table is the 8_{19} which is the Torus Knot T(4,3).

Figure : The 819 knot

くロト (過) (目) (日)

э

Definition and examples Detection of some non quasi-alternating links

The first non alternating knot in the standard knot table is the 8_{19} which is the Torus Knot T(4,3).

Figure : The 8₁₉ knot

The first non-alternating quasi-alternating knot in the standard knot table is the 8_{20} .

Figuro · Tho 8., knot

On Quasi-Alternating Links

H. Abchir

Definition and examples Detection of some non quasi-alternating links

イロト 不得 とくほと くほとう

3

Proposition

If K_1 and K_2 are quasi-alternating knots then so is $K_1 \# K_2$.

Definition and examples Detection of some non quasi-alternating links

イロト 不得 とくほ とくほ とう

1

Proposition

If K_1 and K_2 are quasi-alternating knots then so is $K_1 \# K_2$.

Theorem

- The Pretzel link P(p₁,..., p_n, −q) is quasi-alternating for n ≥ 1, p_i ≥ 1 ∀i and q > min{p₁,..., p_n}.
- 2 The Pretzel link $P(p_1, ..., p_n, -q_1, ..., -q_m)$ is not quasi-alternating if $m, n \ge 1$, and all $p_i, q_j \ge 2$.

Definition and examples Detection of some non quasi-alternating links

イロト 不得 とくほ とくほ とうほ

Proposition

If K_1 and K_2 are quasi-alternating knots then so is $K_1 \# K_2$.

Theorem

- The Pretzel link $P(p_1, ..., p_n, -q)$ is quasi-alternating for $n \ge 1$, $p_i \ge 1 \ \forall i \text{ and } q > \min\{p_1, ..., p_n\}.$
- 2 The Pretzel link $P(p_1, ..., p_n, -q_1, ..., -q_m)$ is not quasi-alternating if $m, n \ge 1$, and all $p_i, q_j \ge 2$.

Remark -: in fact the knot 8_{20} is the Pretzel knot P(2, 3, -3).

Definition and examples Detection of some non quasi-alternating links

Plan

Links, Diagrams and the Reidemeister Theorem

- Links
- Diagrams
- Reidemeister theorem
- 2 Some Invariants
- 3 Quasi-alternating links
 - Definition and examples
 - Detection of some non quasi-alternating links

Questions

イロト イポト イヨト イヨト

Definition and examples Detection of some non quasi-alternating links

イロン 不同 とくほう イヨン

ъ

The Kauffman polynomial

Let *L* be a link.

Definition and examples Detection of some non quasi-alternating links

ヘロト ヘアト ヘヨト ヘ

The Kauffman polynomial

Let *L* be a link.

We denote by L_+ , L_- , L_∞ and L_0 the links which are identical to L except in a small disc as shown below.

Figure : The skein quadruple

Definition and examples Detection of some non quasi-alternating links

Theorem

There exists a function

 $\Lambda: \{\text{Unoriented links diagrams } S^2\} \longrightarrow \mathbb{Z}[\pmb{a}^{\pm 1}, z^{\pm 1}]$

that is defined uniquely by the following

- $\Lambda(U) = 1$, where U is the zero-crossing diagram of the unknot;
- Λ(D) is unchanged by Reidemeister moves of Types II and III on the diagram D;

If D_+ , D_- , D_0 and D_∞ are four diagrams exactely the same except near a point where they are as shown in figure, then

 $\Lambda(D_{+}) + \Lambda(D_{-}) = z(\Lambda(D_{0}) + \Lambda(D_{-}))$

On Quasi-Alternating Links

H. Abchir

Definition and examples Detection of some non quasi-alternating links

Definition

The Kauffman polynomial is the function

$$F: {\text{Unoriented links in S}^3} \longrightarrow \mathbb{Z}[a^{\pm 1}, z^{\pm 1}]$$

defined by $F_L = a^{-w(D)} \Lambda(D)$ where *D* is a diagram with writhe w(D) of the oriented link *L*.

イロト 不得 とくほと くほとう

Definition and examples Detection of some non quasi-alternating links

Definition

The Kauffman polynomial is the function

$$F: {\text{Unoriented links in S}^3} \longrightarrow \mathbb{Z}[a^{\pm 1}, z^{\pm 1}]$$

defined by $F_L = a^{-w(D)} \Lambda(D)$ where *D* is a diagram with writhe w(D) of the oriented link *L*.

Remark -: The polynomial

$$Q_L(z)=F_L(1,z)$$

called the Brandt-Lickorish-Millet Polynomial is a link invariant. It happens deg $Q_L < \deg_z F_L$.

イロト 不得 とくほと くほとう

Definition and examples Detection of some non quasi-alternating links

Theorem

For any quasi-alternating link, we have deg $Q_L < \det L$.

イロト 不得 とくほ とくほとう

ъ

Definition and examples Detection of some non quasi-alternating links

Theorem

For any quasi-alternating link, we have deg $Q_L < \det L$.

Examples -:

• det $(8_{19}) = 3$ and deg $Q_{8_{19}} = 6$, so the knot 8_{19} is not quasi-alternating.

イロト 不得 とくほと くほとう

Definition and examples Detection of some non quasi-alternating links

Theorem

For any quasi-alternating link, we have deg $Q_L < \det L$.

Examples -:

- det(8_{19}) = 3 and deg $Q_{8_{19}}$ = 6, so the knot 8_{19} is not quasi-alternating.
- 2 det(8_{20}) = 9 and deg $Q_{8_{20}}$ = 6, so the knot 8_{20} satisfies the needed condition to be quasi-alternating.

イロト 不得 とくほと くほとう

Definition and examples Detection of some non quasi-alternating links

Lemma

Let L be a link, then

```
\text{deg}\, \textit{Q}_{\textit{L}} \leq \text{max}\{\text{deg}\, \textit{Q}_{\textit{L}_0}, \text{deg}\, \textit{Q}_{\textit{L}_\infty}\} + 1,
```

where L_0 , L_∞ are the smoothings of the link L at any crossing c.

イロト 不得 とくほと くほとう

Definition and examples Detection of some non quasi-alternating links

Lemma

Let L be a link, then

```
\text{deg}\, \textit{Q}_{\textit{L}} \leq \text{max}\{\text{deg}\, \textit{Q}_{\textit{L}_0}, \text{deg}\, \textit{Q}_{\textit{L}_\infty}\} + 1,
```

where L_0 , L_∞ are the smoothings of the link L at any crossing c.

Proof.

Let *D* be a diagram of *L*. We do an induction on the minimum number of crossing switches necessary to transform *D* into a diagram of the unlink. Assume that $D = D_+$.

Definition and examples Detection of some non quasi-alternating links

Lemma

Let L be a link, then

```
\text{deg}\, \textit{Q}_{\textit{L}} \leq \text{max}\{\text{deg}\, \textit{Q}_{\textit{L}_0}, \text{deg}\, \textit{Q}_{\textit{L}_\infty}\} + 1,
```

where L_0 , L_∞ are the smoothings of the link L at any crossing c.

Proof.

Let *D* be a diagram of *L*. We do an induction on the minimum number of crossing switches necessary to transform *D* into a diagram of the unlink. Assume that $D = D_+$. If n = 1, then D_- is a diagram of the unlink with *k* components. We have that $Q_{L_-}(z) = (2z^{-1} - 1)^{k-1}$, and then

$$Q_{L_+}(z) = z(Q_{L_0}(z) + Q_{L_{\infty}}(z)) - (2z^{-1} - 1)^{k-1}.$$

Definition and examples Detection of some non quasi-alternating links

Lemma

Let L be a link, then

```
\text{deg}\, \textit{Q}_{\textit{L}} \leq \text{max}\{\text{deg}\, \textit{Q}_{\textit{L}_0}, \text{deg}\, \textit{Q}_{\textit{L}_\infty}\} + 1,
```

where L_0 , L_∞ are the smoothings of the link L at any crossing c.

Proof.

Let *D* be a diagram of *L*. We do an induction on the minimum number of crossing switches necessary to transform *D* into a diagram of the unlink. Assume that $D = D_+$.

If n = 1, then D_{-} is a diagram of the unlink with k components. We have that $Q_{L_{-}}(z) = (2z^{-1} - 1)^{k-1}$, and then

$$Q_{L_+}(z) = z(Q_{L_0}(z) + Q_{L_{\infty}}(z)) - (2z^{-1} - 1)^{k-1}.$$

Assume the result true for all link diagrams with a crossing switches less than *n*, in particular for the link L_- . The result follows from the identity $Q_1(z) = z(Q_1(z) + Q_2(z)) = Q_1(z)$

Definition and examples Detection of some non quasi-alternating links

Proof.

Induction on det L.

Definition and examples Detection of some non quasi-alternating links

Proof.

Induction on det *L*. The result is obvious if det L = 1.

Definition and examples Detection of some non quasi-alternating links

Proof.

Induction on det L.

The result is obvious if det L = 1.

Now assume that the result is true for each quasi-alternating link *L* such that det $L \le m$. If det L = m + 1, then L_0 and L_∞ satisfy deg $L_0 < \det L_0$ and deg $L_\infty < \det L_\infty$. We conclude by using the last lemma as follows:

 $\deg Q_L$

- $\leq \max\{\deg Q_{L_0}, \deg Q_{L_\infty}\} + 1$
- $< \max\{\det L_0, \det L_\infty\} + 1$
- $< \det L_0 + \det L_\infty$
- = det *L*.

Definition and examples Detection of some non quasi-alternating links

Theorem

Let L be a non-split alternating link. Then either,

- L is a (2, n)-torus link for $n \neq 0$, and $\deg_z F_L = \det L 1$;
- L is the figure-eight knot or the connected sum of two Hopf links, and deg_z F_L = det L – 2; or

3 deg_z
$$F_L \leq \det L - 3$$
.

イロン 不得 とくほ とくほとう

Definition and examples Detection of some non quasi-alternating links

Theorem

Let L be a non-split alternating link. Then either,

- L is a (2, n)-torus link for $n \neq 0$, and $\deg_z F_L = \det L 1$;
- L is the figure-eight knot or the connected sum of two Hopf links, and deg_z F_L = det L – 2; or

3 deg_z
$$F_L \leq \det L - 3$$
.

Theorem

Let L be a non-alternating, quasi-alternating link. Then either,

• deg_z
$$F_L \le$$
 det $L - 3$; or

L has exactly three components, each of which is unknotted. Moreover, L is obtained from the Hopf link by a banding on one component.

ヘロマ ヘビマ ヘビマ

Let *L* be an oriented link. The **breadth** of the Jones polynomial $V_L(t)$ is the difference between the maximal degree of *t* and the minimal degree of *t* that occur in $V_L(t)$. We denote it by $B(V_L)$. Inspired by their computations of the breadth and the determinants of a large number of links, K. Qazaqzeh and N. Chbili conjectured the following:

Conjecture

If L is a quasi-alternating link, then $B(V_L) \leq \det(L)$.

ヘロト ヘアト ヘビト ヘビト

Since we know that the breadth of the Jones polynomial is always less than or equal to c(L), the crossing number of the link *L* (see theorem 5.9. in [6]), the last conjecture is weaker than the one in [7] which states that

Conjecture

For any quasi-alternating link L, we have $c(L) \leq \det L$.

The latter is true for any non-split alternating link *L* as proved in [7].

However, Conjecture 1 has the advantage that it involves the breadth of the Jones polynomial which is, in general, easier to compute than the crossing number. Conjecture 2 is true for all quasi-alternating links that have been checked to satisfy the conjecture $c(L) \leq \det(L)$. Chbili and Qazaqzeh proved both conjectures for quasi-alternating closed 3-braids.

In [3], Chbili and Qazaqzeh asked also the two following questions:

Question -: Can we determine all Kanenobu knots that are quasi-alternating? They conjectured that K(0,0), K(1,0), K(1,-1) are the only Kanenobu knots that are quasi-alternating.

Question -: Can we characterize all quasi-alternating knots with crossing number less than or equal to 11?

In the same direction, Teragaito conjecture

Conjecture

If L is a non-alternating, quasi-alternating link, then det $L \ge 8$.

One can also ask the following Question -: Can one measure the default of a quasi-alternating knot to be alternating ? Or what is the difference between quasi-alternating and almost alternating knots?
- C.C. Adams, J.F. Brock, J. Bugbee, et al., *Almost alternating links*, Topology Appl. 46 (2) (1992), 151-165.
- D. Bar-Natan, On Khovanov's categorification of the Jones polynomial, Algebr. Geom. Topol., 2, 2002, 337–370 (electronic).
- N. Chbili, K. Qazaqzeh *A new obstruction of quasi-alternating link*, Algebraic and Geometric Topology 15:10.2140/agt.2015.15:3, 1847-1862.
- J. Greene, *Homologically thin, non-quasi-alternating links*, Math. Res. Lett., 17(1):39-49, 2010.
- M. Khovanov, *A categorification of the Jones polynomial*, J. Knot Theory Ramifications 12 (2) 159-186 (2003).

W. B. R. Lickorish, An Introduction to Knot Theory, Graduate Texts in Mathematics, vol. 175 Springer Verlag = 200 H. Abchir On Quasi-Alternating Links Links, Diagrams and the Reidemeister Theorem Some Invariants Quasi-alternating links Questions

THANKS FOR YOUR ATTENTION

H. Abchir On Quasi-Alternating Links

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで