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Origin of the problem :[ Hawkins, J. Diff. Geom. 77 (2007) 385-424 |

Let A be an algebra. A deformation in the sense of Hawkins of A is an
extension of Aj of the form

O—>hA—>Ai>AO—>O,
where £ is central in A and for any a € A

ha=0 — a=0.



Origin of the problem :[ Hawkins, J. Diff. Geom. 77 (2007) 385-424 |

Let A be an algebra. A deformation in the sense of Hawkins of A is an
extension of Aj of the form

O—>hA—>Ai>AO—>O,
where £ is central in A and for any a € A

ha=0 — a=0.

Example
Fix a € C. Take Ay = C, A= C[X], h= (X — a) and P(Q) = Q(a).



Example
Ay = C>(M,C) and

A= {anhnvfn € AO}

n>0

a x-product® on A given by, f,g € Ay C A,

fxg=Ffg+> Bulf,9)h"
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Origin of the problem :[ Hawkins, J. Diff. Geom. 77 (2007) 385-424 |

Let (Q*(M), A, d) be the graded algebra of differential forms on a
manifold M and

0— hd — A5 Q*(M) — 0,

a deformation of Q*(M) in the sense of Hawkins. Consider the bracket

(P PO} =P (3la]), aseA

where

[ ﬁ] = a. B ( )degadegﬁﬂ @

is the graded commutator in A.



The bracket {, } defines a Poisson graded differential algebra structure
on Q*(M).
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m 7 is Poisson tensor,
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The graded Jacobi identity of { , } is equivalent to :
m 7 is Poisson tensor,
m the curvature of D vanishes,
m the metacurvature of D vanishes.

Moreover, the fact that d is a derivation of { , } implies that D is
torsion free.
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Deformation of the spectral triple associated to a

Riemannian manifold

Let (M, g) be a Riemannian manifold. Any deformation of the spectral
triple of (M, g) induces a deformation of Q*(M) and hence, gives rise
to a Poisson tensor 7 and a contravariant connexion D satisfying the

conditions above.

2. (Hilbert space, an algebra, unbounded self-adjoint operator).
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Deformation of the spectral triple associated to a

Riemannian manifold

Let (M, g) be a Riemannian manifold. Any deformation of the spectral
triple of (M, g) induces a deformation of Q*(M) and hence, gives rise
to a Poisson tensor 7 and a contravariant connexion D satisfying the
conditions above.

In this case D is the Levi-Civita contravariant connection associated

to (,g).

(M, g,m, D) is the geometry of the deformation of the spectral
triple associated to (1M, g).

2. (Hilbert space, an algebra, unbounded self-adjoint operator).



Poisson manifolds

DEFINITION
A Poisson bracket on M is
{+-}: (M) x C*(M) — C=(M)
m R-bilinear
m {f,g} =—{g,f} (anti-symmetric)

u {fv {ga h}} + {gv {ha f}} + {ha {fa g}} =0 (JaCObi)
w {f,gh}t = g{f,h} +h{f,g} (Leibniz)

Endowed with this bracket, M is a Poisson manifold.
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EXAMPLES

» Every symplectic manifold (M, w) : {f, g} = w(Xy, X,).
» The dual of a Lie algebra (g, [-,]) :
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Poisson manifolds

A Poisson bracket defines :
m a bivector field 7 € T(A?TM) : =(df,dg) := {f,g} . Jacobi
<= [m,m]=0 where [-, -] Schouten-Nijenhuis bracket. .

m a morphism of vector bundles 7y : T*M — TM , a > w(a,-),
called anchor.

m a distribution C : © € M — Immy(z).
— px(x) := dimC; is the rank of 7 on x;
— Cis singular : pr # cst;

— Th open set M"®9 = {points ol p, locally constant} is dense in
M ; a point in M"Y is called regular.

m a Lie bracket on Q! (M), called de Koszul’s bracket :
[a, ﬂ]ﬂ = Lﬂ,u(a),@ — Lﬂu(ﬂ)a — d(ﬂ'(a, ﬂ))



Contravariant connections

DEFINITION

A contravariant connection on (M, ) is
D:QNM) x QY (M) — QY (M), notée (a, ) — D, j3,
R-bilinear and satisfying

DtaB = fDaf, Da(fB)=fDaf+m(a)(f)B (f€Cx(M)).



Contravariant connections

DEFINITION
A contravariant connection on (M, ) is
D:QNM) x QY (M) — QY (M), notée (a, ) — D, j3,
R-bilinear and satisfying
DsaB = [DaBs DalfB) = fDaf+m(a)()B (f €C®(M)).
The torsion and the curvature of D are :
T(aa ﬂ) o= Daﬁ - D'gOl - [Oé, ﬁ]ﬂ'a
R(a, )y = DaDpy = PsPay = Dlap), V-

When T'=0 (resp. R=0), D is called torsionless (resp. flat).



Contravariant connexion

FUNDAMENTAL EXAMPLE

Given a Riemannian metric g on (M, ), 3! contravariant connection D
of (M, 7) such that T =0 et Dg =0 it is given by:

aﬂa = _{’/Tﬁ +7Tﬁ(5)<0&,’}/> _ﬂ_ﬁ(f}/)'<a75>
+ <[Oé,ﬁ]7.—, > - <[/6’7]7T7a> + <[7’a]ﬂ"ﬂ>}

and called the Levi-Civita contravariant connection associated to (m, g) (in
short : CLCC).



Metacurvature ?

HAWKINS’S BRACKET

If D is a contravariant connection torsionless on (M, ),
A {, -} QM) x Q(M) — QF (M)

m R-bilinear,

m degree 0 : deg{o,7} =dego +degT,
m graded commutative : {0, 7} = —(—1)deeodee 1 51
m Leibniz: {o,7 Ap}={o, 7} Ap+ (=1)d87dET A {5 o}

derivation :  d{o,7} = {do, 7} + (—1)%87 {0, dr},
For any f,g € C*°(M) and any a € Q' (M),
{f,g}Zﬂ'(df,dg), {f,Oé}:DdfOé.



Metacurvature ?

JACOBI IDENTITY AND METACURVATURE

What about the Jocobi identity,

{o.{7,0}} = {{o, 7}, p} = (-1)*E74E {7 {0,p}} =07
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Metacurvature ?

JACOBI IDENTITY AND METACURVATURE

What about the Jocobi identity,

J(0,7,p) == {0, {r,p}} = {{o, 7}, p} = (-1)%E7 4T {7, {0,p}} = 07

In low degrees, we have :
m J(f,g,h) =0 since 7 is Poisson.
® J(f,9,0) = DggDaga — Dyyg,gy0 — DygDara = R(df, dg)cx
m If D is flat then the formula
| M(df, 0, 8) i= T (f, 0, 8) = {f:{o, B}} — {{ 0}, 8} — {{/. B}, 0} |
where o, 3 € Q' (M) defines a tensor field M of type (2,3).




J =0 if and only if D flat and M = 0.
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M is the metacurvature of D.




J =0 if and only if D flat and M = 0.

M is the metacurvature of D.



J =0 if and only if D flat and M = 0.

M is the metacurvature of D.
It is C°°(M)-trilinear symmetric




Computation of Hawkins's bracket and the metacurvature

Let (M, 7, D) be a manifold endowed with a Poisson tensor and a
contravariant connexion torsionless and flat. The Hawkins's bracket in
low degrees is given by

{fag} :ﬂ-(dfvdg)7 {f,Oé} :Ddfa’ YAS COO(M)v a € Ql(M)
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Computation of Hawkins's bracket and the metacurvature

Let (M, 7, D) be a manifold endowed with a Poisson tensor and a
contravariant connexion torsionless and flat. The Hawkins's bracket in
low degrees is given by

{fag} :ﬂ-(dfvdg)7 {f,Oé} :Ddfa’ YAS COO(M)v a € Ql(M)

{a, 8} = —DadB — Dpda + dDaf + o, dflx, a, B € Q' (M).

The metacurvature is given

M(dfaavﬁ) = {fv {avﬂ}}f{{fv a}vﬂ}f{av {fvﬂ}}v f € COO(M)v a7ﬁ € QI(M)
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Important Remark

If o is parallel, i.e., Da = 0, for any 8 € Q' (M),

| {e, 8} = —Dpda.| (1)

If « an j3 are parallel, for any v € Q' (M),

| M(a B,7) = =D, Dgda. | (2)




Back to the initial problem

If (M, g) is a Riemannian manifold,

[A deformation of the spectrale triple of (MM, g) ]

|

3 a Poisson tensor w on M such that :

(Hy) The CLCC D assocatied to (7, g) is flat
(Hs) The metacurvature of D vanishes
(H3) d(irp) = 0, where p is the Riemannian volume



Main result of Hawkins

Let (M, ) be a Poisson manifold endowed with a Riemannian metric g.
Assume that M is compact satisfying (H1), (Hz2) and (Hs). Then, near
any x € M9,

1
7T:§izjaini/\Xj

where (a;;) is constant and invertible and X1,..., Xy, are linearly
independent commuting Killing vector fields. Moreover, Drr = 0. 3.
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such that the Levi-Civita contravariant connection associated a
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Fundamental Example

Let

» (:g— XY(M) an action of a Lie algebra g, of finite dimension on
M.

> r € A%g a solution of the classical Yang-Baxter equation.
Consider
7= 5 3 as(u) A G(us)
irj
and D" : QY (M) x QY (M) — Q' (M),

(o, 8) > DL =Y aya(C(w) Loy

4,

where 7 = >~ a;ju; Au; and {uq,...,u,} is a basis of g.



Fundamental Example

(a) 7" and D" depend only on r and ¢ and define, respectively, a Poisson
tensor and a contravariant connection torsionless and flat on M.

(b) If g is a Riemannian metric on M and ( preserves g, i.e., for any
u € g, ¢(u) is a Killing vector field, then D" is the contravariant
Levi-Civita connection of (7", g).

(¢) If Cis free, i.e., for any x € M, the map v — ((v)(x) is injective
then the metacurvature of D" vanishes.
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CYBE such that 7y = 7" and D = D" ?
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Important Remarks

When we study this problem, we remark :

m Hawkins's Theorem gives a positive answer to this problem in the
compact case and with an additional hypothesis.

m As a consequence of Hawkins's theorem Dw = 0 and D is
JF"€9-connection, i.e.,

(Vo e M™ VaeT:M), my(a) =0 — D, =0. (3)

m In the fundamental example if the action ( is free then D" satisfies
(3).

m If (M, x,D) is a Poisson manifold endowed with a contravariant
connection torsionless and flat satisfying (3) then there exits on
M7e9 a tensor field T of type (2,2) satisfying DT = M.

m In the fundamental example, if ¢ is free the it is T which vanishes
implying the vanishing of the metacurvature.



The problem reformulated :

Given a Poisson manifold (M,7) endowed with a JF"¢9-
contravariant connection without torsion, flat and T = 0, for any
regular point z there exists a neighborhood U of z, a free action
of a finite dimensional Lie algebra ¢ : g — X(U), and a solution
r € A?g of CYBE such that my = 7" and D =D"?




The problem reformulated :

Given a Poisson manifold (M,7) endowed with a JF"¢9-
contravariant connection without torsion, flat and T = 0, for any
regular point z there exists a neighborhood U of z, a free action
of a finite dimensional Lie algebra ¢ : g — X(U), and a solution
r € A?g of CYBE such that my = 7" and D =D"?

Moreover, if D is the Levi-Civita contravariant connection of
(M, m,g), the action ( preserves g?




Solution : Main result

Let (M, m,D) be a Poisson manifold endowed with a contravariant
connection torsionless and flat.

m If Dis a F"*9-connection and T = 0, then for any xq € M"Y there
exists a neighborhood U of z, a free action of a finite dimensional
Lie algebra ¢ : g — X(U), and an invertible solution r € A%g of
CYBE such that 7y = 7" and D =D".

m Moreover, if D is the Levi-Civita contravariant connection of
(M, m, g) then the action ¢ preserves g.




Solution : Building a flat co-frame

Let (M, 7, D) such that D is a F"%9-connection, torsionless and flat. Let
o € M and (ay,...,az,) a family of covectors in T; M such that
(7‘(’#(0,1), 000y W#(GQT)) is a basis of Im’ﬁ#(.%‘o).
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Solution : Building a flat co-frame

Let (M, 7, D) such that D is a F"%9-connection, torsionless and flat. Let
o € M and (ay,...,az,) a family of covectors in T; M such that
(7‘1’#(0,1), 000y W#((LQT)) is a basis of Im’ﬁ#(.%‘o).

m For any a € T, M, there exists an open set U 3 z¢ and 3% € Q*(U)
such that 5%(xg) = a and D5* = 0.

m Note ¢; = 3%. The vector fields (74 (¢1),...,mx(P2,)) are
commuting linearly independent so there exists a coordinates system
((@)?ry, (y7)4Z7") such that my(¢;) = 52, i =1,...,2r. We have
mu(dy) =0,i=1,...,d—2r.

m For any z € U, put H, = vect{¢1(x),..., p2r(x)}. We have
ToM =kermy @ H and DH C H.

m F* = {¢1,...,¢2,dy*,...,dy? "} is a flat co-frame.



Solution : The frame dual of F*

For any i = 1,...,2r, there exists a unique family of functions
Al,...,A; such that dz' + 3" A¥dy, € H . Consider

2r
X'i= X, =-m(da’), Yui=5——) Af %.

=1



Solution : The frame dual of F*

For any i = 1,...,2r, there exists a unique family of functions
A}, ..., AS such that dz’ + " A¥dy, € H . Consider

2r

DX (g BN o
X' = —X,i = —my(da’), Y, = o ;A1 ErE

{X;, Y.} is the dual frame of F*. Moreover, the vector fields X; and
Y, are, respectively, Hamiltonian and Poisson, and satisfy :
2r 2r

O i
[Xi, X1 == = 2 X [Xi,Yul=)
k=1 9%k ;

DAY

75
Ox;

j=1
r (DAY §AYV 2T 0AY OAY

Y,.Y,] = § : (%) J J § :Au J — AV J X, .

[, Yo T <8yv + k oz, ko, > !

ij=1 Oyu
with (m;;) = (m(dz*,dz7)) and (7'7) is the inverse of the matrix (m;;).




Solution : The tensor fields M et T

Theorem 4
m For any u, M(dyy,-,-)=0.

m For any i, 75, k, o 54
M(i, 65, 0x) = Z PR ¢1A¢m+zax—¢wdyu

;02 0Ty, 1070},

52 ( kl(aA;‘ BA;’ aA” 614“ ))
B "\ gy " g T AT = A%, dyu A d
ug;, 1 axlax] Ayw Yy, ; e a g - Yu Yo -




Solution : The tensor fields M et T

m For any u, M(dyy,-,-)=0.
m For any i, 75, k,
83 Tum % Av
M(¢i:¢j:¢k):_z$¢ZA¢m+27¢lAdyu
Lu

i 0x;0x;0x}, 0x;0x 0z},

9?2 wf OA;  O0A} oA} OA}
— - —t Al — AV —— | |d .
+ Z Ox;Ox; (7r ( oYy oy + ; ™ O, ™ Oz )) Uin A

u<wv,l w

m For any u, T(dy,, ) =0.
m For any i, 5,

8 Tkl Au
T(¢i,¢j5) = — E b A Py + E - dr A dyu
= Ox;0x; a 10z

0A} 04} 0A} 0AL
+ J’“( -k A} —AY ))d w A dy.
> o EO Ay~ Mgy ) e

u<wv, k




Solution : Proof of Theorem 3

SKETCH OF THE PROOF

The idea is to build near 2y a family of linearly independent vector fields
Zi,...,Z9 €T(C) which commute with X; and Y,,. In this case

w [Z;, Zj]) = X, ¢ Zx with ¢f; = cst hence Z,. .., Zo, generate a
Lie algebra of dimension 2r which acts freely near z,.

m T =3, i Zi\Zj where (a;;) is constant and invertible.

m D5 = Z” aija(Z;) Lz, 3 ; indeed, this is true for § = ¢; or dy,
since Lz,¢0; = Lz,dy, =0. And Do S — 3, s aijo(Z;) L7,8 s
tensorial in (.



Solution : Proof of Theorem 3

We proceed on two steps :

FIRST STEP

We build a family of vector fields T4, . .., Ts,. € I'(C) which commute
with the X;. Indeed, the vanishing of T and Lemma 3, imply :

Xw Z)\zj Xk7 X“Yu ZIJ’ZuXJﬂ Yu7 Zyuvxz

where Afj, uiu, v!, are Casimir, i.e., depend only on the y°.



Solution : Proof of Theorem 3

We proceed on two steps :

FIRST STEP
We build a family of vector fields T4, . .., Ts,. € I'(C) which commute
with the X;. Indeed, the vanishing of T and Lemma 3, imply :
X'mX ZAU Xk» X17Y Zﬂzu Yu7Y Zyuv i

where Afj, um, v!, are Casimir, i.e., depend only on the y°.
We choose a transversal T to the symplectic foliation S passing through
z,. Fory € T fix, X1|3y, e 7X2r|sy span a Lie algebra g, which act
freely and transitively on S,, so 3 an anti-homomorphism of Lie algebras
Ly : gy — X'(Sy), such that

Fy(Xllsy)(y) — Xl(y)a [Fy(Xllsy )? lesy] =0 VZ?J

We take T;(z) := T, (X7)(2), 2 €S, and we variate y to obtain T;.



Solution : Proof of Theorem 3

Now, the ugu are Casimir
2r
[T,Y) =) 7T
j=1
with ~7, Casimir and satisfy

a’YJZu a’YJZv o i k i k
a u fjv T v Vju — O B3
Oyy  Oyu i Zk:17k Vv = VhoVj (*)

since the v, are Casimir and [T5, [Y,, Y,]] = O for any i,u, v.



Solution : Proof of Theorem 3

Now, the ugu are Casimir
2r
=1

with ~7, Casimir and satisfy
2r

- 59 u fjv T v Vju — O B3
Oyy  Oyu i Zk:17k Vv = VhoVj (*)

since the v, are Casimir and [T5, [Y,, Y,]] = O for any i,u, v.

SECOND STEP

We look for the Z; in the form :

2r
Zi:=> &:Ty
j=1

where ¢&;; are Casimir and £ = (&;;) is invertible. They exist by virtue of

(%)-






