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The following theorem shows that there are deep relations
between the curvature and the group of isometries.
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Main result

Let G be a connected Lie group. For any a € GG, we denote
by L, : G — G and R, : G — G, respectively, the left
translation and the right translation given by

L,(b) =ab and R,(b) =ba .
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Main result

Let G be a connected Lie group. For any a € GG, we denote
by L, : G — G and R, : G — G, respectively, the left
translation and the right translation given by

L,(b) =ab and R,(b) =ba .

L(G) and R(G) are groups of transformations of G which
are isomorphic to G. Moreover,

L(G)R(G) = {L, o Ry, a,b € G}

is a Lie group isomorphic to G x G.
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Let g is a left invariant Riemannian metric on G. Then
Isom(G, g) contains L(G). If it contains R(G) then the
metric is bi-invariant.
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Preparation of the proof of the theorem

Let G be a compact, connected Lie group and g a left
invariant Riemannian metric on G. Since G is compact
[Isom(G, g)| is compact and connected.
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Preparation of the proof of the theorem

Let G be a compact, connected Lie group and g a left
invariant Riemannian metric on G. Since G is compact
[Isom(G, g)] is compact and connected. Let

H = {f € [som(G, )], f(e) = e}

H is a compact subgroup of [Isom(G, g)] and we have
[Isom(G,g)] = L(G)H and L(G)NH = {e}. (1)

This implies that [Isom(G,g)] is a diffeomorphic to a
product manifold L(G) x H and H is connected.
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If [Isom(G, g)] is contained in L(G)R(G) then L(G) is a
normal subgroup of [Isom(G, g)]. Moreover, each element of
H has form L, o R,, i.e., H is contained in the inner
automorphism group of G.
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automorphism group of G. Conversely, assume H is
contained in the inner automorphism group of G. If
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Actually, the converse of (b) is true if G is semi-simple.
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Actually, the converse of (b) is true if G is semi-simple.
Indeed, suppose that G is semi-simple and L(G) is a
normal subgroup of [Isom(G, g)]. Let h € H. For any

y € G, there exists € G such that hoL, o h™' =L,. This
is equivalent to, h(yz) = zh(y) for any z € G.
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Let (G,g) be a compact, connected simple Lie group. We
have:
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Let (G,g) be a compact, connected simple Lie group. We
have:

Q [Isom(G, g)] is a compact connected Lie group.

© L(G) is a compact, connected simple Lie group
contained in [Isom(G, g)] .

@ [Isom(G,g)] = L(G)H and L(G) N H = {e} with H
closed.

© H contains non normal subgroup of [Isom(G, g)] except
{e}.

@ [Isom(G, g)] is contained in L(G)R(G) if and only if
L(G) is a normal subgroup of [Isom(G, g)].
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To prove our main theorem it suffices to prove the following
theorem.
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A fundamental Lemma
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Proof of Theorem 18

Denote by K, g and b, respectively, the Lie algebras of K,
G and H. We have

@ g is simple,

Q@ R=gah,

@ b contains no proper ideal of & except {0}.

Q R=Z7Z(R)@a;d...Da, where a; is simple compact.

To show the theorem, it suffices to show that g is an ideal
of R.
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Proof of Theorem 18

Denote by K, g and b, respectively, the Lie algebras of K,
G and H. We have

@ g is simple,

Q@ R=gah,

@ b contains no proper ideal of & except {0}.

Q R=Z7Z(R)@a;d...Da, where a; is simple compact.

To show the theorem, it suffices to show that g is an ideal
of R.

To do so, we first prove the following: If there exists ¢
such that g C a; then g is an ideal of R.
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Suppose that g C a and a is a simple ideal of R.



Suppose that g C a and a is a simple ideal of 8. The
connected Lie subgroup A of K corresponding to a is
compact and simple.



Suppose that g C a and a is a simple ideal of 8. The
connected Lie subgroup A of K corresponding to a is
compact and simple. G is closed subgroup of A and
H' = AN H is compact. From the assumption, we have
A=GH',GNH' = {e}.



Suppose that g C a and a is a simple ideal of 8. The
connected Lie subgroup A of K corresponding to a is
compact and simple. G is closed subgroup of A and
H' = AN H is compact. From the assumption, we have
A=GH', GN H" = {e}. Suppose that G is proper
subgroup of A. Then H' is also proper subgroup of A.
Then from the fundamental lemma we have

s(A) = s(G) + s(H'). Or s(G) = S(A) =1 and hence
s(H'") = 0, which is a contradiction, so A = G.
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To complete the proof, we suppose that for any i =1, ...

g is not contained in a; and deduce a contradiction.



To complete the proof, we suppose that for any i =1,...,s
g is not contained in a; and deduce a contradiction.
Denote by p; : 8 — a; the projection with respect to the
splitting

R=ZR)Pa1d...das, Z(R) =ap.



To complete the proof, we suppose that for any i =1,...,s
g is not contained in a; and deduce a contradiction.
Denote by p; : 8 — a; the projection with respect to the
splitting

R=ZR)Pa1d...das, Z(R) =ap.

For any ¢ =0, ..., s, p; is a Lie algebra homomorphism and
hence g Nkerp; is an ideal in g and hence g N ker p; = {0}
or gNkerp; = g. Since g # {0} then there exist iy such
that g Nkerp;, # g and hence g Nkerp;, = {0}. Suppose
that 4o = 0. Then py(g) is abelian and isomorphic to g
which is impossible. So 7y # 0. Put 45 = 1.



We have g Nker p; = {0}. Moreover, g N a; is an ideal in g
and since g is not contained in a; then g Na; = {0}. This
implies

gNpi(g) = {0}. (2)
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