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Topological consequences of the existence of a
division algebra structure on R”

This is equivalent to: for any x # 0,

L,:R" —R", y— Lyy:=2xy
and
R, :R" —R" y— Ry =y

are isomorphisms.















Hopf’s mapping

Suppose that R™ carries a division algebra structure.
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Hopf’s mapping

Suppose that R™ carries a division algebra structure.
The Hopf’s mapping is the map

.y

h . Snil X Snil — Snil; (‘/L.*y) = }L(II/.??/) - H/L UH

Hop’s map is odd in the sense that

Yo,y e S", h(—z,y) = h(xz,—y) = —h(x,y).
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Hopf’s map h defines two maps:
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Hopf’s map h defines two maps:

G . ]P)'n,—l % ]P)'n,—l N ]P)'n,—l
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Hopf’s map h defines two maps:

G . ]P)n—l % ]P)n—l N ]P)n—l

G*: H*(P" ', Zy) — H*(P"' x P" 1, Zy).
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Hopf’s map h defines two maps:

G:Prlixprt —prt

G*: H*(P" ', Zy) — H*(P"' x P" 1, Zy).
Note that

n—1
H*(Pn_l,ZQ) _ @Hk(IPTL_17ZQ>
k=0
and
2n—2
HY (P x P Zp) = @ HF (P! x P71 Zy).
k=0
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Hopt’s Theorem
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Hopt’s Theorem




Degree modulo 2 of a continuous map
f-M—M

Let M be a compact connected topological space,

f M — M be a continuous map. An element y € M is
called regular value if for any = € f~!(y), f is an
homeomorphism from a neighborhood of x to a
neighborhood of y. In this case f~!(y) is finite and its
cardinal mod 2 doesn’t depend on y. We call it

degy(f) € Zs.
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Degree modulo 2 of a continuous map
f-M—M

Let M be a compact connected topological space,

f M — M be a continuous map. An element y € M is
called regular value if for any = € f~!(y), f is an
homeomorphism from a neighborhood of x to a
neighborhood of y. In this case f~!(y) is finite and its
cardinal mod 2 doesn’t depend on y. We call it

degy(f) € Zs.
We have

f homotopic to g = deg,(f) = deg,(g).

18R



Any continuous function f : M — M is homotopic to a
function g : M — M which is C* and according to Sard’s
theorem ¢ has a regular value so we put

deg,(f) = degy(g).
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Any continuous function f : M — M is homotopic to a
function g : M — M which is C* and according to Sard’s
theorem ¢ has a regular value so we put

deg,(f) = degy(g).

Let F: S"! — GL(n,R) a continuous map. For any
v € R™\ {0}, we denote by F, : S»~! — g1,

F@)(v)
T F@l
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Any continuous function f : M — M is homotopic to a
function g : M — M which is C* and according to Sard’s
theorem ¢ has a regular value so we put

deg,(f) = degy(g).

Let F: S"! — GL(n,R) a continuous map. For any
v € R"\ {0}, we denote by F, : S"71 —s Sn=1

v s £

We deﬁne tﬁie mod 2 invariant of F' by

a(F) = degy(F).
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Second topological consequence of the existence
of a division algebra structure on R”

Suppose that R™ carries a subdivision algebra structure.
Then the map

F:S"!'— GL(n,R), 2+ F(x) =L,

is continuous and for any v € R" \ {0},

xT.U

F,: 5"t — sl o
||z.v]|

is an homeomorphism.
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Second topological consequence of the existence
of a division algebra structure on R”

Suppose that R™ carries a subdivision algebra structure.
Then the map

F:8"1' — GL(n,R), 2+ F(z) =L,

is continuous and for any v € R" \ {0},

xT.U

F,: 5"t — sl o
||z.v]|

is an homeomorphism.
Thus

a(F)=1.

292
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Theorem (1,2,4,8)
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Theorem (1,2,4,8)
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Theorem (1,2,4,8)




Back to Hopt’s Theorem
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Homology and cohomology with coefficients in
L

Denote by A" = [0, 1,...,n] the convex hull of the origin
with the canonical basis of R",

Al0,1,... 0] = {(tl,...,tn) ER"t,>0,Y t < 1}.
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Homology and cohomology with coefficients in
L

Denote by A" = [0, 1,...,n] the convex hull of the origin
with the canonical basis of R",

A[0,1,...,n] = {(tl,...,tn) e R t; 20,2@ < 1}.

We denote the face of A™ opposite to the i-th vertex by
A <i> ie.,

A<i>=10,...,i—1,i+1,....n], i=0,...,n.
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Homology and cohomology with coefficients in
L

Denote by A" = [0, 1,...,n] the convex hull of the origin
with the canonical basis of R",

Al0,1,... 0] = {(tl,...,tn) ER"t,>0,Y t < 1}.

We denote the face of A™ opposite to the i-th vertex by
A <i> ie.,

A<i>=10,...,i—1,i+1,....n], i=0,...,n.

A% = {0}, A =[0,1] and A? is the triangle 0, e;, 5 etc..

RYN



Let X be a topological space.



Let X be a topological space.
A singular n-simplex is a continuous map o : A" — X.
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Let X be a topological space.
A singular n-simplex is a continuous map o : A" — X.
The set of all singular n-simplices is denoted by .
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Let X be a topological space.

A singular n-simplex is a continuous map o : A" — X.
The set of all singular n-simplices is denoted by .

By a singular n-chain we mean any finite formal linear
combination of singular n-simplices with coefficients from
Zy, and write

Ch(X) = {Z n;o;,N; € Lo, 0; € E”} .

i=1
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Let X be a topological space.

A singular n-simplex is a continuous map o : A" — X.
The set of all singular n-simplices is denoted by .

By a singular n-chain we mean any finite formal linear
combination of singular n-simplices with coefficients from
Zy, and write

Ch(X) = {Z nio;,n; € Lo, 0; € E”} .

i=1

The set C,,(X) has a natural Z,-vector space structure.
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Let X be a topological space.

A singular n-simplex is a continuous map o : A" — X.
The set of all singular n-simplices is denoted by .

By a singular n-chain we mean any finite formal linear
combination of singular n-simplices with coefficients from
Zs, and write

Cn<X) = {Z n;o;,n; € Z%Ui S En} .

i=1

The set C,,(X) has a natural Z,-vector space structure.

Co(X) = {Zmﬂm € ZQ,Pj S X}

1=1

40



Next we define the boundary operator
Op : Cp(X) — C,—1(X) on each simplex o by setting

n

0(0) = (—1)"0)acq>

q=0

with the convention oy = 0.

A1



Next we define the boundary operator
Op : Cp(X) — C,—1(X) on each simplex o by setting

n

On(o) = Z(_l)qalA<q>7

q=0

with the convention oy = 0.
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The elements of ker ¢,, are called cycles and the elements of
Imd, ., are called boundaries.
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The elements of ker ¢,, are called cycles and the elements of
Imd, ., are called boundaries.

The n-th homology space of X with coefficient in Z, is the
Zp-vector space

ker 6,
H,(X;Z9) := )
(X:22) Imd,, 11

44



The elements of ker ¢,, are called cycles and the elements of
Imd, ., are called boundaries.

The n-th homology space of X with coefficient in Z, is the
Zp-vector space

ker 6,

Imd, 1

The homology of X is the Zs-vector space

(X 7Zs) EBH,L (X 7Zs).

n>0
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The elements of ker ¢,, are called cycles and the elements of
Imd, ., are called boundaries.

The n-th homology space of X with coefficient in Z, is the
Zp-vector space

ker 6,

Imd, 1

The homology of X is the Zs-vector space

(X 7Zs) EBH,L (X 7Zs).

n>0

Every continuous closed curve ¢ : [0, 1] — X defines an
homology class [c] € Hi(X;Zs).
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The elements of ker ¢,, are called cycles and the elements of
Imd, ., are called boundaries.

The n-th homology space of X with coefficient in Z, is the
Zp-vector space

ker 6,

Imd, 1

The homology of X is the Zs-vector space

(X 7Zs) EBH,L (X 7Zs).

n>0

Every continuous closed curve ¢ : [0, 1] — X defines an
homology class [c] € H1(X;Zy). If X is pathwise
connected then Hy(X;Zs) =~ Zs.

A7



For every continuous map f : X — Y there is a natural
homomorphism

fo: Hy(X;Z9) — Hu(Y;Z3), néeN.

AR



For every continuous map f : X — Y there is a natural
homomorphism

fo: Hy(X;Z9) — Hu(Y;Z3), néeN.
The n-th cohomology space of X is
H"(M;Zs) := Hom(H,,(X;Zs),Zs).
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For every continuous map f : X — Y there is a natural
homomorphism

fo: Hy(X;Z9) — Hu(Y;Z3), néeN.
The n-th cohomology space of X is
H"(M;Zs) := Hom(H,,(X;Zs),Zs).

The cohomology space of X is

H*(M;Zy) := €D H"(M; Zy).

n>0
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For every continuous map f : X — Y there is a natural
homomorphism

fo: Hy(X;Z9) — Hu(Y;Z3), néeN.
The n-th cohomology space of X is
H"(M;Zs) := Hom(H,,(X;Zs),Zs).

The cohomology space of X is
H*(M;Zy) := €D H"(M; Zy).
n>0

There is a product on H*(M;Zy) which makes it into a
graded algebra

U HY(X; Zo)@H™(X; Zo) — H™™(X;Zy), (av, B) — aUB.

I
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Poincaré Duality
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Poincaré Duality




Fundamental class

Let M be a compact connected manifold. Then the
generator of H,(M;Z,) is called the fundamental class of
M and denoted by |M].
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Fundamental class

Let M be a compact connected manifold. Then the
generator of H,(M;Z,) is called the fundamental class of
M and denoted by |M].

Any closed connected g-dimensional submanifold Y C M
defines an element |Y| € H,(M;Z,) via the map

iw: Hy(Y; Zo) — Hy(M;Zs)
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Cohomology and homology of P"

Q@ For any 0 < ¢ <n, H,(P";Zy) = Z>.
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Cohomology and homology of P"

Q@ For any 0 < ¢ <n, H,(P";Zy) = Z>.

© Every ¢ + l-subspace of R"*! defines an embedding
S4 C S™ and an embedding P? C P" and |P?| is the
generator of H,(P";Z,).
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Cohomology and homology of P"

Q@ For any 0 < ¢ <n, H,(P";Zy) = Z>.

© Every ¢ + l-subspace of R"*! defines an embedding
S4 C S™ and an embedding P? C P" and |P?| is the
generator of H,(P";Z,).

© Denote by X = w(|P"!|) € H(P";Zs). Then for any
q, X7 is the generator of H?(P™;Zs) and hence

H*(PH;ZQ) = {Z tLXZfL S Zng’erl = 0} .

q=0
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Cohomology and homology of P"

Q@ For any 0 < ¢ <n, H,(P";Zy) = Z>.

© Every ¢ + l-subspace of R"*! defines an embedding
S4 C S™ and an embedding P? C P" and |P?| is the
generator of H,(P";Z,).

© Denote by X = w(|P"!|) € H(P";Zs). Then for any
q, X7 is the generator of H?(P™;Zs) and hence

H*(PH,ZQ) = {Z tLXZfL S Zng’erl = 0} .

q=0

o (X,|P!|) = 1.
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Cohomology and homology of P" x P"

Q For 0 < ¢q < 2n,

H, (P"xP"; Zs) = Vect {|P" x P°|,7 +s=¢q,0<r,s <n}.
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Cohomology and homology of P" x P"
Q For 0 < ¢q < 2n,

H,(P"xP";Zs) = Vect {|P" x P*|,r +s=¢,0 <r,s <n}.

Q@ Put Y = n(|P"! x P"|) € H'(P" x P"; Zy) and
Z =x(|P" x P 1) € H'(P" x P";Z,). Then

H*(P"xP"; Z,) —{ ST otuyezn Yyt = 7 = o}.

0<r,s<n
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Cohomology and homology of P" x P"
Q For 0 < ¢q < 2n,

H,(P"xP";Zs) = Vect {|P" x P*|,r +s=¢,0 <r,s <n}.

Q@ Put Y = n(|P"! x P"|) € H'(P" x P"; Zy) and
Z =x(|P" x P 1) € H'(P" x P";Z,). Then

H*(anpn; Zg) — { Z ttSYSZT,Yn+1 — Zn+1 _ 0} .

0<r,s<n

Q (V,|P' x {x}|) =1 and (Y, [{x} x P!|) =0
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Cohomology and homology of P" x P"
Q For 0 < ¢q < 2n,
H,(P"xP";Zs) = Vect {|P" x P*|,r +s=¢,0 <r,s <n}.

Q@ Put Y = n(|P"! x P"|) € H'(P" x P"; Zy) and
Z =x(|P" x P 1) € H'(P" x P";Z,). Then

H*(PnXPn; Zg) — { Z ttSYSZr,Yn+1 — Zn+1 _ 0} .

0<r,s<n

Q (V,|P' x {x}|) =1 and (Y, [{x} x P!|) =0
Q (Z,|P! x {x}|) =0. and (Z,|{*} x P}|) = 1.
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Proof of Hopt’s Theorem
Suppose that there exist a continuous odd map

g: 8" 1 x 81— §"1 and denote by
G : Pt x Pt — P! the corresponding map.
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Proof of Hopt’s Theorem

Suppose that there exist a continuous odd map
g:S" 1t x 8§t — 8§71 and denote by

G : Pt x Pt — P! the corresponding map.
The crucial step is that

GA(IP! x {+}]) = G.(|{*} x P'|) = [P].
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Proof of Hopt’s Theorem

Suppose that there exist a continuous odd map
g:S" 1t x 8§t — 8§71 and denote by

G : Pt x Pt — P! the corresponding map.
The crucial step is that

GA(IP! x {+}]) = G.(|{*} x P'|) = [P].

This is the consequence of that fact if w : [0,1] — S™~!
such that ¢(0) = —¢(1) then
v=go(cx {x}):]0,1] — S~ ! satisfies 7(0) = —y(1)
since ¢ is odd.
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Proof of Hopt’s Theorem

Suppose that there exist a continuous odd map
g:S" 1t x 8§t — 8§71 and denote by

G : Pt x Pt — P! the corresponding map.
The crucial step is that

GA(IP! x {+}]) = G.(|{*} x P'|) = [P].

This is the consequence of that fact if w : [0,1] — S™~!
such that ¢(0) = —¢(1) then
v=go(cx {x}):]0,1] — S~ ! satisfies 7(0) = —y(1)
since ¢ is odd.
Now

G'(X)=Y + Z
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Now since X" = (0 then

6K



Now since X" = ( then

n n—1

n! n!
Y+2)" = — Y171 = — Y17 = (
¥+2) ;}q!(n—Q)! ;q!(n—Q)!
This implies that for any 1 < ¢ <n —1, q!(+iq)! is even and
this implies that n = 2P. O
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Kervaire-Milnor Theorem

We give the needed material for a sketch of a proof of the
following theorem.
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Vector bundles over a topological space

Let X be a topological space. A vector bundle of rank n
over X is a topological space E together with a surjective
continuous map m : £ — X such that:
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Vector bundles over a topological space

Let X be a topological space. A vector bundle of rank n
over X is a topological space E together with a surjective
continuous map m : £ — X such that:
@ for any z € X, E, = 7~ () has a structure of
n-dimensional real vector space,
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Vector bundles over a topological space

Let X be a topological space. A vector bundle of rank n
over X is a topological space E together with a surjective
continuous map m : £ — X such that:

@ for any z € X, E, = 7~ () has a structure of
n-dimensional real vector space,

© for any x € X, there exists n sections
S1y...,8, : U —> E such that, for any y € U,
(51(y), ..., sn(y)) is a basis of E,.
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Vector bundles over a topological space

Let X be a topological space. A vector bundle of rank n
over X is a topological space E together with a surjective
continuous map 7 : £ — X such that:

Q for any x € X, E, = 7 '(z) has a structure of
n-dimensional real vector space,

@ for any x € X, there exists n sections
S1y...,8, : U —> E such that, for any y € U,
(51(y), ..., sn(y)) is a basis of E,.

74



A n-vector bundle 7 : E — X is called trivializable if it
admits n linearly independent global sections.
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A n-vector bundle 7 : E — X is called trivializable if it
admits n linearly independent global sections.
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Vector bundles over S™

Let 7 : E — S™ be a m-vector bundle over S™.

rard



Vector bundles over S™

Let 7 : E — S™ be a m-vector bundle over S™.
Denote by H* = {x,11 > 0} and H~ = {x,.1 <0}. We
have S" 1 = Ht N H™.
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Vector bundles over S™

Let 7 : E — S™ be a m-vector bundle over S™.

Denote by H* = {x,11 > 0} and H~ = {x,.1 <0}. We
have S" ' = H*NH".

E|p= is trivializable so there exists s - H* — F,
i=1,...,m such that for any y € Hi (sF(y))™, is a basis
of Ey.

79



Vector bundles over S™

Let 7 : E — S™ be a m-vector bundle over S™.

Denote by H* = {x,11 > 0} and H~ = {x,.1 <0}. We
have S" ! = H*NH".

E|p= is trivializable so there exists s - H* — F,
i=1,...,m such that for any y € Hi (sF(y))™, is a basis
of Ey.

We define a continuous fg : S 1 — GL(m) by

fe = P((sf )il (s7 (1)iZ)-
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Vector bundles over S™

Let 7 : E — S™ be a m-vector bundle over S™.

Denote by H* = {x,11 > 0} and H~ = {x,.1 <0}. We
have S" ! = H*NH".

E|p= is trivializable so there exists s - H* — F,
i=1,...,m such that for any y € Hi (sF(y))™, is a basis
of Ey.

We define a continuous fg : S 1 — GL(m) by

fe = P((sf )il (s7 (1)iZ)-

Conversely, any continuous map f : S~ ' — GL(m)
defines a m-vector bundle E; over S™.

1



Hopf vector bundles

Suppose that R™ carries a subdivision algebra structure.
Then the map

F:S"!'— GL(n,R), v+ F(x) =L,
is continuous and for any v € R" \ {0},

F,: 8" — ol gy
l|z.v|

is an homeomorphism.
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Hopf vector bundles

Suppose that R™ carries a subdivision algebra structure.
Then the map

F:S"!'— GL(n,R), v+ F(x) =L,
is continuous and for any v € R" \ {0},

F,: 8" — ol gy
l|z.v|

is an homeomorphism.
Thus

alF) = 1.

2



Hopf vector bundles

Suppose that R™ carries a subdivision algebra structure.
Then the map

F:S"!'— GL(n,R), v+ F(x) =L,
is continuous and for any v € R" \ {0},

F,: 8" — ol gy
l|z.v|

is an homeomorphism.
Thus

alF) = 1.

We denote by Er — S™ the associated vector bundle.
A



From the canonical division algebra structures on R”, C, H
and O we get four vector bundles

Hy — S', Ho — S?, Hy — S* and Hg — S®

known as Hopf’s vector bundles.
Note that Hr — S! is the M&bius strip.



Operations on vector bundles

Let X be a topological space and £ — X and F' — X
two vector bundles of rank n and m.
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Operations on vector bundles

Let X be a topological space and £ — X and F' — X
two vector bundles of rank n and m.

Q@ FEDF :=,cx(E: ®F,) — X is a m + n-vector
bundle.

Q7



Operations on vector bundles

Let X be a topological space and £ — X and F' — X
two vector bundles of rank n and m.

Q@ FEDF :=,cx(E: ®F,) — X is a m + n-vector
bundle.

Q E®F :=,cx(E: ®F,) — X is a mn-vector bundle.
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Operations on vector bundles

Let X be a topological space and £ — X and F' — X
two vector bundles of rank n and m.

Q@ FEDF :=,cx(E: ®F,) — X is a m + n-vector
bundle.

Q E®F :=,cx(E: ®F,) — X is a mn-vector bundle.

@ Let f:Y — X be continuous map. Then f*F — Y
is a n-vector bundle (pull-back) where

'E={(y,v) €Y x E, fy) =7(v)}.

[0



The ring of vector bundles KO(X)

Let X is a topological space. We denote by Vect(X) the set
of classes of isomorphism of vector bundles over X.

9()



The ring of vector bundles KO(X)

Let X is a topological space. We denote by Vect(X) the set
of classes of isomorphism of vector bundles over X.
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We define on Vect(X) x Vect(X) the equivalence relation ~
by

(E,F)~ (E'\F) <= 3G, Ea FFeG=FaFE &G.
Put

KO(X) = Vect(X) x Vect(X)/ ~ .

99



We define on Vect(X) x Vect(X) the equivalence relation ~
by

(E,F)~(F F')<= 3G, Ee FFeG=F®& E &G.
Put

KO(X) = Vect(X) x Vect(X)/ ~ .

03



For any continuous function f : X — Y the pull-back
defines an homomorphism of ring

F* KO(Y) —s KO(X).

o4



For any continuous function f : X — Y the pull-back
defines an homomorphism of ring

F* KO(Y) —s KO(X).

For any two vector bundles £ and F', we have
—[E, F] = [F, E]
and

[E,F]=[E,0]+[0,F] = F - E.

0]



Stiefel-Whitney classes

Axiom 1. To each vector bundle ¢ corresponds a sequence
of cohomology classes

wi(§) € H(B(£);Zy), i=0,1...,

called the Stiefel-Whitney classes of £. The class wq(&)
corresponds to the element 1 € H'(B(€);Z,) and w;(£) =0
for i > rank(¢).

(0TS



Stiefel-Whitney classes

Axiom 1. To each vector bundle ¢ corresponds a sequence
of cohomology classes

wi(§) € H(B(£);Zy), i=0,1...,

called the Stiefel-Whitney classes of £. The class wq(&)
corresponds to the element 1 € H'(B(€);Z,) and w;(£) =0
for i > rank(¢).

Axiom 2. Naturality. If f: B({) — B(n) is covered by
a bundle map from & to n then

wi(§) = frwi(n).

97



Axiom 3. The Whitney product theorem. If £ and 7
are two vector bundles over the same basis then

k

wp(EDdn) = Z w;(§) we—i(n).

=0

oK



Axiom 3. The Whitney product theorem. If £ and 7
are two vector bundles over the same basis then

k

wp(€ D) =Y wi(€)-wy—i(n).

=0

Axiom 4. For the line bundle v{ (M&bius strip) over the
circle P!, wy () # 0.
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Axiom 3. The Whitney product theorem. If £ and 7
are two vector bundles over the same basis then

wi(§ D) =Y wi(€)wi—i(n).

=0

Axiom 4. For the line bundle v{ (M&bius strip) over the
circle P!, wy () # 0.

The total Stiefel-Whitney class of ¢ is given by

w(l&) =14+w (&) +... +w,(§), n=rank(f).
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Axiom 3. The Whitney product theorem. If £ and 7
are two vector bundles over the same basis then

wi(§ D) =Y wi(€)wi—i(n).

=0

Axiom 4. For the line bundle v{ (M&bius strip) over the
circle P!, wy () # 0.

The total Stiefel-Whitney class of ¢ is given by
w&)=1+w (&) + ... +wy(§), n =rank(E).

The Whitney product theorem can be written

w(§©n) =w(§).w(n).

101



Consequences of the four axioms.
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Consequences of the four axioms.
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Consequences of the four axioms.
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Consequences of the four axioms.
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Let X be a topological space. Put

GX)={l+a+...+a;i+...;0; € H(X;Zy)}.
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Let X be a topological space. Put

GX)={l+a+...4+a+...;0 € H(X;Zs)}.
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The isomorphism between KO(S") and
KO(STHS)

We consider the cartezian product S™ x §™, the projections
m ST X 8" — 8™ my 0 5" x S™ — S™ and the axial
cross S™V S™ = {xp} x S"US" x {yo} C S™ x S™. We
collapse it to a point and S™ x S™ becomes S™.
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The isomorphism between KO(S") and
Ko(8n+8)

We consider the cartezian product S™ x §™, the projections
m ST X 8" — 8™ my 0 5" x S™ — S™ and the axial
cross S™V S™ = {xp} x S"US™ x {yo} C 5" x S™. We
collapse it to a point and S™ x S™ becomes S™.

From

S’n, \/ Sm i S’n X S?n p S7l+7n

we get an exact sequence

0 — KO(S5™™) 255 KO(S"x5™) 5 KO(S"VS™) — 0.
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The isomorphism between KO(S™) and
Ko(8n+8)
We consider the cartezian product S™ x §™, the projections
m ST X 8" — 8™ my 0 5" x S™ — S™ and the axial
cross S™V S™ = {xp} x S"US™ x {yo} C 5" x S™. We

collapse it to a point and S™ x S™ becomes S™.
From

Sny §m Ly gn o gm Ly gntm
we get an exact sequence
0— If(\é(S”*m) 7, RB(S”XS’”) AN I/(\é(S”vS””) — 0.
We have also
KO(S™) ™5 KO(S"xS™) and KO(S™) 25 KO(S"xS™)
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Given a € KO(S") and b € KO(S™) we form

a.b =7 (a).75(b) € KO(S™ x S™).
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Given a € KO(S") and b € KO(S™) we form
a.b =7 (a).75(b) € KO(S™ x S™).

Since i*(a.b) = 0 there exists an unique element
aobe KO(S"™™) such that p*(a o b) = a.b. So we have
defined a bilinear map

KO(S™) x KO(S™) — KO(S™™), (a,b) — aob.
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Given a € KO(S") and b € KO(S™) we form
a.b =7 (a).75(b) € KO(S™ x S™).

Since i*(a.b) = 0 there exists an unique element
aobe KO(S"™™) such that p*(a o b) = a.b. So we have
defined a bilinear map

KO(S™) x KO(S™) — KO(S™™), (a,b) — aob.
So the isomorphism

KO(5") —s KO(S™"®)
is given by

ar— ao(ls, Hy) =ao (Hg — I3).
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End of the proof of Kervaire-Milnor

118



End of the proof of Kervaire-Milnor

The end of the proof is based on the following
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Proof of the proposition

If n=3,5,6 or 7 it is a consequence of Bott’s periodicity
theorem.
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Proof of the proposition

If n=3,5,6 or 7 it is a consequence of Bott’s periodicity

theorem. -
If n =m+ 8. For a € KO(S™), we have

a = (F—F)o(Hg—Is)
= FoHgpg—Folg—FoHg+ Folg,

and the result follows from a formula of w applied to a
tensor product.
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