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Proposition.

The topology of a Lie group G has the following properties:

1 G is a locally compact space, i.e., each neighborhood of an element of g contains a
compact one.

2 The identity component G0 of G is an open normal subgroup which coincides with
the arc-component of 1.

3 For a subgroup H of G the following are equivalent:

1 H is a neighborhood of 1.
2 H is open.
3 H is open and closed.

4 H contains G0.

4 If the set π0(G) := G/G0 of connected components of G is countable, then, in

addition, the following statements hold:

1 G is countable at infinity, i.e., a countable union of compact subsets.
2 For each 1-neighborhood U in G there exists a sequence (gn) in G

G =
⋃

n gnU.
3 G is second countable, i.e., the topology of G has a countable basis.

4 If (Ui)i∈I is a pairwise disjoint collection of open subsets of G, then I is

countable.
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.
1 Product formula:

expG(x + y) = lim
k−→∞

[
expG

(
x

k

)
expG

(
y

k

)]k

2 Commutator formula:

expG([x, y]) = lim
k−→∞

[
expG

(
x

k

)
expG

(
y

k

)
expG

(
−
x

k

)
expG

(
−
y

k

)]k2

3 The Adjoint formula:

AdexpG(x) = eadx .
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Baker-Campbell-Dynkin-Hausdorff Formula

.
If G is a Lie group, then there exists a convex
0-neighborhood V ⊂ L(G) such that for x, y ∈ V the
Hausdorff series

x ∗ y = x +
∑

k,m>0,pi+qi>0

(−1)k

(k + 1)(q1 + . . . + qk + 1)

(adx)p1 (ady)
q1 . . . (adx)pk (ady)

qk (adx)m

p1!q1! . . . pk!qk!m!
y

= x + y +
1

2
[x, y] +

1

12
([x, [x, y]]− [y, [x, y]]) + . . .

converges and satisfies

expG(x ∗ y) = expG(x) expG(y).
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Closed Subgroup Theorem
.
Let G be a Lie group and H ⊂ G a closed subgroup. We
define the set

Le(H) := {x ∈ L(G) : expG(Rx) ⊂ H}.

We deduce from the product formula and the commutator
formula that Le(H) is a Lie subalgebra.
The key point is that if E ⊂ L(G) be a vector subspace
complementing Le(H), then there exists a 0-neighborhood
UE ⊂ E such that

H ∩ expG(UE) = {1}.
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Theorem. (Closed Subgroup Theorem)
Let H be a closed subgroup of the Lie group G. Then the
following assertions hold:

1 Each 0-neighborhood in Le(H) contains an open
0-neighborhood V such that expG : V −→ expG(V ) is a
homeomorphism onto an open subset of H.

2 H is a submanifold of G and mH := (mG)|H×H induces a
Lie group structure on H such that the inclusion map
iH : H −→ G is a morphism of Lie groups for which
L(iH) : L(H) −→ L(G) is an isomorphism of L(H) onto
Le(H).

3 Let E ⊂ L(G) be a vector space complement of Le(H).
Then there exists an open 0-neighborhood VE ∈ E such that

φ : VE ×H −→ expG(VE)H, (x, h) 7→ expG(x)h

is a diffeomorphism onto an open subset of G.7



Characterization of closed subgroup

Proposition.
A subgroup of a Lie group is a Lie group with respect to the
induced topology if and only if it is closed.
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Covering of Lie groups.

Proposition.
Let φ : G −→ H be a continuous homomorphism of
topological groups which is a covering map. If G or H is a
Lie group, then the other group carries a unique Lie group
structure for which φ is a morphism of Lie groups which is
a local diffeomorphism.

Proposition.

If G is a connected Lie group and qG : G̃ −→ G its
universal covering space, then G̃ carries a unique Lie group
structure for which qG is a smooth covering map. We call
this Lie group the simply connected covering group of G.
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Theorem. (Integral Subgroup Theorem)
Let G be a Lie group with Lie algebra L(G) and h ⊂ L(G) a Lie subalgebra. Then the
subgroup H := 〈expG(h)〉 of G generated by expG(h) carries a Lie group structure with the
following properties:

1 There exists an open 0-neighborhood W ⊂ h on which the Hausdorff series
converges, and expG : h −→ H maps W diffeomorphicly onto its open image in H
and satisfies expG(x ∗ y) = expG(x) expG(y) for x, y ∈ W .

2 The inclusion iH : H −→ G is a smooth morphism of Lie groups and
L(iH ) : L(H) −→ h an isomorphism of Lie algebras. These two properties
determine the Lie group structure on H uniquely.

3 If H ⊂ H1 for some subgroup H1 for which H1/H is countable, then
h = {x ∈ L(G) : expG(Rx) ⊂ H1}. In particular,

h = L
e
(H) := {x ∈ L(G) : expG(Rx) ⊂ H}.

4 H is connected.

5 H is closed in G if and only if iH is a topological embedding.

11



Definition.
Let G be a Lie group. An integral subgroup H of G is a
subgroup that is generated by exp h for a subalgebra h of the
Lie algebra g of G.

The Integral Subgroup Theorem implies in particular that
each Lie subalgebra h of the Lie algebra L(G) of a Lie
group G is integrable in the sense that it is the Lie algebra
of some Lie group H.
Combining this with Ado’s Theorem on the existence of
faithful linear representations of a Lie algebra, we obtain
one of the cornerstones of the theory of Lie groups:

Theorem. (Lie’s Third Theorem)
Each finite-dimensional Lie algebra g is the Lie algebra of a
connected Lie group G.
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Connected Lie groups with the same universal
covering.

Theorem.

Let G be a connected Lie group and qG : G̃ −→ G a
universal covering homomorphism. Then ker qGa ∼ π1(G)

is a discrete central subgroup and G ' G̃/ ker qG .
Moreover, for any discrete central subgroup Γ ⊂ G̃, the
group G̃/Γ is a connected Lie group with the same universal
covering group as G. We thus obtain a bijection from the
set of all Aut(G̃)-orbits in the set of discrete central
subgroups of G̃ onto the set of isomorphy classes of
connected Lie groups whose universal covering is
isomorphic to G̃.
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Connected Abelian Lie groups.

Theorem.
Any abelian connected Lie group of dimension n is
isomorphic to Tk × Rn−k.
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Monodromy Principle.

Proposition. (Monodromy Principle)
Let G be a connected simply connected Lie group and H a
group. Let V be an open symmetric connected identity
neighborhood in G and f : V −→ H a function with

f(xy) = f(x)f(y) for x, y, xy ∈ V.

Then there exists a unique group homomorphism extending
f . If, in addition, H is a Lie group and f is smooth, then
its extension is also smooth.
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Theorem. (Integrability Theorem for Lie Algebra
Homomorphisms)
Let G be a connected simply connected Lie group, H
a Lie group and φ : L(G) −→ L(H) a Lie algebra
morphism. Then there exists a unique morphism
Φ : G −→ H with L(Φ) = ψ.

18



The structure of Lie group of Aut(G) when G is
1-connected

We recall that a Lie group G is called 1-connected if it is
connected and simply connected.

Theorem.
If G is a 1-connected Lie group with Lie algebra g, then the
map

L : Aut(G) −→ Aut(g)

is an isomorphism of groups. As a closed subgroup of
GL(g), the group Aut(g) carries a natural Lie group
structure, and we endow Aut(G) with the Lie group
structure for which L is an isomorphism of Lie groups.
Then the action of Aut(G) on G is smooth.
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Classification of Lie connected Lie groups with
given Lie algebra.

Theorem.
Two connected Lie groups G and H have isomorphic Lie
algebras if and only if their universal covering groups G̃ and
H̃ are isomorphic

Theorem.

Let G be a connected Lie group and q : G̃ −→ G the
universal covering morphism of connected Lie groups. Then
for each discrete central subgroup Γ ⊂ G̃, the group G/Γ is
a connected Lie group with L(G/Γ) = L(G) and, conversely,
each Lie group with the same Lie algebra as G is isomorphic
to some quotient G/Γ and G/Γ1 ' G/Γ2 if and only if
there exits φ ∈ Aut(G̃) ' Aut(g) such that φ(Γ1) = Γ2.
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An algorithm for determining the connected Lie
groups with a given Lie algebra g.

1 Find the 1-connected Lie group G̃ such that L(G̃) = g.
2 Determine the center Z(G̃) and Aut(G̃) ' Aut(g).
3 Find the set D of discrete subgroups of Z(G̃) and

D/Aut(G̃).
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Yamabe’s Theorem.

Theorem. (Yamabe)
A subgroup H of a connected Lie group G is arcwise
connected if and only if it is an integral subgroup. More
precisely, H is of the form 〈expG(h)〉 for the Lie subalgebra
h of L(G), determined by

h = {x ∈ L(G) : expG(Rx) ⊂ H}.
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Jordan–Hölder series of a Lie algebra

.
Let g be a Lie algebra. There exists a sequence

a0 = 0 ⊂ a1 ⊂ ... ⊂ ak = g

of subalgebras of g for which aj−1 is an ideal in aj and the
quotient aj/aj−1 is either one-dimensional or simple. Such
a series is called Jordan–Hölder series of g.
In particular, we have

g ' ((. . . ((a1 o (a2/a1)) o (a3/a2)) . . .) o (ak/ak−1)) .

24



Jordan–Hölder series of a Lie algebra

.
Let g be a Lie algebra. There exists a sequence

a0 = 0 ⊂ a1 ⊂ ... ⊂ ak = g

of subalgebras of g for which aj−1 is an ideal in aj and the
quotient aj/aj−1 is either one-dimensional or simple. Such
a series is called Jordan–Hölder series of g.
In particular, we have

g ' ((. . . ((a1 o (a2/a1)) o (a3/a2)) . . .) o (ak/ak−1)) .

25



Proposition.
Let G, H and N be simply connected Lie groups with the
Lie algebras g, h and n. Suppose that g ' noβ h is a
semidirect sum of the two subalgebras n and h. Then there
is a unique smooth action γ : H −→ Aut(N) ' Aut(n) with
L(γ) = β : h −→ dern and the two natural homomorphisms
iH : H −→ G, iN : N −→ G combine to an isomorphism

µ : N oγ H −→ G, (n, h) 7→ iN(n)iH(h).
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Theorem. (Smooth Splitting Theorem)
Let G be a simply connected Lie group and N ⊂ G be a
normal integral subgroup. Then N is closed and there exists
a smooth section σ : G/N −→ G, so that the map
G/N ×N −→ G, (p, n) 7→ σ(p)n is a diffeomorphism, but
in general not an isomorphism of Lie groups. In particular,
the groups N and G/N are simply connected.
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Proof.
By considering a Jordan-Hölder series of L(G)/L(N), there
exists an increasing sequence of subalgebras

L(N) = g0 ⊂ g1 ⊂ . . . ⊂ gn = L(G).

such that gi is an ideal in gi+1, and the quotients
qi := gi/gi−1 are either isomorphic to R or simple. Using
Levi’s Theorem we conclude that gi ' gi−1 o qi for
i = 1, ..., n. So

G ' ((. . . ((G(g0) oG(q1)) oG(q2)) . . .) oG(qn)) .
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continued.
This implies in particular that N = 〈expG L(N)〉 ' G(g0) is
a closed simply connected subgroup of G. In particular, we
obtain diffeomorphisms

G −→ N×G(q1)×. . .×G(qn) and G/N −→ G(q1)×. . .×G(qn).

Hence the normal subgroup N is closed and there exists a
smooth section σ : G/N −→ G. Finally, the existence of a
diffeomorphism G/N ×N −→ G implies that N and G/N
are connected and simply connected.
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Corollary.
Let G be a simply connected Lie group and
N = expG(rad(g)). Then N is a normal subgroup of G,
G/N is semi-simple and G is diffeomorphic as a manifold
to G/N ×N .
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Commutators, Nilpotent and solvable Lie groups

Definition.
Let G be a group. For two subgroups A,B ⊂ G, we define
(A,B) as the subgroup generated by the commutators
xyx−1y−1 for x ∈ A and y ∈ B. If we set

C1(G) := G and Cn(G) := (G,Cn−1(G)) for n > 1,

then (Cn(G))n∈N∗ is called the lower central series of G.
If we set D0(G) := G and Dn(G) := (Dn−1(G), Dn−1(G)),
then the sequence (Dn(G))n∈N is called the derived series of
G.
The subgroup C2(G) = D1(G) is called the commutator
subgroup of G and often denoted by G′.
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Definition.
1 A Lie group G is called abelian if C2(G) = {1}.
2 A Lie group G is called nilpotent if there exists n ∈ N∗

such that Cn(G) = {1}.
3 A Lie group G is called solvable if there exists n ∈ N

such that Dn(G) = {1}.
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Lemma.
If A,B ⊂ G are integral subgroups with the Lie algebras a
and b, then (A,B) also is an integral subgroup and its Lie
algebra contains [a, b].

Proof.
We have (A,B) =

⋃
n∈N T

n where T = S ∪ S−1 and

S = {xyx−1y−1;x ∈ A, y ∈ B}.

This implies that (A,B) is arcwise connected and according
to Yamabe’s Theorem it is an integral Lie subgroup with
its Lie algebra

h = {x ∈ g, expG(Rx) ⊂ (A,B)}.
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Proof.
Let a ∈ a and b ∈ b. Th curve

γ(t) = expG(a) expG(tb) expG(−a) expG(−tb)
= expG(a) expG(−etadb(a)) ∈ (A,B),

satisfies

γ′(0) = (eada − Idg)b ∈ h.

So for any s ∈ R, (esada − Idg)b ∈ h and hence [a, b] ∈ h.
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Proposition.
Let A,B and C be integral subgroups of the connected Lie
group G with Lie algebras a, b and c, satisfying

[a, c] ⊂ c, [b, c] ⊂ c and [a, b] ⊂ c.

Then (A,B) ⊂ C and if, in addition, [a, b] = c, then
(A,B) = C. In particular, (A,B) = expG([a, b]) and
L(A,B) = [a, b].

Proof.
a + b + c is a subalgebra and we suppose that
L(G) = a + b + c.
Then c is an ideal and hence C is a normal subgroup.
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Proof.
Suppose first that G is simply connected. Then C is closed
normal subgroup and q : G −→ G/C is morphism of Lie
groups. Then

[L(q)a, L(q)b] ⊂ L(q)[a, b] = 0.

Thus [L(q)a, L(q)b] = 0 hence q(A) and q(B) commute and
hence q(A,B) = 0 so (A,B) ⊂ C.
Moreover, if [a, b] = c then c ⊂ L(A,B) and hence
C = (A,B).
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Proposition.
For any connected Lie group G with Lie algebra g, the
groups Dn(G) in the derived series and Cn(G) in the lower
central series are normal integral subgroups with the Lie
algebras

L(Dn(G)) = Dn(g) and L(Cn(G)) = Cn(g) for n ∈ N.
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Since an integral subgroup is trivial if and only if its Lie
algebra is, we derive the following important theorem
connecting nilpotency and solvability of Lie groups and Lie
algebras.

Theorem.
A connected Lie group G is abelian, nilpotent, resp.,
solvable, if and only if its Lie algebra is abelian, nilpotent,
resp., solvable.
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Nilpotent Lie Groups

Theorem. ( Local-Global Theorem for Nilpotent Lie
Groups)
If g is a nilpotent Lie algebra, then the Dynkin series
defines a polynomial map

∗ : g× g −→ g, (x, y) 7→ x+ y +
1

2
[x, y]+

1

12
([x, [x, y]]− [y, [x, y]]) + . . .

We thus obtain a Lie group structure (g, ∗) with expg = Idg

and L(g, ∗) = g.
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Corollary.
Let G be a connected nilpotent Lie group with Lie algebra g.
Then g is nilpotent and expG : (g, ∗) −→ G is the universal
covering morphism of G. In particular, the exponential
function of G is surjective.

Proof.
(g, ∗) is a 1-connected Lie group with Lie algebra g. Let
qG : (g, ∗) −→ G be the unique morphism of Lie groups
with L(qG) = Idg. Then

qG(x) = qG(exp(g,∗)(x)) = expG(L(qG)x) = expG(x)

implies that expG = qG.
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.
We know already that any connected Lie group G is
isomorphic to G̃/Γ, where Γ is a discrete central subgroup
of the center of universal covering group of G. To
understand the structure of connected nilpotent Lie groups,
we therefore need more information on the center of the
simply connected groups (g, ∗).
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Lemma.
If g is a nilpotent Lie algebra, then the center of the group
(g, ∗) coincides with the center z(g) of the Lie algebra g.

Proof.
The inclusion z(g) ⊂ Z(g, ∗) is immediate. If, conversely,
z ∈ Z(g, ∗), then idg = Ad(exp(g,∗) z) = eadz, and thus,
adz = 0 since adz is nilpotent and the exponential function
is injective on the set of nilpotent elements of End(g).
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Proposition.
If G is a connected nilpotent Lie group with Lie algebra g,
then Z(G) = expG(z(g)) is connected.

Proof.
Since expG : (g, ∗) −→ G is the universal covering
morphism of G, we obtain

Z(G) = ker AdG = expG(ker Ad(g,∗)) = expG(z(g)).
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Theorem. (Structure Theorem for Connected Nilpotent Lie
Groups)
Let G be a connected nilpotent Lie group with Lie algebra g.
Then there exists a discrete subgroup Γ ⊂ (z(g),+) with
G ' (g, ∗)/Γ. In particular, G is diffeomorphic to the
abelian Lie group g/Γ. Moreover, t := spanΓ ⊂ z(g) is a
central Lie subalgebra for which T := expG(t) is a torus,
and G is diffeomorphic to the product manifold (G/T )× T .

Corollary.
Any compact connected nilpotent Lie group is abelian.
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Solvable Lie groups

.
The structure of solvable Lie groups is substantially more
complicated than the structure of the nilpotent ones. In
particular, the exponential function of a solvable Lie group
need not be surjective. Other difficulties arise from the fact
that the center of a connected solvable Lie group is not
connected.
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Theorem.
If G is a 1-connected solvable Lie group, then there exists a
basis (x1, . . . , xn) for its Lie algebra g such that the map

Φ : Rn −→ G, (t1, . . . , tn) 7→
n∏
i=1

expG(tixi)

is a diffeomorphism, the subgroups Rj := expG(Rxj) of G
are closed, and

G ' ((. . . ((R1 oR2) oR3) . . .) oRn) .
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Proof.
First, we observe that there exist subalgebras

g0 = 0 ⊂ g1 ⊂ g2 ⊂ . . . ⊂ gn = g

with gi is an ideal in gi+1 and such that gi+1/gi ' R. Then
we pick xi ∈ gi \ gi−1 and obtain

G ' ((. . . ((Rx1 oRx2) oRx3) . . .) oRxn) .
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Theorem.
Any integral subgroup H of a simply connected solvable Lie
group G is closed and simply connected and G/H is
diffeomorphic to RdimG/H .
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Compact Lie groups

Definition.
A Lie algebra g is called compact if there exists a positive
definite, invariant and symmetric bilinear form on g.
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Lemma.
1 Every subalgebra of a compact Lie algebra is compact.
2 A direct sum g =

∑n
i=1 gi of Lie algebras gi is compact

if and only if all the gi are compact.
3 If a ⊂ g is an ideal, then the orthogonal complement

a⊥ with respect to any invariant scalar product is also
an ideal, and g = a⊕ a⊥ is a Lie algebra direct sum.

4 Every compact Lie algebra is reductive.
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Definition.
Let g be a Lie algebra, and let ad : g −→ der(g) be the
adjoint representation. For a subalgebra a ⊂ g, we set

Inng(a) := 〈ead(a)〉 ⊂ Aut(g) and INNg(a) := Inng(a).

We also write Inn(g) := Inng(g) and recall that
L(Aut(g)) = der(g)
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Proposition.
Let g be a finite-dimensional Lie algebra. Then the
following are equivalent:

1 There exists a compact Lie group G with L(G) = g.
2 INNg(g) ⊂ Aut(g) is compact.
3 g is compact.

62



Definition.
Let G and N be Lie groups and α : G −→ Aut(N) be a
homomorphism defining a smooth action of G on N .
A smooth function f : G −→ N is called a 1-cocycle or a
crossed homomorphism with respect to α if

f(ab) = f(a).α(a)(f(b))

for a, b ∈ G. Note that this condition is equivalent to

(f, idG) : G −→ N ×α G

being a morphism of Lie groups.
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Lemma.
Let G be a Lie group and N a closed normal subgroup.
Then G acts smoothly on N by α(g)(n) = gng−1, and the
following are equivalent:

1 The short exact sequence
1 −→ N −→ G −→ G/N −→ 1 of Lie groups splits.

2 There exists a closed subgroup H ⊂ G for which the
multiplication map

µ : N ×α H −→ G, (n, h) 7→ nh

is an isomorphism of Lie groups.
3 There exists a 1-cocycle f : G −→ N with f(n) = n−1

for n ∈ N .
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Lemma.
Let V be a finite-dimensional vector space and G a Lie
group. Further, let H ⊂ G be a closed subgroup,
f : G −→ V be a compactly supported smooth function and
µH be a left Haar measure on H. Then the function

F : G −→ V, F (a) :=

∫
H

f(ah)dµH(h)

is smooth.
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Lemma.
Let G be a Lie group and H ⊂ G a closed subgroup for
which G/H is compact. Then there is a nonnegative smooth
function ϕ : G −→ R with compact support such that∫

H

ϕ(ah)dµH(h) = 1, for all a ∈ G,

where µH is left invariant Haar measure on H.
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Remark.
The function ϕ in the preceding lemma can be used to define
for each finite-dimensional vector space V a projection

P : C∞(G, V ) −→ C∞(G, V )H ,

P (f)(a) :=

∫
H

ϕ(ah)f(ah)dµH(h),

where C∞(G, V )H denotes the subspace of all smooth
functions f : G −→ V which are constant on the H-left
cosets, so that they correspond to smooth functions
f : G/H −→ V via f(aH) := f(a).
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Lemma.
Let G be a Lie group and N ⊂ G a closed normal sub-
group for which G/N is compact. Suppose that
ρ : G −→ GL(V ) is a finite-dimensional smooth
representation of G with N ⊂ ker ρ and f : N −→ V is a
smooth homomorphism which is G-equivariant, i.e.,

f(ana−1) = ρ(a)(f(n)) for a ∈ G, n ∈ N.

Then there exists a 1-cocycle f ∗ : G −→ V with respect to ρ
extending f .

68



Theorem. (Splitting Theorem)
Let G be a Lie group and V ⊂ G be a normal vector
subgroup such that G/V is compact. Then there exists a
compact subgroup K ⊂ G such that G ' V oK.

Lemma. (Torus Splitting Lemma)
Let T be a torus and A ⊂ T be a closed connected subgroup.
Then there is a homomorphism f : T −→ A with f|A = idA.
This implies in particular, that for the closed subgroup
B := ker f , the multiplication map

φ : A×B −→ T, (a, b) 7→ ab

is an isomorphism of Lie groups with inverse
φ−1(t) = (f(t), f(t)−1t).
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Definition.
We call a connected Lie group G semisimple, resp., simple
if its Lie algebra L(G) is semisimple, resp., simple.

Lemma.
Let G be a connected locally compact group and D ⊂ G a
discrete central subgroup such that G/D is compact and the
commutator group is dense in G/D. Then D is finite and
G is compact.

Theorem. (Weyl’s theorem on Lie groups with simple
compact Lie algebra)
If G is a connected semisimple Lie group with compact Lie
algebra, then G is compact and Z(G) is finite.
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Definition.
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Theorem. (Structure Theorem for Groups with Compact
Lie Algebra)

1 Every connected Lie group G with compact Lie algebra
is a direct product of a vector group V and a uniquely
determined maximal compact group K of G which
contains all other compact subgroups.

2 If k = z(k)⊕ k1 ⊕ . . .⊕ km is the decomposition of the
reductive Lie algebra k := L(K) into its center and
simple ideals, then the corresponding integral subgroups
Z(K)0 and K1, . . . , Km are compact, and the
multiplication map

φ : Z(K)0×K1×. . .×Km −→ K, (z, k1, ..., km) 7→ zk1 . . . km

is a covering morphism of Lie groups with finite
kernel.

3 The commutator subgroup G′ of G is compact.
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Corollary.
Let G be a Lie group with finitely many connected
components and L(G) compact. Then there exists a compact
subgroup K and a vector group V with G ' V oK.
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Maximal Tori in Compact Lie Groups

Lemma.
Let g be a compact Lie algebra.

1 A subalgebra t ⊂ g is a Cartan subalgebra if and only if
it is maximal abelian.

2 For any such subalgebra t of g we have g = Inn(g)t,
i.e., each element is conjugate to an element of t. (c)
Any other Cartan subalgebra of g is conjugate under
Inn(g) to t.
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Theorem. (Main Theorem on Maximal Tori)
For a compact connected Lie group G, the following
assertions hold:

1 A subalgebra t ⊂ g is maximal abelian if and only if it
is the Lie algebra of a maximal torus of G.

2 For two maximal tori T and T0, there exists a a ∈ G
with aTa−1 = T0.

3 Every element of G is contained in a maximal torus.
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Corollary.
The exponential function of a connected Lie group with
compact Lie algebra is surjective.

Corollary.
The center of a connected compact Lie group is the
intersection of all maximal tori.

Corollary.
Let G be a compact connected Lie group and a ∈ G. Then a
belongs to the connected component ZG(a)0 of its centralizer
ZG(a). Moreover, ZG(a)0 is the union of all maximal tori
of G containing a.
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Theorem. (Hofmann–Scheerer Splitting Theorem)
Let G be a connected compact Lie group and G′ be its
commutator group. Then there exists a torus B ⊂ G with
G ' G′ oB.

Corollary.
For a compact connected Lie group G with dimZ(G) = r,

π1(G) ' Zr × π1(G′)

where π1(G′) is finite.
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Centralizers of Tori and the Weyl Group

Lemma.
If G is a compact abelian Lie group such that G/G0 is cyclic,
then G contains a dense cyclic subsemigroup.

Theorem.
Let G be a compact connected Lie group, T ⊂ G a torus, and
a ∈ ZG(T ). Then there exists a torus T0 ∈ G containing a and
T .

Corollary.
Let G be a compact connected Lie group and T a torus in G.

1 The centralizer ZG(T ) of T in G is connected.

2 if T is a maximal torus, then ZG(T ) = T , i.e., maximal
tori are maximal abelian.
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Definition.
Let G be a compact connected Lie group and T a maximal
torus in G. Then the group
W (G, T ) := NG(T )/ZG(T ) = NG(T )/T is called the
analytic Weyl group associated with (G, T ).

Proposition.
Let G be a compact connected Lie group and T ⊂ G a
maximal torus.

1 If t1, t2 ∈ T are conjugate under G, then there exists a
g ∈ NG(T ) such that gt1g−1 = t2.

2 The set of conjugacy classes of G is parameterized by
the set T/W (G, T ) of W (G, T )-orbits in T .

3 A continuous function f : T −→ C extends to a
continuous function F : G −→ C invariant under
conjugation if and only if it is W (G, T )-invariant.
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Theorem. (Linearity Theorem for Compact Lie Groups)
Each compact Lie group K has a faithful finite-dimensional
unitary representation. So each compact Lie group is
isomorphic to a matrix group.
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