T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Morphing of Hyperbolic Closed Curves

T. Ahanchaou A. Ikemakhen,

Cadi-Ayyad University, Faculty of Science and Technology, Marrakesh, Morocco

24 novembre 2021

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Motivation

• **Hyperrogue games :** This game is developed on a non-Euclidean space. Namely, the Poincaré disk model.

Motivation

Closed Curves T. Ahanchaou A. Ikemakhen.

Morphing of Hyperbolic

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

• Shape Morphing (or shape blending) is a special effect in motion pictures and animations that changes (or morphs) one shape into another through a continuous transition.

Motivation

Closed Curves T. Ahanchaou A. Ikemakhen.

Morphing of Hyperbolic

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

- Shape Morphing (or shape blending) is a special effect in motion pictures and animations that changes (or morphs) one shape into another through a continuous transition.
- Morphing has wide practical use in areas such as computer graphics, animation and modeling.

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

• The blending between two closed curves plays an important role in the area of generation of animation .

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for a hyperbolic polygon

Algorithm

Results

Conclusion

- The blending between two closed curves plays an important role in the area of generation of animation .
- Morphing on surfaces is another concept of morphing.

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

- Closing condition for hyperbolic polygon
- Algorithm
- Results
- Conclusion

- The blending between two closed curves plays an important role in the area of generation of animation .
- Morphing on surfaces is another concept of morphing. The source and target closed curves are given on the surface and the intermediate curves must
 - 1 stay on the surface,

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

- Closing condition for hyperbolic polygon
- Algorithm
- Results
- Conclusion

- The blending between two closed curves plays an important role in the area of generation of animation .
- Morphing on surfaces is another concept of morphing. The source and target closed curves are given on the surface and the intermediate curves must
 - 1 stay on the surface,
 - **2** be closed.

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

- The blending between two closed curves plays an important role in the area of generation of animation .
- Morphing on surfaces is another concept of morphing. The source and target closed curves are given on the surface and the intermediate curves must
 - 1 stay on the surface,
 - 2 be closed.

In this talk, we deal with morphing of closed curves on Poincaré disk model, and we will answer to these requirements.

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

• A closed C²-curve γ can be approximate by an inscribed polygon P .

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

- A closed C²-curve γ can be approximate by an inscribed polygon P .
- and the geodesic curvature of σ at a vertex p can be approximate by the discrete geodesic curvature of P at p :

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

$$\kappa(p) = \lim_{\substack{z_1, z_2 \rightarrow p \\ z_1, z_2 \in C}} \frac{2 \ \delta}{d(z_1, p) + d(p, z_2)}.$$

So in practice we manipulate polygons (or discrete curves) instead of curves.

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for a hyperbolic polygon

Algorithm

Results

Conclusion

Related work : planar and spherical morphing closed curves

Planar case

• Exterior angles-based blending method : [Sederberg& Gao& Wang & Mu; 1993] .

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for a hyperbolic polygon

Algorithm

Results

Conclusion

Related work : planar and spherical morphing closed curves

Planar case

- Exterior angles-based blending method : [Sederberg& Gao& Wang & Mu; 1993] .
- Curvature-based blending method :
 - [Surazhsky & Elber; 2002] .
 - [Saba & Schneider & Hormann & Scateni; 2014]

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for a hyperbolic polygon

Algorithm

Results

Conclusion

Related work : planar and spherical morphing closed curves

Planar case

- Exterior angles-based blending method : [Sederberg& Gao& Wang & Mu; 1993] .
- Curvature-based blending method :
 - [Surazhsky & Elber; 2002] .
 - [Saba & Schneider & Hormann & Scateni; 2014]
- Curvature flow-based blending method :
 - [Crane & Pinkall & Schröder; 2013]
 - [Hirano & Watanabe & Ishikawa; 2017].

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

- Closing condition for a hyperbolic polygon
- Algorithm
- Results
- Conclusion

Related work : planar and spherical morphing closed curves

Planar case

- Exterior angles-based blending method : [Sederberg& Gao& Wang & Mu; 1993] .
- Curvature-based blending method :
 - [Surazhsky & Elber; 2002] .
 - [Saba & Schneider & Hormann & Scateni; 2014]
- Curvature flow-based blending method :
 - [Crane & Pinkall & Schröder; 2013]
 - [Hirano & Watanabe & Ishikawa; 2017].

Spherical case

• [Ikemakhen & Bellaihou & Ahanchaou; 2021]

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

The Poincaré disc model

The Poincaré disc is the open unit disc $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$, where

• Boundary is represented by the circle at infinity.

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

The Poincaré disc model

The Poincaré disc is the open unit disc $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$, where

- Boundary is represented by the circle at infinity.
- Riemannian metric :

$$g = 4 \frac{\mid dz \mid^2}{(1 - \mid z \mid^2)^2}$$

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

- Closing condition for hyperbolic polygon
- Algorithm
- Results
- Conclusion

The Poincaré disc model

The Poincaré disc is the open unit disc $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$, where

- Boundary is represented by the circle at infinity.
- Riemannian metric :

$$g = 4 \frac{\mid dz \mid^2}{(1 - \mid z \mid^2)^2}$$

• Geodesics : line segments through the origin and the circular arcs that intersect the boundary orthogonally.

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

• Hyperbolic distance :

$$\cosh(d(z_1, z_2)) = 1 + rac{\mid z_1 - z_2 \mid^2}{(1 - \mid z_1 \mid^2)(1 - \mid z_2 \mid^2)}.$$

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

• Hyperbolic distance :

$$\cosh \left(d \left(z_1, z_2
ight)
ight) = 1 + rac{\mid z_1 - z_2 \mid^2}{(1 - \mid z_1 \mid^2)(1 - \mid z_2 \mid^2)}.$$

• $\alpha + \beta + \theta = \pi - \text{area}$.

Hyperbolic triangle T

T. Ahanchaou A. Ikemakhen.

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithn

Results

Conclusion

Mobïus Transformations

$$SU(1,1):=\left\{ \left(egin{array}{cc} a & b \ ar{b} & ar{a} \end{array}
ight) \mid a,b\in\mathbb{C}\mid aar{a}-bar{b}=1
ight\}.$$

The Mobius group $PSU(1,1) := SU(1,1)/\pm I$ acts transitively on the Poincaré disc $\mathbb D$:

$$\begin{array}{rcl} \rho & : & \textit{PSU}(1,1) \times \mathbb{D} & \to & \mathbb{D}, \\ & & \left(\begin{pmatrix} a & b \\ \overline{b} & \overline{a} \end{pmatrix}, z \right) & \mapsto & \frac{az + \overline{b}}{\overline{b}z + \overline{a}}. \end{array}$$

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Translations and Rotations

• The rotation around the origin ${\it O}$ by angle θ :

$${\sf R}(heta):=\left(egin{array}{cc} e^{rac{i heta}{2}} & 0\ 0 & e^{rac{-i heta}{2}} \end{array}
ight).$$

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Translations and Rotations

• The rotation around the origin O by angle θ :

$${\sf R}(heta):=\left(egin{array}{cc} e^{rac{i heta}{2}} & 0 \ 0 & e^{rac{-i heta}{2}} \end{array}
ight).$$

• The translation of length d along the geodesic that sends -1 to 1 is

$$L(d) := \begin{pmatrix} \cosh(\frac{d}{2}) & \sinh(\frac{d}{2}) \\ \sinh(\frac{d}{2}) & \cosh(\frac{d}{2}) \end{pmatrix}$$

٠

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Hyperbolic Polygon

• A hyperbolic polygon $P = [z_0, ..., z_n] \in \mathbb{D}$: edges are pieces of geodesics. • The intrinsic parameters of P at any vertex z_k are :

- Geodesic edge length : $d_k := d(z_k, z_{k+1})$,
- Exterior angle : δ_k
- Discrete geodesic curvature : $\kappa_g(z_k) := \frac{2 \ \delta_k}{d_{k-1} + d_k}$

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for a hyperbolic polygon

Algorithm

Results

Conclusion

Fundamental Question : What is the Closure conditions of a hyperbolic polygon in terms of its intrinsic parameters?

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for a hyperbolic polygon

Algorithm

Results

Conclusion

Planar Case. $P = [z_0, ..., z_n]$ is a closed polygon

$$iff \quad \sum_{i=0}^{n} \vec{e_i} = \vec{0} \quad iff \quad \begin{cases} \sum_{i=0}^{n} e_i \sin\left(\sum_{k=0}^{i} \delta_k\right) = 0, \\ \sum_{i=0}^{n} e_i \cos\left(\sum_{k=0}^{i} \delta_k\right) = 0. \end{cases}$$

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for a hyperbolic polygon

Algorithn

Results

Conclusion

Closing condition for a Hyperbolic Triangle

Let $\Pi = [z_0 = z_3, z_1, z_2, z_3]$ be a closed hyperbolic triangle with hyperbolic sides d_0 , d_1 , d_2 and exterior angles δ_0 , δ_1 , δ_2 . A hyperbolic triangle $T = [z_0, z_1, z_2]$ is closed iff

 $R(\delta_0)L(d_0)R(\delta_1)L(d_1)R(\delta_2)L(d_2) = \pm I,$

- $R(\delta_0)$ is the rotation with angle δ_0 etc...
- $L(d_0)$ is the translation along the geodesic (z_0, z_1) etc...

Morphing of
Hyperbolic
Closed Curves

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for a hyperbolic polygon

Algorithm

Results

Conclusion

T. Ahanchaou A. Ikemakhen,

Motivation

Related Worl

The Poincaré disc model

Closing condition for a hyperbolic polygon

Algorithm

Results

Conclusion

Closing condition for a Hyperbolic Polygon

 $P = [z_0, ..., z_n] \text{ is a closed hyperbolic polygon iff}$ $R(\delta_0)L(d_0)R(\delta_1)L(d_1)\cdots R(\delta_{n-2})L(d_{n-2})R(\delta_{n-1})L(d_{n-1}) = \pm I_d.$ iff $\begin{cases} | tr(S) | = 2, \\ det(S) = 1, \\ s_2\overline{s}_2 = 0. \end{cases}$

Where

 $S := R(\delta_0)L(d_0)R(\delta_1)L(d_1)\cdots R(\delta_{n-2})L(d_{n-2})R(\delta_{n-1})L(d_{n-1}).$

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Algorithm : Exterior-angle blending

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Algorithm : Exterior-angle blending

- the geodesic edge lengths : $d_k^t = (1 - t)d_k^0 + td_k^1.$
 - the exterior angles : $\delta_k^t = (1-t)\delta_k^0 + t\delta_k^1.$

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Algorithm : Exterior-angle blending

- the geodesic edge lengths : $d_k^t = (1-t)d_k^0 + td_k^1.$
- the exterior angles : $\delta_k^t = (1-t)\delta_k^0 + t\delta_k^1.$

•
$$\alpha_t := (1-t) \alpha_0 + t \alpha_1 \Rightarrow T_0^t$$

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

- Results
- Conclusion

Algorithm : Exterior-angle blending

Let given $P^0 = [z_0^0, ..., z_{n-1}^0]$ and $P^1 = [z_0^1, ..., z_{n-1}^1]$ two closed hyperbolic polygons. For $t \in [0, 1]$, we compute

- the geodesic edge lengths : $d_k^t = (1-t)d_k^0 + td_k^1.$
- the exterior angles : $\delta_k^t = (1-t)\delta_k^0 + t\delta_k^1.$

•
$$\alpha_t := (1-t) \alpha_0 + t \alpha_1 \Rightarrow T_0^t$$

• We construct the point z_0^t and the geodesic c_0^t ,

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

- Results
- Conclusion

Algorithm : Exterior-angle blending

- z_{0}^{2} y_{1}^{2} z_{1}^{2} z_{1}^{2} z_{1}^{2} z_{1}^{2} z_{1}^{2} z_{1}^{2} z_{1}^{2} z_{1}^{2} z_{2}^{2} z_{1}^{2} z_{2}^{2} z_{2
- the geodesic edge lengths : $d_k^t = (1-t)d_k^0 + td_k^1.$
- the exterior angles : $\delta_k^t = (1-t)\delta_k^0 + t\delta_k^1.$
- $\alpha_t := (1-t) \alpha_0 + t \alpha_1 \Rightarrow T_0^t$
- We construct the point z_0^t and the geodesic c_0^t ,
- By induction, we construct the other geodesic edges c^t_k.

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Construction process of intermediate curve

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Algorithm2 : Curvature blending

1 Interpolation of the geodesic edge lengths by : $d_k^t = (1-t)d_i^0 + td_k^1.$

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Algorithm2 : Curvature blending

- Interpolation of the geodesic edge lengths by : $d_k^t = (1-t)d_i^0 + td_k^1.$
- 2 Interpolation of the discrete geodesic curvatures : $\kappa_k^t = (1 - t)\kappa_k^0 + t\kappa_k^1.$

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Algorithm2 : Curvature blending

- Interpolation of the geodesic edge lengths by : $d_k^t = (1-t)d_i^0 + td_k^1.$
- 2 Interpolation of the discrete geodesic curvatures : $\kappa_k^t = (1 t)\kappa_k^0 + t\kappa_k^1$.
- **3** Recovery of exterior angles δ_k^t from the κ_k^t

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Algorithm2 : Curvature blending

- Interpolation of the geodesic edge lengths by : $d_k^t = (1-t)d_i^0 + td_k^1.$
- 2 Interpolation of the discrete geodesic curvatures : $\kappa_k^t = (1-t)\kappa_k^0 + t\kappa_k^1.$
- **3** Recovery of exterior angles δ_k^t from the κ_k^t
- **4** By induction, we construct the edge geodesics c_k^t .

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Result without closing condition

Closing process

T. Ahanchaou A. Ikemakhen,

Morphing of Hyperbolic

Closed Curves

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

For that, we will change the exterior angles δ_k^t in the smallest possible way to close the intermediate polygon P^t . This means we seek $\epsilon_0, ... \epsilon_{n-1}$ such that the polygon \bar{P}^t , with hyperbolic side lengths d_k^t and exterior angles $\bar{\delta}_k^t := \delta_k^t + \epsilon_k$ will be closed and the norm $\| \bar{\kappa}^t - \kappa^t \|^2$ will be minimized. Where κ^t (resp. $\bar{\kappa}^t$) denotes the vector of components κ_k^t (resp. $\bar{\kappa}_k^t := \frac{2\bar{\delta}_k^t}{d_{k-1}^t + d_k^t}$), and $\| . \|$ is the Euclidean norm in \mathbb{R}^n . In order to solve this,

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for a hyperbolic polygon

Algorithm

Results

Conclusion

We minimize the following problem :

$$\min_{(\epsilon_0,\ldots,\epsilon_{n-1})\in\mathbb{R}^n}\sum_{k=0}^{n-1}\left|\frac{4\epsilon_k^2}{\left(d_{k-1}^t+d_k^t\right)^2}\right|.$$
 (1)

Subject to :

$$\begin{cases} | tr(S) | = 2, \\ det(S) = 1, \\ s_2 \overline{s}_2 = 0. \end{cases}$$

(2)

where

$$S:=\prod_{k=0}^{n-1}R(\delta_{n-1-k}+\epsilon_{n-1-k})L(d_{n-1-k}),$$

This will ensure the closure of the hyperbolic polygon \bar{P}^t .

Morphing of
Hyperbolic
Closed Curves

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Morphing of
Hyperbolic
Closed Curves

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Morphing sequence between a butterfly and a bat at infinity

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Morphing sequence between a wolf's face and a bat

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Tiling the Poincaré disc using the blending of two given motifs

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Tiling the Poincaré disc using the blending of two given motifs

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Tiling the Poincaré disc using the blending of two given motifs

Hyperbolic Closed Curves T. Ahanchaou A.

Morphing of

Ikemakhen,

Related Work

The Poincare disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

- We have presented two novel algorithms for blending between two curves in the Poincaré disc, using their intrinsic variables.

Ikemakhen,

Morphing of Hyperbolic

Closed Curves T. Ahanchaou A.

Related Work

The Poincare disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

- We have presented two novel algorithms for blending between two curves in the Poincaré disc, using their intrinsic variables.
- Both methods generate closed intermediate smooth curves by using the closure condition and by solving an optimization problem.

Closed Curves T. Ahanchaou A. Ikemakhen,

Morphing of Hyperbolic

- Motivation
- Related Work
- The Poincaré disc model
- Closing condition for hyperbolic polygon
- Algorithm
- Results
- Conclusion

- these methods give tools to approach the geometry processing problem in the hyperbolic space and could give a contribution in this direction.

Closed Curves T. Ahanchaou A. Ikemakhen.

Morphing of Hyperbolic

Motivation

Related Work

- The Poincaré disc model
- Closing condition for hyperbolic polygon
- Algorithm
- Results
- Conclusion

- these methods give tools to approach the geometry processing problem in the hyperbolic space and could give a contribution in this direction.
- Limitation. Both algorithms take a long time to generate intermediate curves.

Morphing of Hyperbolic Closed Curves

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

- The Poincaré disc model
- Closing condition for hyperbolic polygon
- Algorithm
- Results
- Conclusion

- these methods give tools to approach the geometry processing problem in the hyperbolic space and could give a contribution in this direction.
- Limitation. Both algorithms take a long time to generate intermediate curves.
- Therefore, these methods can't be applied for a real-time execution.

Closed Curves T. Ahanchaou A. Ikemakhen.

Morphing of Hyperbolic

Motivation

Related Work

- The Poincaré disc model
- Closing condition for hyperbolic polygon
- Algorithm
- Results
- Conclusion

- these methods give tools to approach the geometry processing problem in the hyperbolic space and could give a contribution in this direction.
- Limitation. Both algorithms take a long time to generate intermediate curves.
- Therefore, these methods can't be applied for a real-time execution.
- The goal of our future work is to give a rapid blending method which reduces the run-time.

T. Ahanchaou A. Ikemakhen,

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

This work was published at Eurographics Symposium on Geometry Processing 2021 https://doi.org/10.1111/cgf.14358

References I

Closed Curves T. Ahanchaou A. Ikemakhen,

[1]

[2]

[3]

Morphing of Hyperbolic

Motivation

Related Work

The Poincar disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

Adrien BERNHARDT et al. "Implicit blending revisited". In : *Computer Graphics Forum*. T. 29. 2. Wiley Online Library. 2010, p. 367-375.

Renjie CHEN et al. "Planar shape interpolation with bounded distortion". In : *ACM Transactions on Graphics* (*TOG*) 32.4 (2013), p. 1-12.

Nadav DYM, Anna SHTENGEL et Yaron LIPMAN. "Homotopic morphing of planar curves". In : *Computer Graphics Forum*. T. 34. Wiley Online Library. 2015, p. 239-251.

References II

T. Ahanchaou A. Ikemakhen,

[4]

[5]

Morphing of Hyperbolic

Closed Curves

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithm

Results

Conclusion

R.S. EARP et E. TOUBIANA. Introduction à la géométrie hyperbolique et aux surfaces de Riemann. Bibliothèque des sciences. Diderot Editeur Arts Sciences, 1997. ISBN : 9782841340019. URL : https: //books.google.co.ma/books?id=TtbTAQAACAAJ.

F GUIMARAES, V MELLO et Luiz VELHO. "Geometry independent game encapsulation for non-euclidean geometries". In : *Proceedings of SIBGRAPI Workshop of Works in Progress*. 2015.

[6] Masahiro HIRANO, Yoshihiro WATANABE et Masatoshi ISHIKAWA. "Rapid blending of closed curves based on curvature flow". In : Computer Aided Geometric Design 52 (2017), p. 217-230.

References III

Hyperbolic Closed Curves T.

Morphing of

Ahanchaou A. Ikemakhen,

[7]

[8]

[9]

Motivation

Related Work

The Poincaré disc model

Closing condition for hyperbolic polygon

Algorithn

Results

Conclusion

Birger IVERSEN et Iversen BIRGER. Hyperbolic geometry. T. 25. Cambridge University Press, 1992.

Eryk KOPCZYNSKI, Dorota CELINSKA et Marek CTRNÁCT. "Hyperrogue : Playing with hyperbolic geometry". In : *the proceedings of the Bridges Conference, July*. 2017, p. 27-31.

Marianna SABA et al. "Curvature-based blending of closed planar curves". In : *Graphical models* 76.5 (2014), p. 263-272.

[10] Thomas W SEDERBERG et al. "2-D shape blending : an intrinsic solution to the vertex path problem". In : Proceedings of the 20th annual conference on Computer graphics and interactive techniques. 1993, p. 15-18.

T. Ahanchaou A. Ikemakhen.

[11]

Motivation

Related Work

The Poincaré disc model

Closing condition for a hyperbolic polygon

Algorithm

Results

Conclusion

References IV

Tatiana SURAZHSKY et Gershon ELBER. "Metamorphosis of planar parametric curves via curvature interpolation". In : *International Journal of Shape Modeling* 8.02 (2002), p. 201-216.