Subdivision schemes on manifolds

M. Bellaihou

Cadi-Ayyad University, Faculty of Science and Technology, Marrakesh, Morocco

Team GASA

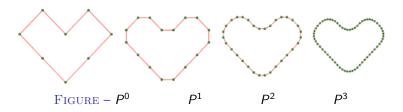
< ロ > < 同 > < 三 > < 三 >

Table of contents

- 1. Introduction
- 2. Geodesic averages
- 3. Convergence of subdivision schemes
- 4. The proximity condition
- 5. Verification of proximity conditions

Geodesic averages Convergence of subdivision schemes The proximity condition Verification of proximity conditions

Curve subdivision



イロト イボト イヨト イヨト

э

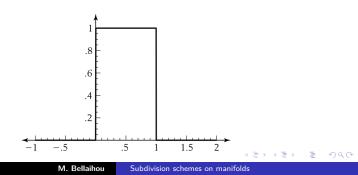
Geodesic averages Convergence of subdivision schemes The proximity condition Verification of proximity conditions

Let

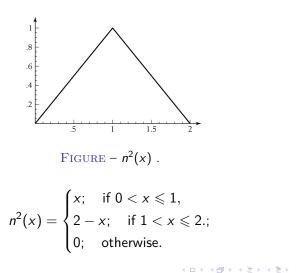
$$n^1(x) = egin{cases} 1 & x \in [0,1] \ 0 & ext{otherwise}. \end{cases}$$

We define the sequence of functions :

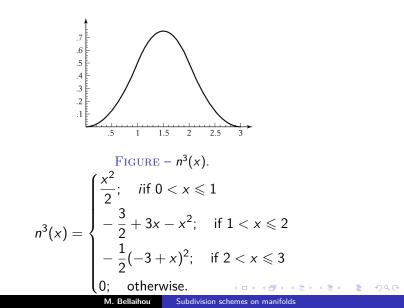
$$n^m(x)=\int_0^1 n^{m-1}(x-t)dt,$$



Geodesic averages Convergence of subdivision schemes The proximity condition Verification of proximity conditions



Geodesic averages Convergence of subdivision schemes The proximity condition Verification of proximity conditions



- *n^m* is piecewise polynomial over [0, *m*] of nodes *i* ∈ {0, ..., *m*}, and over [*i*, *i* + 1] *n^m* is polynomial of degree m-1.
- 2 n^m is C^{m-2}
- The family $\{n^m(.-i)\}_{i\in\mathbb{Z}}$ is free.
- A *B-Spline* p(x) of order m is of the form :

$$p(x) = \sum_{i \in \mathbb{Z}} p_i n^m (x - i)$$

where $\{p_i\}_{i \in \mathbb{Z}}$ is a sequence of finite support which we call *control polygon*.

Geodesic averages Convergence of subdivision schemes The proximity condition Verification of proximity conditions

Proposition

The n^m satisfies the refinement rule :

$$n^m(x) = \sum_{i \in \mathbb{Z}} a_i^m n^m (2x - i).$$

with

$$a_i^{[m]} = 2^{-m} \begin{pmatrix} m+1 \\ i \end{pmatrix}, \quad i \in \{0, .., m+1\},$$

For a B-Spline function p(x) controlled by p_i^0 , we have :

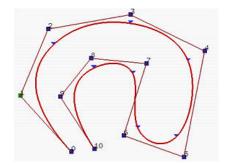
$$p(x) = \sum_{i \in \mathbb{Z}} p_i^0 n^m(x-i) = \sum_{i \in \mathbb{Z}} p_i^1 n^m(2x-i) = \dots = \sum_{i \in \mathbb{Z}} p_i^j n^m(2^j x - i)$$

< ロ > < 同 > < 三 > < 三 >

Geodesic averages Convergence of subdivision schemes The proximity condition Verification of proximity conditions

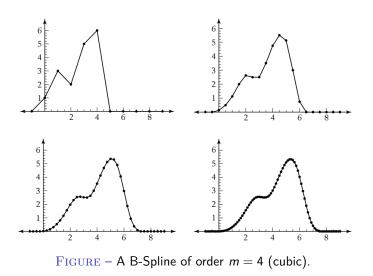
Remark

For a large value of j, the points $P^j = \{p_i^j\}$ approximate p. We call such points **controle polygon**. The $P^0 = \{p_i^0\}$ is called **Initial polygon**.



< 4 ₽ > < Ξ

Geodesic averages Convergence of subdivision schemes The proximity condition Verification of proximity conditions



æ

Subdivision scheme

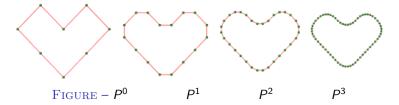
We can view a B-Spline function p(x) as a limit of refined polygons. Such refinement is given by :

$$p_i^{j+1} = \sum_{k \in \mathbb{Z}} a_{i-2k}^m p_K^j.$$

Or shortly by : $P^{j+1} = SP^j = S^j P^0$. Then we have $p(x) = \lim_{j \to \infty} S^j P$

Geodesic averages Convergence of subdivision schemes The proximity condition Verification of proximity conditions

Sequence of control polygons converges toward a limit curve.



▲ 同 ▶ → 三 ▶

Quadratic B-Spline

Let the scheme of the B-Spline of order m = 2 (Quadratic) be :

$$(SP)_{2i} = \frac{1}{4}p_{i-1} + \frac{3}{4}p_i, \qquad (SP)_{2i+1} = \frac{3}{4}p_i + \frac{1}{4}p_{i+1}.$$

It can be expressed, equivalently, by :

 $(SP)_{2i} = av_{1/4}(p_{i-1}, p_i), \qquad (SP)_{2i+1} = av_{3/4}(p_i, p_{i+1}).$ (1) where $av_{\alpha}(x, y) = \alpha x + (1 - \alpha)y.$

Geodesic averages Convergence of subdivision schemes The proximity condition Verification of proximity conditions

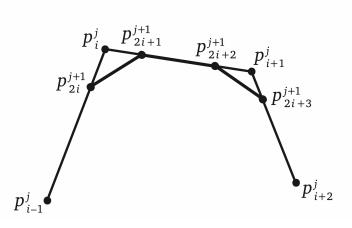


FIGURE – Construction of the new points p_{2i}^{j+1} and p_{2i+1}^{j+1} .

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Cubic B-spline

The Cubic B-spline subdivision (order m = 3) :

$$(SP)_{2i} = \frac{1}{2}p_i + \frac{1}{2}p_{i+1}, \qquad (SP)_{2i+1} = \frac{3}{8}p_i + \frac{1}{4}p_{i+1} + \frac{3}{8}p_{i+2}.$$

It reads

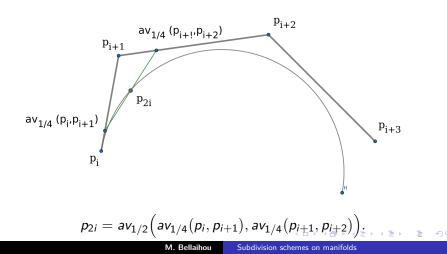
$$(SP)_{2i} = av_{1/2}(p_i, p_{i+1}),$$

$$(SP)_{2i+1} = av_{1/2}(av_{1/4}(p_i, p_{i+1}), av_{1/4}(p_{i+1}, p_{i+2})).$$

A ≥ ▶

Geodesic averages Convergence of subdivision schemes The proximity condition Verification of proximity conditions

Cubic B-Spline construction



Geodesic averages Convergence of subdivision schemes The proximity condition Verification of proximity conditions

Definition

A linear scheme
$$p_i^{j+1} = \sum_{k \in \mathbb{Z}} a_{i-2k} p_k^j$$
 is affinely invariant if

$$\sum_{k\in\mathbb{Z}} a_{2k} = \sum_{k\in\mathbb{Z}} a_{2k+1} = 1.$$

Theorem

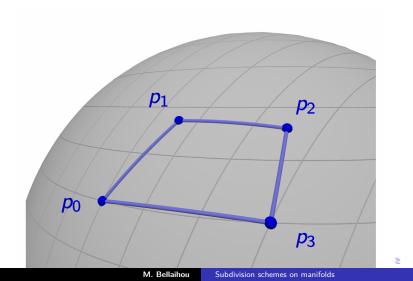
Any affinely invariant linear subdivision is expressible via the *av* operator.

э

(日)

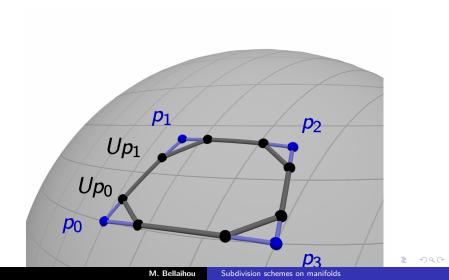
Geodesic averages Convergence of subdivision schemes The proximity condition Verification of proximity conditions

Cubic Spline on manifold



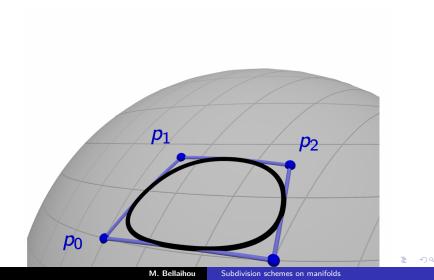
Geodesic averages Convergence of subdivision schemes The proximity condition Verification of proximity conditions

Cubic Spline on manifold



Geodesic averages Convergence of subdivision schemes The proximity condition Verification of proximity conditions

Cubic Spline on manifold



Geodesic average

Definition

If c is the geodesic curve which joints x and y such that c(0) = xand c(t) = y, then we let

$$\operatorname{\mathsf{g-av}}_{\alpha}(x,y) = c(\alpha t).$$

Definition

The geodesic analogue T of an affinely invariant linear scheme S, which is expressed in terms of averages, is defined by replacing each occurrence of the av operator by the g-av operator.

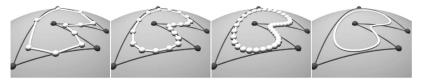


FIGURE – Geodesic cubic B-spline subdivision on the sphere. Black : Control geodesic polygon P. White (from left to right) : TP, T^2P , T^3P , $T^{\infty}P$.

The geodesic analogous of the linear cubic B-spline is :

$$(TP)_{2i} = g - av_{1/2} (p_i, p_{i+1}),$$

(TP)_{2i+1} = g - av_{1/2} (g - av_{1/4} (p_{i+1}, p_i), g - av_{1/4} (p_{i+1}, p_{i+2})).

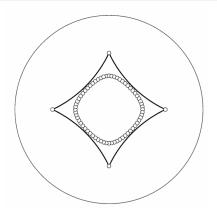


FIGURE – Geodesic cubic B-spline subdivision in the Hyperbolic plane. Polygons P and T^4P .

The displacements group

FIGURE – Geodesic cubic B-spline subdivision in the Euclidean group $S0_3 \times \mathbb{R}^3$.

Convergence

If *P* is a sequence of points, we use the symbol ΔP for the sequence of differences $(\Delta P)_i = p_{i+1} - p_i$. Further we define $d(P) := \sup_i \|p_{i+1} - p_i\| = \|\Delta P\|_{\infty}$, where $\|p\|_{\infty} = \sup_i \|p\|$.

イロト イポト イヨト イヨト

Convergence

If *P* is a sequence of points, we use the symbol ΔP for the sequence of differences $(\Delta P)_i = p_{i+1} - p_i$. Further we define $d(P) := \sup_i \|p_{i+1} - p_i\| = \|\Delta P\|_{\infty}$, where $\|p\|_{\infty} = \sup_i \|p\|$.

Defintion

A subdivision scheme S is said to satisfy a convergence condition with factor $\mu_0 < 1, \mbox{ if }$

$$d(S'P) \leqslant \mu_0^l \, d(P) \qquad \text{for all} \quad l, P; \tag{2}$$

Remark

A convergent scheme means that $\lim_{l\to\infty} \|\Delta(S^l P)\|_{\infty} = 0$ (the points of $S^l P$ shrink).

The proximity condition

Most of our statements consider polygons whose points are contained in some subset M of \mathbb{R}^d , and fulfil $d(P) < \varepsilon$. Such a class of polygons is denoted by $\mathcal{P}_{M,\varepsilon}$.

The proximity condition

Most of our statements consider polygons whose points are contained in some subset M of \mathbb{R}^d , and fulfil $d(P) < \varepsilon$. Such a class of polygons is denoted by $\mathcal{P}_{M,\varepsilon}$.

Definition

Subdivision schemes *S*, *T* satisfy a proximity condition for a class $\mathcal{P}_{M,\varepsilon}$ of polygons *P*, if there is a constante *C* such that for all $P \in \mathcal{P}_{M,\varepsilon}$,

$$|SP - TP||_{\infty} \leqslant Cd(P)^2.$$
(3)

Convergence Theorem 1 (Dyn and Walner 2005)

Suppose that *S*, *T* satisfy a proximity condition for all $P \in \mathcal{P}_{M,\varepsilon}$, and *S* satisfies a convergence condition with factor $\mu_0 < 1$. Then there is $\delta > 0$ and $\bar{\mu} < 1$ such that *T* satisfies a convergence condition with factor $\bar{\mu}_0$ for all $P \in \mathcal{P}_{M,\delta}$.

Corollary

If S is convergent and is in proximity with T, then T is also convergent.

- 4 同 1 4 三 1 4 三 1

Theorem 2 (Dyn and Walner 2005)

We use the requirements and notation of Theorem 1, and we assume that S has the property that $||S'|| \leq A$. Then for any polygon $P \in \mathcal{P}_{M,\delta}$,

$$\|S^{\infty}P - T^{\infty}P\|_{\infty} \leqslant rac{AC}{1-ar{\mu}^2} d(P)^2.$$

Theorem 2 allows to transfer stability properties of S to T. If e.g. $\|S^{\infty}(P + \varepsilon) - S^{\infty}P\|_{\infty} \leq D\|\varepsilon\|_{\infty}$, then

$$\begin{split} \|T^{\infty}(P+\varepsilon) - T^{\infty}P\|_{\infty} &\leq \frac{AC}{1-\bar{\mu}^2} \Big(d(P+\varepsilon)^2 + d(P)^2 \Big) + D\|\varepsilon\|_{\infty}, \\ &\leq \frac{AC}{1-\bar{\mu}^2} \Big(2d(P)^2 + 4d(P)\|\varepsilon\|_{\infty} + 4\|\varepsilon\|_{\infty}^2 \Big) \\ &+ D\|\varepsilon\|_{\infty}. \end{split}$$

We want to prove that the geodesic analogous T of a linear scheme *S* fulfils a proximity condition .

Let $T_x M$ be the tangent plane of the surface M, and II_x be the second fundamental form at the point x. We consider such open subsets V of M where there exists a constant D > 0 with the property that

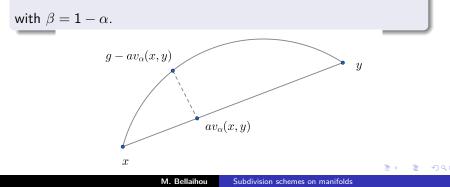
$$x \in V, \quad w \in T_x M, \quad \|w\| \leqslant 1 \Longrightarrow \|\mathrm{II}_x(w)\| \leqslant D$$
 (4)

Clearly all points in M have a neighbourhood V where there exists D > 0 such that (4) holds true.

Proposition 1

Assume that (4) holds true with D > 0 and an open set V, and that the points x, y are joined by the geodesic of length $\leq 1/D$. If the geodesic used in g-av_{α}(x, y) is contained in V, then

$$\|av_{\alpha}(x,y) - g-av_{\alpha}(x,y)\| \leqslant 2Dmin(|\alpha| + \alpha^2, |\beta| + \beta^2)\|x - y\|^2,$$



Lemma 1

Assume that c is a curve with $\|\dot{c}\| = 1$ and $\|\ddot{c}\| \leqslant C$. Then

$$\|c(0) + t\dot{c}(0) - c(t)\| \leq \frac{Ct^2}{2}, \qquad |t| - Ct^2/2 \leq \|c(t) - c(0)\|, \quad (5)$$
$$t < 1/C \Longrightarrow |t| \leq 2\|c(t) - c(0)\|. \quad (6)$$

イロト イヨト イヨト イヨト

э

Taylor's formula $c(t) = c(0) + t\dot{c}(0) + \frac{t^2}{2}\ddot{c}(\theta t)$ with $\theta \in [0, 1]$ implies that

$$\|c(t)-c(0)-t\dot{c}(0)\| = \left\|\frac{t^2}{2}\ddot{c}(\theta t)\right\| \leqslant \frac{Ct^2}{2},\tag{7}$$

$$\|c(t) - c(0)\| = \|t\dot{c}(0) + \frac{Ct^2}{2}\ddot{c}(\theta t)\| \ge \|t\dot{c}(0)\| - \|\frac{t^2}{2}\ddot{c}(\theta t)\|.$$
 (8)
Eqs. (7) and (8) immediately imply (5).

→ < ∃ →</p>

The function $\varphi(t) := t - Ct^2/2$ is monotonically increasing for $t \in [0; 1/C]$ with

$$\varphi(1/C) = 1/2C =: L.$$

So we have $\varphi(t) \ge t/2$ if $t \in [0; 1/C]$. As $\psi(t) := ||c(t) - c(0)||$ has the property that $\psi(t) > \varphi(t)$ (By (5)), then $|t| < 2\psi(t)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma 2

Assume that *c* is a curve with $\|\ddot{c}\| \leq C$. Then

$$|av_{\alpha}(c(0),c(t))-c(\alpha t)|| \leq \frac{|\alpha|+\alpha^2}{2}Ct^2.$$
(9)

We use Taylor's formula and find that the left hand side of (9) expands to

$$\frac{1}{2} \|\alpha t^2 \ddot{c}(\theta t) - \alpha^2 t^2 \ddot{c}(\theta' \alpha t)\|$$

with $\theta, \theta' \in [0; 1]$, which implies the upper bound given by (9).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proof of Proposition 1

We assume that c is the geodesic connecting c(0) = x to c(t) = y. By (9), an upper bound is given by

$$D\frac{|\alpha|+\alpha^2}{2}t^2.$$

Because of the symmetry of the geodesic average; namely

$$\operatorname{\mathsf{g-av}}_{1-lpha}(y,x) = \operatorname{\mathsf{g-av}}_{lpha}(x,y),$$

this relation remains true if we replace α by $1 - \alpha$. Thanks to (6), $t \leq 2||x - y||$, which completes the proof.

Theorem

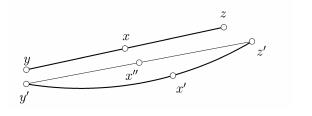
Let V and D as in (4). Consider an affinely invariant subdivision scheme S and its analogous geodesic scheme T. Let the class $\mathcal{P}'_{V,\delta}$ consists of all polygons P in V with $d(P) < \delta$ and which have the property that all geodesics used in subdividing according to T are contained in V.

Then S and T fulfil a proximity condition for all polygons $P \in \mathcal{P}'_{V,\delta}$.

Proof of the Theorem

As to two or more steps of averaging, we perform an induction step. We assume that points x and x' are defined in a linear and a nonlinear way, respectively, by $x = av_{\alpha}(y, z)$ and $x' = g-av_{\alpha}(y', z')$. We also assume that

$$||y-z|| \leq Cd(P), \qquad ||y'-y||, ||z'-z|| \leq C'd(P)^2.$$
 (10)

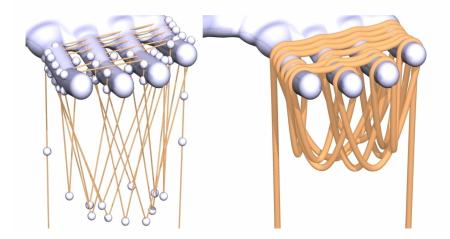


Our aim is to show that x and x' meet a proximity condition. By induction, this would show that T and S are in proximity. We introduce $x'' = av_{\alpha}(y', z')$ and use Proposition 1 again :

$$\begin{aligned} \|x - x'\| &\leq \|x' - x''\| + \|x - x''\| \\ &\leq C''\|y' - z'\|^2 + \|av_{\alpha}(y - y', z - z')\| \\ &\leq C''\Big(\|y - y'\| + \|y - z\| + \|z - z'\|\Big)^2 + \\ C''\max(\|y - y'\|, \|z - z'\|). \end{aligned}$$

Thus by (10) and $d(P) < \delta$, we have $||x - x'|| \leq C''' d(P)^2$.

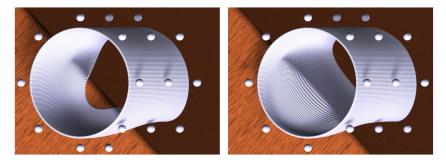
- 4 周 ト 4 戸 ト 4 戸 ト



< ロ > < 部 > < き > < き > <</p>

æ

12 • J. Wallner and H. Pottmann



< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

æ