Geometry of symmetric cones

Khalid Koufany

Institut Elie Cartan-Nancy • Université de Lorraine

Interuniversity Geometry Seminar 09/04/2022

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 のへで

The main reference of this talk is :

Faraut, Jacques; Korányi, Adam. **Analysis on symmetric cones** Oxford Mathematical Monographs. Oxford Science Publications. *The Clarendon Press, Oxford University Press, New York,* 1994. xii+382 pp.

Symmetric cones

Let V be a finite dimensional real Euclidean space with the inner product $(\cdot | \cdot)$. A convex cone $\Omega \subset V$ (containing 0) is pointed or proper if Ω contains no affine line. If Ω is closed, this means $\Omega \cap (-\Omega) = \{0\}$. Define the dual cone by

$$\Omega^* = \{ x \in V \mid (x|y) \ge 0 \text{ for all } y \in \Omega \}.$$

Then Ω^* is a closed convex cone, and has a non-trivial interior $\Omega^{*\circ}$ if and only if Ω is pointed.

The automorphism group $G(\Omega)$ of an open convex cone $\Omega \subset V$ is defined by

$$G(\Omega) = \{g \in GL(V) \mid g\Omega \subset \Omega\}.$$

It is a closed subgroup of GL(V) and hence a Lie group. The open cone $\Omega \subset V$ is said to be symmetric if it is homogeneous ($G(\Omega)$ acts transitively on Ω) and self dual ($\Omega^* = \Omega$).

Example 1

Consider $V = \text{Sym}(n, \mathbb{R})$ with the inner product (A|B) = Tr(AB). Then the set $\Omega = \Omega_n(\mathbb{R})$ of positive definite symmetric matrices is a convex cone in V.

Let us prove that Ω is a symmetric cone.

The group $GL(n, \mathbb{R})$ acts on Ω by

$$\rho(\mathbf{g})\mathbf{x} = \mathbf{g}\mathbf{x}\mathbf{g}^{\mathsf{T}}$$

and this action is transitive (if $x \in \Omega$, then $x = \alpha \alpha^{\top}$ where $\alpha \in GL(n, \mathbb{R})$, thus $x = \alpha \alpha^{\top} = \rho(\alpha)I_n$. Let $x \in \Omega^*$, then for any non zero vector $\xi \in \mathbb{R}^n$, $y := \xi\xi^{\top} \in \Omega$. By definition of Ω^* we have

$$(x\xi,\xi)_{\mathbb{R}^n} = (x|\xi\xi^{\top}) = (x|y) > 0$$

and hence $x \in \Omega$.

Conversely, any element $x \in \Omega$, can be written as

$$\mathbf{x} = \sum_{j=1}^k \xi_j \xi_j^{ op}$$

where the ξ_j are independent vectors in \mathbb{R}^n . Therefore, if $y \in \Omega$, then

$$(y|x) = \sum_{j=1}^{k} (y|\xi_j\xi_j^{\top}) = \sum_{j=1}^{k} (y\xi_j,\xi_j)_{\mathbb{R}^n} > 0.$$

Thus $x \in \Omega^*$ and $\Omega = \Omega^*$.

.

Example 2

Let $\Omega = \Lambda_n$ to be the Lorentz cone in the Euclidean space $V = \mathbb{R}^n$,

$$\Omega = \left\{ x \in \mathbb{R}^n \mid x_1^2 - x_2^2 - \dots - x_n^2 > 0, x_1 > 0 \right\}.$$

Let [,] be the following bilinear form on \mathbb{R}^n

$$[x,y] = x_1y_1 - x_2y_2 - \cdots - x_ny_n = x^\top Jy$$

where x, y are written as $n \times 1$ matrices and

$$J = \begin{pmatrix} 1 & 0 & \cdots & \cdots \\ 0 & -1 & \cdots & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ \cdots & \cdots & \cdots & -1 \end{pmatrix}.$$

Then

$$\Omega = \{x \in \mathbb{R}^n \mid [x, x] > 0, x_1 > 0\}.$$

To prove that Ω is homogeneous we consider the group $SO_0(1, n-1)$ (= the identity component of the group of $n \times n$ real matrices g such that [gx, gy] = [x, y] for all x, y, or, equivalently, such that $g^{\top}Jg = J$). Each element of the group $SO_0(1, n-1)$ maps Ω onto itself, and so does $G = \mathbb{R}_+ \times SO_0(1, n-1)$, the direct product of $SO_0(1, n-1)$ with the group of positive dilations. The matrices

$$g_u = \begin{pmatrix} 1 & 0 \\ 0 & u \end{pmatrix}$$
, with $u \in SO(n-1)$

are special elements of $SO_0(1, n-1)$, and so are the hyperbolic rotations

$$h_t = \begin{pmatrix} \cosh t & 0 & \sinh t \\ 0 & I_{n-2} & 0 \\ \sinh t & 0 & \cosh t \end{pmatrix}.$$

To show that G acts transitively on Ω we show that, for any x in Ω , there exists an element in G which maps $e_1 = (1, 0, \dots, 0)^{\top}$ to x.

First, write $x = \lambda y$, with $\lambda = [x, x]^{\frac{1}{2}} > 0$, [y, y] = 1. Then there exists a rotation $u \in SO(n-1)$ such that

$$(y_2,\ldots,y_n)^{\top} = u \cdot (0,\ldots,0,r)^{\top}$$

with $r = \sqrt{y_2^2 + \cdots + y_n^2}$. Since $y_1^2 - r^2 = 1$ there exists $t \ge 0$ such that

$$y_1 = \cosh t$$
, $r = \sinh t$.

Therefore,

$$x=\lambda g_u h_t \cdot e_1.$$

Now we show that Ω is self-dual. To see that $\Omega \subset \Omega^*$, let $y \in \Omega$. Then, using Schwarz's inequality, we have ,

$$(x \mid y) \ge x_1y_1 - \sqrt{x_2^2 + \dots + x_n^2}\sqrt{y_2^2 + \dots + y_n^2} > 0,$$

for all $x \in \overline{\Omega} \setminus \{0\}$. Hence y belongs to Ω^* .

To prove the reverse inclusion, let y be in Ω^* . One has $y_1 > 0$. If $y_2 = 0, \dots, y_n = 0$, then y belongs to Ω . Otherwise, define x by

$$x_1 = \sqrt{y_2^2 + \ldots + y_n^2}, \ x_2 = -y_2, \ldots, x_n = -y_n.$$

Then x belongs to $\overline{\Omega} \setminus \{0\}$, so $(x \mid y) > 0$, or

$$y_1\sqrt{y_2^2 + \dots + y_n^2} - (y_2^2 + \dots + y_n^2) > 0$$

which means that y belongs to Ω .

4 B 6 4 B 6

Ω as a Riemmanian symmetric space

Theorem

Let Ω be a symmetric cone in a Euclidean vector space V. Then Ω is a Riemannian symmetric space.

Proof. For $x \in \Omega$ and $u, v \in V$, we let

$$G_x(u,v) = D_u D_v \log \varphi(x)$$

where φ is the characteristic function of Ω ,

$$\varphi(x) = \int_{\Omega} e^{-(x|y)} dy$$

dy being the Euclidean measure on V. We have, for $u \neq 0$,

$$\begin{aligned} G_{x}(u,u) &= D_{u}^{2}\log\varphi(x) = \left.\frac{d^{2}}{dt^{2}}\right|_{t=0}\log\varphi(x+tu) \\ &= \frac{1}{\varphi^{2}}\left(\varphi D_{u}^{2}\varphi - (D_{u}\varphi)^{2}\right), \end{aligned}$$

and

$$\frac{d}{dt}\Big|_{t=0} \varphi(x+tu) = -\int_{\Omega} e^{-(x|y)} (u \mid y) dy$$
$$\frac{d^2}{dt^2}\Big|_{t=0} \varphi(x+tu) = \int_{\Omega} e^{-(x|y)} (u \mid y)^2 dy.$$

Put

$$f(y) = e^{-\frac{1}{2}(x|y)}, \ g(y) = e^{-\frac{1}{2}(x|y)}(u \mid y),$$

then

$$G_{x}(u,u) = \frac{1}{\varphi^{2}(x)^{2}} \left(\int_{\Omega} f(y)^{2} dy \int_{\Omega^{*}} g(y)^{2} dy - \left(\int_{\Omega} f(y)g(y) dy \right)^{2} \right)$$

which is > 0 by the Schwarz inequality, since f and g are not proportional.

Therefore, the bilinear form G_{χ} defines a Riemannian metric on Ω .

Every element g in $G(\Omega)$ is an isometry; in fact

$$\begin{aligned} G_{gx}(gu, gv) &= \left(D_{gu} D_{gv}(\log \varphi) \right)(gx) = D_u D_v(\log \varphi \circ g)(x) \\ &= D_u D_v(\log \varphi)(x) = G_x(u, v) \end{aligned}$$

where the third equality follows form

$$\varphi(gx) = |\operatorname{Det} g|^{-1}\varphi(x).$$

Thus the metric, is invariant under $G(\Omega)$. Further, for $x \in \Omega$, let x^* defined by

$$x^* = -\nabla \log \varphi(x)$$

Then one can prove (see Faraut-Korànyi, pages 14–17) that the map $x \mapsto x^*$ is an involutive isometry on Ω with a unique fixed point, denoted by e. Now, if $y \in \Omega$, then there exists $g \in G(\Omega)$ such that y = ge and the map $x \mapsto g(g^{-1}x)^*$ is an involutive isometry of Ω with the unique fixed point y.

Let G be the identity component of $G(\Omega)$ and $K = G \cap O(V)$. Then G acts transitively on Ω and K is a compact subgroup of G. Furthermore (see Faraut-Korànyi, page 18) $G_e = K$, where G_e is stabilizer subgroup of e.

The map, $\theta: g \mapsto (g^{-1})^{\top}$ is an involution of *G* (Cartan involution) and $K = G^{\theta}$ is a maximal compact subgroup of *G*. We conclude that, as a symmetric space,

$$\Omega = G/K.$$

For $\Omega = \Omega_m(\mathbb{R})$, we have

$$\Omega_m(\mathbb{R}) = \operatorname{GL}(m,\mathbb{R})/\operatorname{SO}(m).$$

For $\Omega = \Lambda_n$, we have

$$\Lambda_n(\mathbb{R}) = \operatorname{SO}_0(1, n-1) / \operatorname{SO}(n-1).$$

Euclidean Jordan algebras

Euclidean Jordan algebras

Let V be a finite dimensional Euclidean vector space equipped with a scalar product $(\cdot | \cdot)$. V is a Euclidean Jordan algebra if,

 $\begin{aligned} xy &= yx, \\ x^2(xy) &= x(x^2y), \\ (xy \mid z) &= (x \mid yz). \end{aligned}$

For $x \in V$, denote by L(x) the linear operator defined by

 $y \mapsto L(x)y = xy.$

The quadratic representation P is defined by

$$P(x) = 2L(x)^2 - L(x^2).$$

An element $x \in V$ is said to be invertible if there exists an element $y \in \mathbb{R}[x]$ such that xy = e. Since $\mathbb{R}[x]$ is associative, y is unique. It is called the inverse of x and is denoted by $y = x^{-1}$.

The leading example is $V = \text{Sym}(n, \mathbb{R})$ with - the product

$$x \circ y = \frac{1}{2}(xy + yx),$$

- the inner product

$$(x \mid y) = \mathsf{Tr}(x \circ y) = \mathsf{Tr}(xy),$$

- the quadratic representation

$$P(x)y = xyx.$$

3

Proposition

An element x ∈ V is invertible if and only if P(x) is invertible, and in this case, P(x⁻¹) = P(x)⁻¹.
 The differential of the map x ↦ x⁻¹ is -P(x)⁻¹, i.e.

$$D_u(x^{-1}) = D(x^{-1})u = -P(x)^{-1}u.$$

(3) If x and y are invertible, then P(x)y is invertible and

$$(P(x)y)^{-1} = P(x^{-1})y^{-1}.$$

(4) For any elements x and y of V,

P(P(y)x) = P(y)P(x)P(y) "the fundamental relation"

(5) If x and x are invertible, then

$$P(x^{-1} - y^{-1}) = P(x)^{-1}P(x - y)P(y)^{-1}$$
 "Hua's identity"

Jordan frames

An element $c \in V$ is said to be an idempotent if $c^2 = c$. Using the identity $L(x^2y) - L(x^2)L(y) = 2(L(xy) - L(x)L(y))L(x)$ with x = y, we obtain

$$L(x^{3}) = 3L(x^{2})L(x) - 2L(x)^{3},$$

and for x = c:

$$2L(c)^3 - 3L(c)^2 + L(c) = 0.$$

Therefore, an eigenvalue λ of L(c) is a solution of

$$2\lambda^3 - 3\lambda^2 + \lambda = 0,$$

Then the only possible eigenvalues of L(c) are 1, $\frac{1}{2}$, 0 and V is the direct sum of the corresponding eigenspaces V(c, 1), $V(c, \frac{1}{2})$ and V(c, 0). The decomposition

$$V = V(c,1) \oplus V(c,\frac{1}{2}) \oplus V(c,0),$$

is called the Peirce decomposition of V with respect to c_{V}

It is an orthogonal decomposition with respect to any associative scalar product.

Two idempotents c and d are said to be *orthogonal* if (c|d) = 0, which is equivalent to cd = 0. An idempotent is said to be *primitive* if it is not the sum of two non-zero idempotents. An idempotent c is primitive if and only if dim V(c, 1) = 1. We say that $(c_j)_{1 \le j \le m}$ is a Jordan frame if each c_j is a primitive idempotent and

$$c_i c_j = 0, \quad i \neq j$$
$$c_1 + c_2 + \ldots + c_m = e.$$

All the Jordan frames have the same number of elements, denote by r and called the rank of the Jordan algebra V.

The group K acts transitively on the set of primitive idempotents, and also on the set of Jordan frames. Therefore if we fix a Jordan frame $(c_j)_{i=1}^r$, then every element $x \in V$ can be written in the form

$$x = k(\sum_{j=1}^r \lambda_j c_j)$$

where $k \in K$ and $\lambda_1, \ldots, \lambda_r$ real numbers. The scalars $(\lambda_j)_{1 \leq j \leq r}$ are unique and called the spectral values of x.

We define the determinant and the trace of the Jordan algebra by

$$\det(x) = \prod_{j=1}^r \lambda_j, \ \operatorname{tr}(x) = \sum_{j=1}^r \lambda_j.$$

The trace is a linear form of V and the determinant is a homogeneous polynomial on V of degree r. Both are invariant under Aut(V).

Proposition

Let V be a simple Euclidean Jordan algebra on dimension n and rank r.

(i) We have

$$\operatorname{Tr} L(x) = \frac{n}{r} \operatorname{tr}(x),$$
$$\operatorname{Det} P(x) = (\det x)^{\frac{2n}{r}},$$
$$\operatorname{let}(P(y)x) = (\det y)^2 \det x$$

(ii) Furthermore, if the scalar product on V is defined by

$$(x \mid y) = \mathsf{tr}(xy)$$

then

$$\nabla \log \det x = x^{-1}.$$

(ii) The set of invertible elements in V is given by

$$V^{\times} = \{x \in V \mid \det(x) \neq 0\}$$

Proposition

In a simple Euclidean Jordan algebra V every associative scalar product is a scalar multiple of tr(xy).

Hence, we assume from now that the scalar product of \boldsymbol{V} is given by

 $(x|y) = \operatorname{tr}(xy).$

The example : $V = \text{Sym}(r, \mathbb{R})$

In this case the determinant and the trace are the usual matrix determinant and trace.

Put r = p + q. An idempotent is an orthogonal projection

$$c = \begin{pmatrix} I_p & 0 \\ 0 & 0 \end{pmatrix}.$$

Then

$$V(c,1) = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \mid a : p \times p \text{ symmetric matrix} \right\},$$

$$V(c,\frac{1}{2}) = \left\{ \begin{pmatrix} 0 & d \\ d^{\top} & 0 \end{pmatrix} \mid d : p \times q \text{ matrix} \right\},$$

$$V(c,0) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} \mid b : q \times p \text{ symmetric matrix} \right\}.$$

The example : Spin factor

Let B be a symmetric bilinear form on \mathbb{R}^{n-1} . Then $V = \mathbb{R}^{1,n-1} = \mathbb{R} \times \mathbb{R}^{n-1}$ is a Euclidean Jordan algebra of dimension *n* and rank 2 : The product is

$$(\lambda, u)(\mu, v) = (\lambda \mu + B(u, v), \lambda v + \mu u).$$

We have

$${\rm tr}(\lambda,u)=2\lambda, \ \, {\rm det}(\lambda,u)=\lambda^2-B(u,u).$$

An element is invertible if and only if $det(\lambda, u) = \lambda^2 - B(u, u) \neq 0$. In this case

$$(\lambda, u)^{-1} = \frac{1}{\det(\lambda, u)}(\lambda, -u).$$

The associative inner product is

$$((\lambda, u) \mid (\mu, v)) = 2(\lambda \mu + B(u, v)).$$

The non-zero idempotents are

$$e = (1,0), \ c = \left(\frac{1}{2}, w\right)$$

with $B(w, w) = \frac{1}{4}$. For such an idempotent c:

$$V(c,1) = \mathbb{R}c,$$

$$V(c,0) = \mathbb{R}\left(\frac{1}{2}, -w\right),$$

$$V\left(c, \frac{1}{2}\right) = \{(0, u) \mid B(u, w) = 0\}.$$

(E)

The cone of squares in V

Lat V be a Euclidean Jordan algebra with unit element e. Let C be the set of all squares

$$C = \left\{ x^2 \mid x \in V \right\}.$$

The set C is a cone and therefore its closed dual

$$C^* = \left\{ y \in V \mid \forall x \in V, (y \mid x^2) \ge 0 \right\}$$

is a closed convex cone. Since

$$(y \mid x^2) = (yx \mid x) = (L(y)x \mid x)$$

we have

$$C^* = \{y \mid L(y) \text{ is positive semi-definite }\}.$$

Let

$$\Omega = C^{\circ} = \operatorname{Int}(C).$$

Theorem

 Ω is a symmetric cone. Furthermore, Ω is the connected component of e in V^{\times} , and also is the set of elements $x \in V$ for which L(x) is positive definite.

Proof. (1) To prove that Ω is self-dual, we show that $C^* = C$. If $x = \sum_{j=1}^{k} \lambda_j c_j$ is the spectral decomposition of an element $x \in V$, then $x^2 = \sum_{j=1}^{k} \lambda_j^2 c_j$ and

$$L(x^{2}) = \sum_{j=1}^{k} \lambda_{j}^{2} L(c_{j}).$$

Since the operators $L(c_j)$ are positive, $L(x^2)$ is positive and $C \subset C^*$.

Conversely, let $x \in C^*$. Since the idempotents c_j are orthogonal, we have

$$\begin{split} \lambda_{j} &= \frac{1}{\|c_{j}\|^{2}} \left(x \mid c_{j} \right) \\ &= \frac{1}{\|c_{j}\|^{2}} \left(x \mid c_{j}^{2} \right) \\ &= \frac{1}{\|c_{j}\|^{2}} \left(xc_{j} \mid c_{j} \right) \\ &= \frac{1}{\|c_{j}\|^{2}} \left(L(x)c_{j} \mid c_{j} \right) \ge 0. \end{split}$$

Therefore, $x = y^2$ with

$$y=\sum_{j=1}^k \sqrt{\lambda_j}c_j.$$

So we have shown that $C^* \subset C$, and finally that $C^* = C$.

э

(2) Let us consider the set

$$B = \{y \in V \mid L(y) \text{ is positive definite } \}$$

then *B* is open, therefore *B* is contained in Ω . For a non-zero element *y* in *V* let us consider the linear form on *V*

$$\ell(x) = (x \mid y^2) = (L(y)x \mid y).$$

Then ℓ is not identically zero and for x in C we have $\ell(x) \ge 0$, and for x in Ω we have $\ell(x) > 0$ since Ω is open, which means that Ω is contained in B.

(3) If $x = \sum_{j=1}^{k} \lambda_j c_j \in V$, then it is clear that

$$\exp x = \sum_{j=1}^{k} e^{\lambda_j} c_j \in \Omega$$

Thus $\exp(V) \subset \Omega.$ The converse is also clear. Hence we can also define Ω as

$$\Omega = \exp V = \{\exp x \mid x \in V\}.$$

(4) The set $V^{\times} = \{x \in V \mid \det x \neq 0\}$ is open. Let $x \in \overline{\Omega} \cap V^{\times}$. Since x belongs to $\overline{\Omega}$ the eigenvalues of x are non-negative, and since x belongs to V^{\times} they are non-zero, therefore x belongs to Ω . and $\overline{\Omega} \cap V^{\times} = \Omega$. This means that Ω is closed in V^{\times} , hence Ω is the connected component of V^{\times} containing the identity element e. (5) It remains to show that Ω is homogeneous. If x is invertible, then P(x) is invertible, and $P(x)\Omega$ is a connected open subset of V^{\times} (if x and y are invertible then P(x)y is invertible). Since $x^2 = P(x)e$ belongs to Ω , we have $P(x)\Omega \subset \Omega$. On the other hand, $P(x)^{-1}\Omega = P(x^{-1})\Omega \subset \Omega$. Hence, P(x) belongs to $G(\Omega)$ and

$$\Omega = \left\{ x^2 \mid x \in V^{\times} \right\} = \left\{ P(x)e \mid x \in V^{\times} \right\} \subset G(\Omega)e = \Omega.$$

伺 ト イ ヨ ト イ ヨ ト

To summary, we have

$$\Omega = \exp V$$

= int {x² | x \in V}
= the identity component of V[×]
= {x² | x \in V[×]}
= {P(x)e | x \in V[×]}
= {x \in V | L(x) positive definite }

э

The structure group of V

The structure group of V is the subgroup of GL(V) given by

$$\operatorname{Str}(V) = \{g \in \operatorname{GL}(V) \mid P(gx) = gP(x)g^{\top}, \text{ for any } x \in V\}.$$

It is known that if $x \in V^{\times}$, then $P(x) \in \text{Str}(V)$ and $P(x)^{\top} = P(x)$. Furthermore, the automorphism group Aut(V) is a subgroup of Str(V) and an element g in Str(V) belongs to Aut(V) if and only if ge = e. In particular, $g^{\top} = g^{-1}$ for $g \in \text{Aut}(V)$.

Proposition

If V is a simple Euclidean Jordan algebra, then

 $\operatorname{Str}(V) = \{\pm I\}G(\Omega).$

In particular, if $g \in Str(V)$, then $g(\Omega) = \Omega$ or $g(\Omega) = -\Omega$.

If $V = \operatorname{Sym}(m, \mathbb{R})$, then $\Omega = \Omega_m(\mathbb{R})$ symmetric positive definite matrices.

In this case, $G(\Omega) = \operatorname{GL}(m, \mathbb{R})/\{\pm I_m\}$ and $\operatorname{Str}(V) = \operatorname{GL}(m, \mathbb{R})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Jordan algebra associated with a symmetric cone

Let Ω be a symmetric cone in a Euclidean space V.

As above, we denote by $G(\Omega)$ the automorphism group of Ω , G its identity component and $K = G \cap O(V)$.

We write \mathfrak{g} for the Lie algebra of G and \mathfrak{k} for the Lie algebra of K. We choose a point e in Ω whose stabilizer is K.

An element $X \in \mathfrak{g}$ belongs to \mathfrak{k} if and only if $X \cdot e = 0$.

Since $G \cdot e = \Omega$, we have $\mathfrak{g} \cdot e = V$.

Therefore, the mapping from \mathfrak{p} into V defined by $X \mapsto X \cdot e$ is a bijection.

We denote by L its inverse: for x in V, L(x) is the unique element in p such that L(x)e = x.

Theorem (Vinberg-Kœcher)

Let Ω be a symmetric cone in a Euclidean vector space V. Defining on V the product

xy = L(x)y,

V is a Euclidean Jordan algebra with identity element e and

$$\bar{\Omega} = \left\{ x^2 \mid x \in V \right\}.$$

Proof (Folowing Satake proof).

It is clear that the product we have defined is bilinear. It is also commutative, since

$$xy - yx = [L(x), L(y)] \cdot e = 0$$

by $[\mathfrak{p},\mathfrak{p}] \subset \mathfrak{k}$ and $\mathfrak{k} \cdot e = 0$. The inner product of V is an associative bilinear form, since each L(x) belongs to \mathfrak{p} and is therefore symmetric. In order to prove (J2 : Jordan identity), we define the associator of three elements x, y, z in V by

$$[x, z, y] = x(zy) - (xz)y = [L(x), L(y)]z.$$

For any $x, y \in V$ we must show that $x^2(xy) = x(x^2y)$, i.e. $[x^2, y, x] = 0$. Using $[L(x), L(y)] \in [\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$, we have

$$\begin{split} [[L(x), L(y)], L(z)]e &= [L(x), L(y)](ze) \\ &= [x, z, y] = L([x, z, y])e. \end{split}$$

Since $X \mapsto X \cdot e$ is bijective from \mathfrak{p} onto V, it follows that

$$[[L(x), L(y)], L(z)] = L([x, z, y]).$$

▼ ▶ ▲ □ ▶ ▲ □ ▶

Applying this identity to z, we immediately find

$$[x, z^2, y] = 2[x, z, y]z.$$
 (1)

Now, for any x, y, z in V, the associativity of the scalar product gives

$$([x^2, y, x] | z) = (x^2(xy) | z) - (x (x^2y) | z) = (x^2 | (xy)z - y(xz)) = (x^2 | [z, x, y]).$$
 (2)

By a similar computation we also have

$$\left(\left[x^{2}, y, x\right] \mid z\right) = \left(x \mid y\left(x^{2}z\right) - \left(x^{2}y\right)z\right) = \left(x \mid \left[y, x^{2}, z\right]\right)$$

and using (1) we see that this is further equal to

$$2(x \mid [y, x, z]x) = 2(x^2 \mid [y, x, z]) = -2(x^2 \mid [z, x, y]).$$

Comparing with (2) we see that

$$\left(\left[x^2, y, x\right] \mid z\right) = 0$$

This holds for every z in V, therefore $[x^2, y, x] = 0$, that is,

$$x^2(xy) = x(x^2y).$$

Let Ω_1 be the symmetric cone associated with the Jordan algebra V (the interior of the set of squares). We have

$$\Omega_1 = \exp V = \{\exp x \mid x \in V\}$$
$$= \{\exp L(x) \cdot e \mid x \in V\}$$
$$= \{\exp X \cdot e \mid X \in \mathfrak{p}\}$$
$$\subset G \cdot e = \Omega$$

Since Ω and Ω_1 are self-dual, then $\Omega_1 = \Omega$.

If V is a Euclidean Jordan algebra, then the cone $\Omega = \exp V$ is called the associated symmetric cone.

Let V be a Euclidean Jordan algebra and Ω the associated symmetric cone.

Theorem

For x in Ω and u, v in V we set

$$\gamma_{\mathsf{x}}(u,v) = \left(\mathsf{P}(x)^{-1}u \mid v \right).$$

The family of bilinear forms γ_x defines a *G*-invariant Riemannian metric on Ω . The map $x \mapsto x^{-1}$ is an involutive isometry with unique fixed point e.

Proof. If x belongs to Ω then P(x) is positive definite. The invariance of the metric:

$$(P(gx)^{-1}gu \mid gv) = (P(x)^{-1}u \mid v), \quad \forall g \in G(\Omega)$$

follows from the fact $P(gx) = gP(x)g^{\top}$, since $g \in G(\Omega) \subset Str(V)$.

Let us now consider the map $x \mapsto x^{-1}$. We know that its differential is $-P(x)^{-1}$. To show that it is an isometry we have to prove that

$$\left(P\left(x^{-1}\right)^{-1}P(x)^{-1}u \mid P(x)^{-1}v\right) = \left(P(x)^{-1}u \mid v\right).$$

But this follows from the fact that $P(x^{-1}) = P(x)^{-1}$.

伺 ト イヨト イヨト

For any symmetric cone Ω we constructed above a *G*-invariant Riemannian metric G_x and an isometric involution $x \mapsto x^*$. Further, the *G*-invariant metric γ_x and the isometric involution $x \mapsto x^{-1}$, provide another, independent, proof that Ω is a symmetric Riemannian space.

The metrics G_x and γ_x are not exactly the same; a *G*-invariant metric on Ω is not unique unless *V* is simple.

In this case, we have

$$G_x = \frac{n}{r}\gamma_x,$$

and

$$x \mapsto x^* = -\frac{n}{r}x^{-1}.$$

Theorem

(1) We have

$$\operatorname{Aut}(V)_0 = K,$$
$$\operatorname{Der}(V) = \mathfrak{k},$$

where $\operatorname{Aut}(V)_0$ denotes the identity component of $\operatorname{Aut}(V)$. (2) Every g in G can be uniquely written as

$$g = P(x)k$$
, with $x \in \Omega$, $k \in K$

i.e.

 $G = P(\Omega)K$ "polar decomposition"

(3) Let \mathfrak{g} be the Lie algebra of G (or $G(\Omega)$) and $\mathfrak{p} = \{L(x) \mid x \in V\}$. Then we have

$$\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$$

(Cartan decomposition of \mathfrak{g} w.r.t. $X \mapsto \theta(X) = -X^{\top}$).

Classification

Let V be a simple Euclidean Jordan algebra of dimension n and rank r. Recall that if $c \in V$ is idempotent $(c^2 = c)$, then the only possible eigenvalues of L(c) are $1, \frac{1}{2}$, and 0, and V is the direct sum of the corresponding subspaces $V(c, 1), V(c, \frac{1}{2})$ and V(c, 0).

$$V = V(c_{,},1) \oplus V\left(c_{,},\frac{1}{2}\right) \oplus V(c_{1},0)$$

(Peirce decomposition of V with respect to the idempotent c). This decomposition is orthogonal with respect to any associative symmetric bilinear form, since the transformations L(x) are symmetric with respect to any such form.

Proposition

The subspaces V(c, 1) and V(c, 0) are Jordan subalgebras of V. They are orthogonal in the sense that

$$V(c,1) \cdot V(c,0) = \{0\}$$

Furthermore,

$$ig(V(c,1)+V(c,0)ig)\cdot V\left(c,rac{1}{2}
ight)\subset V\left(c,rac{1}{2}
ight), \ V\left(c,rac{1}{2}
ight)\cdot V\left(c_1,rac{1}{2}
ight)\subset V(c,1)+V(c,0).$$

< 3 > 4 3 > 4

Let $\{c_1, \ldots, c_r\}$ be a Jordan frame, $c_i c_j = 0$ if $i \neq j$, $c_i^2 = c_i$ $c_1 + \cdots + c_r = e$

Since the operators $L(c_i)$ commute, they admit a simultaneous diagonalization. We consider the following subspaces of V

$$egin{aligned} & V_{ii} = V\left(c_{i,},1
ight) = \mathbb{R}c_{i}, \ & V_{ij} = V\left(c_{i},rac{1}{2}
ight) \cap V\left(c_{j},rac{1}{2}
ight). \end{aligned}$$

Theorem

(1) The space V decomposes in the following orthogonal direct sum:

$$V = \bigoplus_{1 \leq i \leq j \leq r} V_{ij} = \sum_{1 \leq i \leq r}^{\bigoplus} \mathbb{R}c_i \oplus \sum_{1 \leq i < j \leq r}^{\bigoplus} V_{ij}$$

(3) Furthermore,

$$V_{ij} \cdot V_{ij} \subset V_{ij} + V_{jj},$$

$$V_{ij} \cdot V_{jk} \subset V_{ik}, \text{ if } i \neq k,$$

$$V_{ij} + V_{ki} = \{0\}, \text{ if } \{i, j\} \cap \{k, \ell\} = 0.$$

(4) For $i \neq j$, all the spaces V_{ij} have de same dimension, denoted by d. (5) We have

(5) We have

$$n=r+\frac{d}{2}r(r-1).$$

э

Classification of simple Euclidean Jordan algebras

V	dim V	rank V	d
$Sym(m,\mathbb{R})$	$\frac{1}{2}m(m+1)$	т	1
$Herm(m,\mathbb{C})$	m^2	т	2
$Herm(m,\mathbb{H})$	m(2m - 1)	т	4
$\mathbb{R} imes \mathbb{R}^{n-1}$	п	2	<i>n</i> – 2
$Herm(3,\mathbb{O})$	27	3	8

V	Ω	g	ť
$Sym(m,\mathbb{R})$	$\Omega_m(\mathbb{R})$	$\mathfrak{sl}(m,\mathbb{R})\oplus\mathbb{R}$	0(<i>m</i>)
$Herm(m,\mathbb{C})$	$\Omega_m(\mathbb{C})$	$\mathfrak{sl}(m,\mathbb{C})\oplus\mathbb{R}$	$\mathfrak{su}(m)$
$Herm(m,\mathbb{H})$	$\Omega_m(\mathbb{H})$	$\mathfrak{sl}(m,\mathbb{H})\oplus\mathbb{R}$	$\mathfrak{su}(m,\mathbb{H})$ 4
$\mathbb{R} imes\mathbb{R}^{n-1}$	Λ_n	$\mathfrak{o}(1,n-1)\oplus\mathbb{R}$	o(n-1)
$Herm(3,\mathbb{O})$	$\Omega_3(\mathbb{O})$	$\mathfrak{e}_{6(-26)}\oplus\mathbb{R}$	Ĵ4