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Poisson manifolds at a glance



What is a Poisson manifold ?

ALGEBRIC DEFINITION

A Poisson manifold is a manifold M with a
{-, -} 1€ (M) x (M) — C=(M)
- R-bilinear
- {f,g} = —{g, f} (skew-symmetry)
- {f,gh} = g{f,h} + h{f,g} (Leibniz)
“{f{g, B3} 4 {9, {h: £3} + {h, {f,9}} =0 Uacobi).

Such a {-,-} is called a Poisson bracket.



What is a Poisson manifold ?

EXAMPLE

If (M, w) is a symplectic manifold then

{f,9} i=wsHy) Vi geC™(M)

where Hy ow = —df isa Poisson bracket.



What is a Poisson manifold ?

EXAMPLE

If (M, w) is a symplectic manifold then

{f,9} i=wsHy) Vi geC™(M)

where Hy ow = —df isa Poisson bracket.

For the Jacobi identity :

—dOJ(Hf,Hg,Hh) = {f7 {g’ h}} + {97 {h7 f}} + {h7{f’ g}}



What is a Poisson manifold ?

GEOMETRIC DEFINITION

A Poisson manifold is a manifold M with a Poisson tensor r, i.e.
7 € D(A’TM) s. t. [m, m]gny =0.
Here [-,-]45 IS the Schouten-Nijenhuis bracket given on bivector fields by

(XAY,UAV]sy = [X,UAY AV~ [X,VIANY AU
—YUANXAVHY,VINX AU.

where [-,-] is the usual Lie bracket.



What is a Poisson manifold ?

EXAMPLE

Let g be a finite dim. Lie algebra. For a € g* define m, € A®T,g* ~ A%g”* by

ma(u,v) == a([u,v]g) Vu,veEg.



What is a Poisson manifold ?

EXAMPLE

Let g be a finite dim. Lie algebra. For a € g* define m, € A®T,g* ~ A%g”* by
ma(u,v) == a([u,v]g) Vu,veEg.
If (e;) is a basis of g with corresponding global linear coordinate system (x;)
on g* then
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1<j k
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What is a Poisson manifold ?

EXAMPLE

Let g be a finite dim. Lie algebra. For a € g* define m, € A®T,g* ~ A%g”* by

ma(u,v) == a([u,v]g) Vu,veEg.
If (e;) is a basis of g with corresponding global linear coordinate system (x;)
on g* then

Tq = E <ZCZ mk(a)> Ox; N\ Ox;

1<j k
where [e;, ej]lg = 2, CF ex. The map 7 : a +— m, belongs thus to I'(A*Tg").
Using (1), [m, m]gn =0 iff
ST (CinCk + CimCilt + CiomCF) =0 Vi, j K, L.

m

Therefore 7 is a Poisson tensor on g*, by the Jacobi identity of [, - ],.



What is a Poisson manifold ?

ONE AND THE SAME

n(df,dg) = {f, 9}

S Il (df, dg, dh) = {f, {g,h}} + {9, {, F}} + (B, (£, 93}



Elements attached to a Poisson manifold

: Anchor my :T*M — TM, aw 7n(a,-).



Elements attached to a Poisson manifold

 Anchor  my :T*M — TM, aw 7n(a,-).

- Koszul bracket [-,-]x : QY (M) x QY (M) — QL (M),
[, Blx = Loy (o) B — Ly sy — d(m(, B)).



Elements attached to a Poisson manifold

 Anchor  my :T*M — TM, aw 7n(a,-).

- Koszul bracket [+, ]z : QY (M) x QY (M) — QL (M),
[, Blx = qu(a)/B - E'/ru(B)o‘ - d(ﬂ-(a7 ﬁ))

- Poisson differential  dy : X* (M) — X*+1(M),

aig!!

dxP(o1,..., apy1) = Z(—l)”‘l wﬂ(ai)-P(al,...,ai,...,ap+1)
=il

+ > O P(leu oylm,ar, ., 8iy e Gy ).

1<i<j<p+1



Elements attached to a Poisson manifold

 Anchor  my :T*M — TM, aw 7n(a,-).

- Koszul bracket [+, ]z : QY (M) x QY (M) — QL (M),
[, Blx = qu(a)/B - qu(B)o‘ - d(ﬂ-(a7 /8))

- Poisson differential  dr : ¥°(M) — X*t1(M),

p+1

dﬂ'P (al,. 509 Olp+1) = Z(—I)H_l Wﬂ(ai) . P(al,...,ai,. . ,ap+1)
i=1

+ > O P(low oylm,ar, ., 8iy e Gy ).

1<i<j<p+1

- Poisson codifferential 6 : Q*(M) — Q*~1(M),

Or i=ipr0od—doir.



Riemannian geometry of Poisson
manifolds



Contravariant Levi-Civita connection

ANALOGY

Recall that given a Riemannian metric g on M,
3 VXYM x XY (M) — (M), (X,Y)— VxY
1. R-bilinear
2. VyxY = fVxY (tensoriality)
33Vx(fY)=X(f)Y + fVxY  (Leibniz)
4 T(X,Y):=VxY —VyX —[X,Y] =0 (torsionlessness)
5 X Y, Z) =(VxY,Z)+(Y,VxZ) (compatibility with g)

called the Levi-Civita connection associated to g.
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ANALOGY
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Contravariant Levi-Civita connection

ANALOGY

Similarly, given a Riemannian metric g on (M, ),
3 D:OYM) x QYM) — QY (M), (a,B) — Duf
1. R-bilinear

l.e.
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3Vx(fY)=X(f)Y + fVxY  (Leibniz)

connection
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Contravariant Levi-Civita connection

ANALOGY

Similarly, given a Riemannian metric g on (M, )

3 DY (M) x QY(M) — QY (M),

1. R-bilinear ie.
- Visa
2. DsafB = fDaf (tensoriality) } (covariant)
Da(fB) = m(a)(f) B+ fDaf (Leibniz) connection

4 T(X,Y):=VxY —-VyX —[X,Y]=0

5 X (Y,2) =(VxY,Z) +(Y,Vx Z)

(o, B) = Daf

(torsionlessness)
(compatibility with g)

called the Levi-Civita connection associated to g.
This is determined by
(VxY,Z) ——{X Y, Z)+Y - (X,Z) — Z - (X,Y)

+(X,Y],2) - (v, 2], X) + (2, X],Y)} .
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ANALOGY
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ANALOGY

Similarly, given a Riemannian metric g on (M, )
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Contravariant Levi-Civita connection

ANALOGY

Similarly, given a Riemannian metric g on (M, ),
3 D:OYM) x QYM) — QY (M), (a,B) — Duf

1. R-bilinear ie.

2. Djaf = fDaf (tensoriality) } D

Da(fB) = my(a)(f) B+ fDafB (Leibniz) ) connection

4. T(a,B) :=Daf — Do — [, f]= =0 (torsionlessness)
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Contravariant Levi-Civita connection

ANALOGY

Similarly, given a Riemannian metric g on (M, ),
3 D:OYM) x QYM) — QY (M), (a,B) — Duf
1. R-bilinear ie.
2. DjufB=fDaB  (tensoriality) } oS
3. Da(fB8) = m(a)(f) B+ fDaB (Leibniz) J connection
4. T(a,B) :=Daf — Do — [, f]= =0 (torsionlessness)
5. mu(a) - (B,7) = (DaB,7) + (B, Dary) (compatibility with g)
called the contravariant Levi-Civita connection associated to (r, g).

This is determined by

(DaB7) =5 {m(@) - (B,7) +m(B) - (o) = ms(1) - (o, )
+ <[Oé, ﬁ]‘"’/ﬁ - ([ﬂv’Y]‘ﬂ')a> + <[’Y7 O‘]ﬂ'aﬂ>} o
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Curvatures

- Riemann curvature

R(e, B)7 :=DaDpY — DsDaY — Dia,8],7-

- Ricci curvature
Ric(v) := Z R(v,e;)e;, YveTyM.
i

- Curvature operator
1
RY (uAv) = > ; (R(u,v)es) Neg.
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Curvatures

- Riemann curvature

R(e, B)y := DaDp¥ — PsDa¥ = Dia,g],.7-

- Ricci curvature
Ric (a) := Z R(a,ei)ei, VaeTyM.
i

- Curvature operator
1
RY (uAv) = > ; (R(u,v)es) Neg.
- Weitzenbd6ck curvature
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Curvatures

- Riemann curvature

R(e, B)y := DaDp¥ — PsDa¥ = Dia,g],.7-

- Ricci curvature
Ric (a) := Z R(a,e)es, VaeTyM.
i

- Curvature operator
1
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Curvatures

- Riemann curvature

R(e, B)y := DaDp¥ — PsDa¥ = Dia,g],.7-

- Ricci curvature
Ric (a) := Z R(a,e)es, VaeTyM.
i

- Curvature operator

RP (a Ab) = % Z (R(a,b)ei) Ae;.

K3

- Weitzenbd6ck curvature
WP(P) :== = eiAlej 2 R(ei,e;)P], VP E€X(M).
%)

(e;) beeing an orthonormal basis of T, M and (e;), the dual basis of T M.

n



Curvatures

A FORMULA ON THE WAY

Forany n € QP(M) and any Xi,..., X, € X1(M),

p
WY (n)(X1,..., Xp) = > _ n(X1,..., Xi 1, Ric(X;), Xit1, .- ., Xp)
=il

+2 Y DM RV AX) an) (X, XL X X)
1<i<j<p

12



Curvatures

A FORMULA ON THE WAY

Forany P € XP(M) and any aq,...,ap € Q1 (M),

P
QBD(P)(al,. o .,ap) = Z P(al,.. .,aifl,Ric (ai),aprl,.. .,Otp)
=1
+2 ) (=) (RP(u Aay)a P)(aa,. o, 84,5 8-, ap).

1<i<j<p

12



Completing the picture



Introducing A™9

RIEMANN

Connection Laplacian
AV = Zi(vai B; = VE; 0 Ve;)

(E;) is a local orthonormal frame.
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where 6 := 3>, ig; o Vg, is the co-
differential.
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(E;) is a local orthonormal frame.
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Introducing A™9

RIEMANN

Connection Laplacian
AV = Zi(vai B; = VE; 0 Ve;)

(E;) is a local orthonormal frame.

Hodge-de Rham Laplacian
A=dod+dod

where 6 := 3>, ig; o Vg, is the co-
differential.

Beltrami Laplacian
Af =AY f = —div,(grad f)

for any function f.

PoissoN

(Contravariant) connection Laplacian
AD = Zi(DDOiei — 'Dgi o Dgi)

(6;) is a local orthonormal co-frame.

The operator A™9
A™9 :=dr 089 469 0dy
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Introducing A™9

RIEMANN

Connection Laplacian
AV = Zi(vai B; = VE; 0 Ve;)

(E;) is a local orthonormal frame.

Hodge-de Rham Laplacian
A=dod+dod

where 6 := 3>, ig; o Vg, is the co-
differential.

Beltrami Laplacian
Af =AY f = —div,(grad f)

for any function f.

PoissoN

(Contravariant) connection Laplacian
AP = >2i(Dpy,0; = De; © Do;)

(6;) is a local orthonormal co-frame.

The operator A™9
A™9 :=dr 089 469 0dy

where 67 :=f#o0d,0b and ¢, b are
the musical isomorphisms.

The zero degree case
A9 f — AD f
for any function f ?

13



The compatibility condition d(m 1 py) =0

DOES A™9 = AP oN C>®(M)?

Proposition

Assume (M, , g) to be oriented, with Riemannian volume element pg. Then
A™9 = AP —my(¢2) on (M)
where ¢g4 is the unique vector field on M s.t. ¢g 1 pg = d(m 1 pg).
Consequently, A™9 = AP on C>(M) iff d(m s pg)=0.In which case,
A™I(f) =divp(H}) V[ €C®(M).

1%



The compatibility condition d(m 1,

DOES A™9 = AP oN C>®(M)?

Proposition
Assume (M, , g) to be oriented, with Riemannian volume element pg. Then
A™9 = AP —my(¢2) on (M)
where ¢g4 is the unique vector field on M s.t. ¢g 1 pg = d(m 1 pg).
Consequently, A™9 = AP on C>(M) iff d(m s pg)=0.In which case,
A™I(f) =divp(H}) V[ €C®(M).

Here, divp : Q°(M) — Q°~ (M) is the contravariant divergence defined by
divD(n)|z 8= Zei 1De,n
k3

where (e;) is any basis of T, M with dual basis (g;). And, H ¢ := my(df) is the Hamiltonian

vector field of f.
14



The compatibility condition d(m 1 py) =0

DIVERGENCES

If (M, =, g) is oriented, then for any n € Q°*(M)
my (divp n) = divg(myn) — 27y (Pg 2 m).
In particular, for any 1-form «
divp (a) = divg(my )
provided that d (71 pg) = 0.

15



The compatibility condition d(m 1 py) =0

DIVERGENCES

If (M, =, g) is oriented, then for any n € Q°*(M)
my (divp n) = divg(myn) — 27y (Pg 2 m).
In particular, for any 1-form «
divp (a) = divg(my )

provided that d (71 pg) = 0.

Theorem
If (M,=,g) is closed and s. t. d(mw 1 pg) =0 then

/ 5 () g =/ divp(a)ug =0 Va € Q'(M).
M M



Main properties of A™9¢

SELF-ADJOINTNESS AND NON-NEGATIVITY

Let {(-, -)) denote the global inner product defined on X® (M) by

(P, QY= /M<P, Qny VP, Qe XP(M).

Assume (M, m, g) to be closed and s. t. d(w 1 png) = 0. Then
1. 62 is the formal adjoint of d :
(d=P, Q) = (P, 62Q) VYPeXP(M), Q€ XPT(M).
2. A™9 js formally self-adjoint :
(A™9(P), Q) = (P, A™(Q)) VP,QeXP(M).

3. A™9 js non-negative: {(A™9I(P), P) >0 VPeZXP(M).



Two classical techniques from
Riemannian geometry



Normal (co-)frames at a point

Lemma

Around any x € (M, g) there exists a local orthonormal frame (E}) s.t.
(VEg)|z =0 forall k.



Normal (co-)frames at a point

Lemma

Around any x € (M, g) there exists a local orthonormal frame (E}) s.t.
(VEg)|z =0 forall k.

Let M"Y denote the open dense set of (M, 7, g) where the map

M >z — rank(my|e: Ty M — Ty M)

is locally constant.
Proposition
The following are equivalent.

1. Around any = € M"¢9 there exists a local orthonormal co-frame (0y) s. t.
(DOg)|z =0 forall k.

2. Dis an Fred-connection : Dy = 0 whenever my(a) =0, forall a € Ty M
with @ € M"e9.



The Bochner technique

TSt INGREDIENT

Lemma (E. Hopf, 1927)

Assume (M, g) to be closed. If f is a functionon M s.t. Af >0 then f is constant
and Af =0.



The Bochner technique

TSt INGREDIENT

Lemma (E. Hopf, 1927)

Assume (M, g) to be closed. If f is a functionon M s.t. Af >0 then f is constant
and Af =0.

Lemma

Assume (M, m, g) to be closed and s. t. d(w 1 pg) = 0. If f isa functionon M s.t.
A™9(f) >0 then f is a Casimir function (ie. Hy =0) and A™9(f) =0.
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24 INGREDIENT

Theorem (R. Weitzenbadck, 1923)

On (M, g) the following formula holds good
A = AV + V.



The Bochner technique

24 INGREDIENT

Theorem (R. Weitzenbadck, 1923)

On (M, g) the following formula holds good
A = AV + V.

If (M,=,g) is s.t. d(mspg) =0 then
A™9 = AP 4 9P,



The Bochner technique

THE RECIPE

- Start with following general formula :
A (=5 1) = Vol - (Aw,w) + @V w,w) ()

for w a differential form.
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The Bochner technique

THE RECIPE

- Start with following general formula :
A (=5 1) = Vol - (Aw,w) + @V w,w) ()

for w a differential form.

- Try to find some assumptions on w and on the curvature so that

—(Aw,w) + WV w,w) > 0.

- Once succeeded, the RH.S. of () vanishes, implying in particular that Vw = 0.

20



Some classical results & their
analogues



Vanishing type theorems

15t BOCHNER TYPE THEOREM

Recall that a Killing vector field on (M, g) is a vector field X € x'(M) verifying
(VyX,Z)=—(Y,VzX) VY, Z¢cx"(M).

Theorem (S. Bochner, 1946)

Assume (M, g) to be closed. If Ric <0 (i.e. (Ricv,v) < 0 Vv € TM) then every
Killing vector field X is parallel, i.e. VX = 0. Furthermore, if Ric < 0 then there are
no non-zero Killing vector field on M.



Vanishing type theorems

15t BOCHNER TYPE THEOREM

Recall that a Killing vector field on (M, g) is a vector field X € x'(M) verifying
(VyX,Z)=—(Y,VzX) VY, Z¢cx"(M).

Theorem (S. Bochner, 1946)

Assume (M, g) to be closed. If Ric <0 (i.e. (Ricv,v) < 0 Vv € TM) then every
Killing vector field X is parallel, i.e. VX = 0. Furthermore, if Ric < 0 then there are
no non-zero Killing vector field on M.

If fis a Casimir function on (M, w, g) then

(Dodf, B) = —{a, Dpdf) VYa,B e QH(M).

Theorem

Assume (M, m, g) to be closed and s. t. d(w 1 pg) = 0. If Ric <0 then, for any
Casimir function f € C>®(M), Ddf = 0. Furthermore, if Ric < 0 then there are
no non-constant Casimir functions on M.



Vanishing type theorems

24 BOCHNER TYPE THEOREM

Theorem (S. Bochner, 1946)

Assume (M, g) to be closed. If Ric > 0 then a 1-form « on M is harmonic, i.e.

Aa =0, iff Va=0.Moreover, if Ric > 0 then there are no non-zero harmonic
1-forms on M.



Vanishing type theorems

24 BOCHNER TYPE THEOREM

Theorem (S. Bochner, 1946)

Assume (M, g) to be closed. If Ric > 0 then a 1-form « on M is harmonic, i.e.
Aa =0, iff Va=0.Moreover, if Ric > 0 then there are no non-zero harmonic
1-forms on M.

Theorem

Assume (M, m, g) to be closed and s. t. d(w 1 pg) = 0. If Ric > 0 then a vector field
X on M is harmonic, i.e. A™9X =0, iff DX = 0. Moreover, if Ric > 0 then there
are no non-zero harmonic vector fields on M.



Vanishing type theorems

ANOTHER FORM OF IT

Theorem
Assume (M, m, g) to be closed and s. t. d(w 1 pg) = 0. If Ric > 0 then for any
1-form a

ot preserves , ie. L, zm=0; and

Da=0 Iiff {

my(cr) preserves g, ie. Loy (a)hg =0.

Moreover, if Ric > 0 then every D-parallel 1-form vanishes.



Vanishing type theorems

MEYER-GALLOT TYPE THEOREM

Theorem (D. Meyer & S. Gallot, 1975)

Assume (M, g) to be closed. If ®Y >0 (ie. ifall the eigenvalues of Y are > 0)
then a p-form w on M is harmonic, ie. Aw =0, iff Yw = 0. Moreover, if RY >0
then every harmonic p-form vanishes for p=1,...,dim M — 1.



Vanishing type theorems

MEYER-GALLOT TYPE THEOREM

Theorem (D. Meyer & S. Gallot, 1975)

Assume (M, g) to be closed. If ®Y >0 (ie. ifall the eigenvalues of Y are > 0)
then a p-form w on M is harmonic, ie. Aw =0, iff Yw = 0. Moreover, if RY >0
then every harmonic p-form vanishes for p=1,...,dim M — 1.

Theorem

Assume (M, ,g) to be closed and s.t. d(m 1 pg) = 0. If RP >0 then a p-vector
field P on M is harmonic, ie. A™9P =0, iff DP = 0. Moreover, if RP > 0 then
every harmonic p-vector field vanishes for p=1,...,dim M — 1.



Vanishing type theorems

CASE OF THE POISSON TENSOR 7

Theorem

Assume (M, , g) to be closed and s. t. RP > 0. The following are then equivalent.
1. D is a Poisson connection, i.e. Dm = 0.
2. d(m 1 pg) =0 and = is harmonic.
3. D is an Fred-connection and d(m 1 pg) = d(r’ 5 pg) = 0 where 7’ := my(n”).

Furthermore, if any of these conditions holds, then StP has (at least) a vanishing
eigenvalue.



A la Lichnerowicz

LICHNEROWICZ TYPE THEOREM

Theorem (A. Lichnerowicz, 1952)

Assume (M, g) to be closed. For any tensor field T on M, if VFT =0 for some
integer k> 2 then VT = 0.
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Theorem

Assume (M, m, g) to be closed and s.t. d(w . pg) = 0. For any tensor field T on M,
if DT =0 forsome k> 2 then DT = 0.



A la Lichnerowicz

LICHNEROWICZ TYPE THEOREM

Theorem (A. Lichnerowicz, 1952)

Assume (M, g) to be closed. For any tensor field T on M, if VFT =0 for some
integer k> 2 then VT = 0.

Theorem

Assume (M, m, g) to be closed and s.t. d(w . pg) = 0. For any tensor field T on M,
if DT =0 forsome k> 2 then DT = 0.

Corollary

Assume (M, ,g) to be closed. Then Dx =0 iff d(w.pg) =0 and D*r =0 for
some k > 2.



A la Lichnerowicz

LICHNEROWICZ TYPE ESTIMATE

Theorem (A. Lichnerowicz, 1958)

Assume (M, g) to be closed. If Ric > cg forsome ¢>0 (ie. (Ricv,v) > c(v,v)
forall v e TM) then

A > c-(dimM/dim M — 1)

for any non-zero eigenvalue X of A (ie. forany X € R* s.t. Af = \f forsome
non-zero function f.



A la Lichnerowicz

LICHNEROWICZ TYPE ESTIMATE

Theorem (A. Lichnerowicz, 1958)

Assume (M, g) to be closed. If Ric > cg forsome ¢>0 (ie. (Ricv,v) > c(v,v)
forall v e TM) then

A > c-(dimM/dim M — 1)

for any non-zero eigenvalue X of A (ie. forany X € R* s.t. Af = \f forsome
non-zero function f.

Assume (M, m, g) to be closed and s.t. d(mw 1 pg) =0. If Ric > cg for ¢ >0 then
A>c-(dimM/dimM —1)

for any non-zero eigenvalue \ of A™9 (restricted to functions).



Thank you for your attention

Any questions?
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