A Laplace Operator for Poisson Manifolds

Seminar "Geometry, Topology and Algebra"

Zouhair Saassai

Faculty of Applied Sciences - Ait Melloul

Marrakesh, December 26th, 2020

Main reference

• Z. Saassai "A Laplace operator for Poisson manifolds"

Differential Geometry and Its Applications
Volume 68 (2020) 101576

Motivation

Riemannian Geometry

(Manifold) + (Riemannian metric)

- · Classical Levi-Civita connection
- · Laplace operator

Riem. Geom. of Poisson Manifolds

(Poisson Manifold) + (Riem. metric)

- · Contravariant Levi-Civita connection
- •

Outline

- 1. Poisson manifolds at a glance
- 2. Riemannian geometry of Poisson manifolds
- 3. Completing the picture
- 4. Two classical techniques from Riemannian geometry
- 5. Some classical results & their analogues

Poisson manifolds at a glance

ALGEBRIC DEFINITION

A **Poisson manifold** is a manifold M with a

$$\{\cdot,\cdot\}:\mathcal{C}^{\infty}(M)\times\mathcal{C}^{\infty}(M)\longrightarrow\mathcal{C}^{\infty}(M)$$

- ℝ-bilinear
- $\{f,g\} = -\{g,f\}$ (skew-symmetry)
- $\cdot \ \{f,gh\} = g\{f,h\} + h\{f,g\} \quad \text{(Leibniz)}$
- $\cdot \ \{f,\{g,h\}\} + \{g,\{h,f\}\} + \{h,\{f,g\}\} = 0 \quad \text{(Jacobi)}.$

Such a $\{\cdot,\cdot\}$ is called a **Poisson bracket**.

EXAMPLE

If (M,ω) is a symplectic manifold then

$$\{f,g\} := \omega(\mathcal{H}_f,\mathcal{H}_g) \quad \forall f,g \in \mathcal{C}^{\infty}(M)$$

where $\mathcal{H}_f \, \lrcorner \, \omega = -df$ is a Poisson bracket.

EXAMPLE

If (M,ω) is a symplectic manifold then

$$\{f,g\} := \omega(\mathcal{H}_f,\mathcal{H}_g) \quad \forall f,g \in \mathcal{C}^{\infty}(M)$$

where $\mathcal{H}_f \, \lrcorner \, \omega = -df$ is a Poisson bracket.

For the Jacobi identity:

$$-d\omega(\mathcal{H}_f, \mathcal{H}_g, \mathcal{H}_h) = \{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\}.$$

GEOMETRIC DEFINITION

A **Poisson manifold** is a manifold M with a **Poisson tensor** π , i.e.

$$\pi \in \Gamma(\Lambda^2 TM) \qquad \text{s. t.} \qquad [\pi\,,\,\pi]_{\scriptscriptstyle SN} = 0.$$

Here $[\cdot,\cdot]_{\scriptscriptstyle SN}$ is the Schouten-Nijenhuis bracket given on bivector fields by

$$[X \wedge Y, U \wedge V]_{SN} = [X, U] \wedge Y \wedge V - [X, V] \wedge Y \wedge U - [Y, U] \wedge X \wedge V + [Y, V] \wedge X \wedge U.$$

$$(1)$$

where $[\cdot,\cdot]$ is the usual Lie bracket.

EXAMPLE

Let
$$\mathfrak g$$
 be a finite dim. Lie algebra. For $a\in \mathfrak g^*$ define $\pi_a\in \Lambda^2T_a\mathfrak g^*\simeq \Lambda^2\mathfrak g^*$ by
$$\pi_a(u,v):=a\big([u,v]_{\mathfrak g}\big)\quad\forall\, u,v\in \mathfrak g.$$

EXAMPLE

Let $\mathfrak g$ be a finite dim. Lie algebra. For $a\in\mathfrak g^*$ define $\pi_a\in\Lambda^2T_a\mathfrak g^*\simeq\Lambda^2\mathfrak g^*$ by

$$\pi_a(u,v) := a([u,v]_{\mathfrak{g}}) \quad \forall u,v \in \mathfrak{g}.$$

If (e_i) is a basis of $\mathfrak g$ with corresponding global linear coordinate system (x_i) on $\mathfrak g^*$ then

$$\pi_a = \sum_{i < j} \left(\sum_k C_{ij}^k x_k(a) \right) \partial x_i \wedge \partial x_j$$

where $[e_i, e_j]_{\mathfrak{g}} = \sum_k C_{ij}^k e_k$.

7

EXAMPLE

Let $\mathfrak g$ be a finite dim. Lie algebra. For $a\in\mathfrak g^*$ define $\pi_a\in\Lambda^2T_a\mathfrak g^*\simeq\Lambda^2\mathfrak g^*$ by

$$\pi_a(u,v) := a([u,v]_{\mathfrak{g}}) \quad \forall u,v \in \mathfrak{g}.$$

If (e_i) is a basis of $\mathfrak g$ with corresponding global linear coordinate system (x_i) on $\mathfrak g^*$ then

$$\pi_a = \sum_{i < j} \left(\sum_k C_{ij}^k x_k(a) \right) \partial x_i \wedge \partial x_j$$

where $[e_i,e_j]_{\mathfrak{g}}=\sum_k C_{ij}^k\,e_k$. The map $\pi:a\mapsto \pi_a$ belongs thus to $\Gamma(\Lambda^2T\mathfrak{g}^*)$.

7

EXAMPLE

Let $\mathfrak g$ be a finite dim. Lie algebra. For $a\in\mathfrak g^*$ define $\pi_a\in\Lambda^2T_a\mathfrak g^*\simeq\Lambda^2\mathfrak g^*$ by

$$\pi_a(u,v) := a([u,v]_{\mathfrak{g}}) \quad \forall u,v \in \mathfrak{g}.$$

If (e_i) is a basis of $\mathfrak g$ with corresponding global linear coordinate system (x_i) on $\mathfrak g^*$ then

$$\pi_a = \sum_{i < j} \left(\sum_k C_{ij}^k x_k(a) \right) \partial x_i \wedge \partial x_j$$

where $[e_i,e_j]_{\mathfrak{g}}=\sum_k C_{ij}^k\,e_k$. The map $\pi:a\mapsto \pi_a$ belongs thus to $\Gamma(\Lambda^2T\mathfrak{g}^*)$.

Using (1), $[\pi, \pi]_{SN} = 0$ iff

$$\sum_{m} \left(C_{im}^{l} C_{jk}^{m} + C_{jm}^{l} C_{ki}^{m} + C_{km}^{l} C_{ij}^{m} \right) = 0 \quad \forall i, j, k, l.$$

Therefore π is a Poisson tensor on \mathfrak{g}^* , by the Jacobi identity of $[\cdot,\cdot]_{\mathfrak{g}}$.

7

ONE AND THE SAME

$$\pi(df, dg) = \{f, g\}$$

$$\frac{1}{2} \left[\pi, \pi \right]_{\scriptscriptstyle SN} (df, dg, dh) = \left\{ f, \left\{ g, h \right\} \right\} + \left\{ g, \left\{ h, f \right\} \right\} + \left\{ h, \left\{ f, g \right\} \right\}$$

• Anchor
$$\pi_{\sharp}: T^*M \longrightarrow TM$$
, $a \mapsto \pi(a, \cdot)$.

- $\cdot \ \, \textbf{Anchor} \quad \pi_{\sharp}: T^*M \longrightarrow TM \,, \quad a \mapsto \pi(a, \cdot \,).$
- $\begin{array}{ll} \cdot \ \, \text{Koszul bracket} & [\,\cdot,\cdot\,]_\pi:\Omega^1(M)\times\Omega^1(M)\longrightarrow\Omega^1(M), \\ \\ & [\alpha,\beta]_\pi:=\mathcal{L}_{\pi_\sharp(\alpha)}\beta-\mathcal{L}_{\pi_\sharp(\beta)}\alpha-d\big(\pi(\alpha,\beta)\big). \end{array}$

- Anchor $\pi_{\sharp}: T^*M \longrightarrow TM$, $a \mapsto \pi(a, \cdot)$.
- $\begin{array}{ll} \cdot \ \textit{Koszul bracket} & [\cdot, \cdot]_\pi : \Omega^1(M) \times \Omega^1(M) \longrightarrow \Omega^1(M), \\ \\ [\alpha, \beta]_\pi := \mathcal{L}_{\pi_\sharp(\alpha)}\beta \mathcal{L}_{\pi_\sharp(\beta)}\alpha d\big(\pi(\alpha, \beta)\big). \end{array}$
- $$\begin{split} \cdot & \textit{Poisson differential} \quad d_{\pi}: \mathfrak{X}^{\bullet}(M) \longrightarrow \mathfrak{X}^{\bullet+1}(M), \\ & d_{\pi}P\left(\alpha_{1}, \ldots, \alpha_{p+1}\right) := \sum_{i=1}^{p+1} (-1)^{i+1} \, \pi_{\sharp}(\alpha_{i}) \cdot P\left(\alpha_{1}, \ldots, \widehat{\alpha}_{i}, \ldots, \alpha_{p+1}\right) \\ & + \sum_{1 \leq i < j \leq p+1} (-1)^{i+j} \, P\left([\alpha_{i}, \alpha_{j}]_{\pi}, \alpha_{1}, \ldots, \widehat{\alpha}_{i}, \ldots, \widehat{\alpha}_{j}, \ldots, \alpha_{p+1}\right). \end{split}$$

- Anchor $\pi_{\sharp}: T^*M \longrightarrow TM$, $a \mapsto \pi(a, \cdot)$.
- $\begin{array}{ll} \cdot \ \textit{Koszul bracket} & [\cdot, \cdot]_\pi : \Omega^1(M) \times \Omega^1(M) \longrightarrow \Omega^1(M), \\ \\ [\alpha, \beta]_\pi := \mathcal{L}_{\pi_\sharp(\alpha)}\beta \mathcal{L}_{\pi_\sharp(\beta)}\alpha d\big(\pi(\alpha, \beta)\big). \end{array}$
- $$\begin{split} \cdot & \textit{Poisson differential} \quad d_{\pi}: \mathfrak{X}^{\bullet}(M) \longrightarrow \mathfrak{X}^{\bullet+1}(M), \\ & d_{\pi}P\left(\alpha_{1}, \ldots, \alpha_{p+1}\right) := \sum_{i=1}^{p+1} (-1)^{i+1} \, \pi_{\sharp}(\alpha_{i}) \cdot P\left(\alpha_{1}, \ldots, \widehat{\alpha}_{i}, \ldots, \alpha_{p+1}\right) \\ & + \sum_{1 \leq i < j \leq p+1} (-1)^{i+j} \, P\left([\alpha_{i}, \alpha_{j}]_{\pi}, \alpha_{1}, \ldots, \widehat{\alpha}_{i}, \ldots, \widehat{\alpha}_{j}, \ldots, \alpha_{p+1}\right). \end{split}$$
- Poisson codifferential $\delta_\pi:\Omega^ullet(M)\longrightarrow\Omega^{ullet-1}(M),$ $\delta_\pi:=i_\pi\circ d-d\circ i_\pi\,.$

Riemannian geometry of Poisson manifolds

Contravariant Levi-Civita connection

ANALOGY

Recall that given a Riemannian metric g on M,

$$\exists ! \quad \nabla : \mathfrak{X}^1(M) \times \mathfrak{X}^1(M) \longrightarrow \mathfrak{X}^1(M), \quad (X,Y) \mapsto \nabla_X Y$$

- 1. R-bilinear
- 2. $\nabla_{fX}Y = f \nabla_X Y$ (tensoriality)
- 3. $\nabla_X(fY) = X(f)Y + f\nabla_XY$ (Leibniz)
- 4. $T(X,Y) := \nabla_X Y \nabla_Y X [X,Y] = 0$ (torsionlessness)
- 5. $X \cdot \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$ (compatibility with g)

called the *Levi-Civita connection* associated to g.

Contravariant Levi-Civita connection

1. ℝ-bilinear

ANALOGY

Recall that given a Riemannian metric g on M,

$$\exists ! \quad \nabla : \mathfrak{X}^1(M) \times \mathfrak{X}^1(M) \longrightarrow \mathfrak{X}^1(M), \quad (X,Y) \mapsto \nabla_X Y$$

- 2. $\nabla_{fX}Y = f \nabla_{X}Y$ (tensoriality) 3. $\nabla_{X}(fY) = X(f)Y + f \nabla_{X}Y$ (Leibniz) $\begin{cases} \nabla \text{ is a } (\text{covariant}) \\ \text{connection} \end{cases}$
- 4. $T(X,Y) := \nabla_X Y \nabla_Y X [X,Y] = 0$ (torsionlessness)
- 5. $X \cdot \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$ (compatibility with g)

called the *Levi-Civita connection* associated to g.

Recall that given a Riemannian metric g on M,

$$\exists ! \quad \nabla : \mathfrak{X}^1(M) \times \mathfrak{X}^1(M) \longrightarrow \mathfrak{X}^1(M), \quad (X,Y) \mapsto \nabla_X Y$$

- 1. ℝ-bilinear
- 2. $\nabla_{fX}Y = f \nabla_X Y$ (tensoriality) $\begin{cases} \nabla \text{ is a} \\ (\text{covariant}) \end{cases}$
- 3. $\nabla_X(fY) = X(f)Y + f\nabla_XY$ (Leibniz)
- 4. $T(X,Y) := \nabla_X Y \nabla_Y X [X,Y] = 0$ (torsionlessness)
- 5. $X \cdot \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$ (compatibility with q)

called the **Levi-Civita connection** associated to q.

$$\langle \nabla_X Y, Z \rangle = \frac{1}{2} \left\{ X \cdot \langle Y, Z \rangle + Y \cdot \langle X, Z \rangle - Z \cdot \langle X, Y \rangle + \langle [X, Y], Z \rangle - \langle [Y, Z], X \rangle + \langle [Z, X], Y \rangle \right\}.$$

Similarly, given a Riemannian metric g on (M, π) ,

$$\exists ! \quad \nabla : \mathfrak{X}^1(M) \times \mathfrak{X}^1(M) \longrightarrow \mathfrak{X}^1(M), \quad (X,Y) \mapsto \nabla_X Y$$

- 1. \mathbb{R} -bilinear 2. $\nabla_{fX}Y=f\,\nabla_XY$ (tensoriality) $\left\{\begin{array}{l} \text{i.e.} \\ \nabla \text{ is a} \\ \text{(covariant)} \end{array}\right.$
- 3. $\nabla_X(fY) = X(f)Y + f\nabla_XY$ (Leibniz)
- 4. $T(X,Y) := \nabla_X Y \nabla_Y X [X,Y] = 0$ (torsionlessness)
- 5. $X \cdot \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$ (compatibility with q)

called the **Levi-Civita connection** associated to q.

$$\langle \nabla_X Y, Z \rangle = \frac{1}{2} \left\{ X \cdot \langle Y, Z \rangle + Y \cdot \langle X, Z \rangle - Z \cdot \langle X, Y \rangle + \langle [X, Y], Z \rangle - \langle [Y, Z], X \rangle + \langle [Z, X], Y \rangle \right\}.$$

Similarly, given a Riemannian metric g on (M, π) ,

$$\exists ! \ \mathcal{D} : \Omega^1(M) \times \Omega^1(M) \longrightarrow \Omega^1(M), \ (\alpha, \beta) \mapsto \mathcal{D}_{\alpha}\beta$$

- 1. ℝ-bilinear
- 2. $\nabla_{fX}Y = f \nabla_X Y$ (tensoriality) $\begin{cases} \nabla \text{ is a} \\ \text{(covariant)} \end{cases}$
- 3. $\nabla_X(fY) = X(f)Y + f\nabla_XY$ (Leibniz)

- 4. $T(X,Y) := \nabla_X Y \nabla_Y X [X,Y] = 0$ (torsionlessness)
- 5. $X \cdot \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$ (compatibility with q)

called the **Levi-Civita connection** associated to q.

$$\langle \nabla_X Y, Z \rangle = \frac{1}{2} \left\{ X \cdot \langle Y, Z \rangle + Y \cdot \langle X, Z \rangle - Z \cdot \langle X, Y \rangle + \langle [X, Y], Z \rangle - \langle [Y, Z], X \rangle + \langle [Z, X], Y \rangle \right\}.$$

Similarly, given a Riemannian metric g on (M, π) ,

$$\exists ! \ \mathcal{D} : \Omega^1(M) \times \Omega^1(M) \longrightarrow \Omega^1(M), \ (\alpha, \beta) \mapsto \mathcal{D}_{\alpha}\beta$$

- 1. \mathbb{R} -bilinear 2. $\mathcal{D}_{f\alpha}\beta=f\,\mathcal{D}_{\alpha}\beta$ (tensoriality) $\begin{cases} \text{N.i.e.} \\ \nabla \text{ is a} \\ \text{(covariant)} \end{cases}$
- 3. $\nabla_X(fY) = X(f)Y + f\nabla_XY$ (Leibniz)
- 4. $T(X,Y) := \nabla_X Y \nabla_Y X [X,Y] = 0$ (torsionlessness)
- 5. $X \cdot \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$ (compatibility with q)

called the **Levi-Civita connection** associated to q.

$$\langle \nabla_X Y, Z \rangle = \frac{1}{2} \left\{ X \cdot \langle Y, Z \rangle + Y \cdot \langle X, Z \rangle - Z \cdot \langle X, Y \rangle + \langle [X, Y], Z \rangle - \langle [Y, Z], X \rangle + \langle [Z, X], Y \rangle \right\}.$$

Similarly, given a Riemannian metric g on (M, π) ,

$$\exists ! \ \mathcal{D} : \Omega^1(M) \times \Omega^1(M) \longrightarrow \Omega^1(M), \ (\alpha, \beta) \mapsto \mathcal{D}_{\alpha}\beta$$

- 3. $\mathcal{D}_{\alpha}(f\beta) = \pi_{\mathsf{H}}(\alpha)(f)\beta + f\mathcal{D}_{\alpha}\beta$ (Leibniz)

4.
$$T(X,Y) := \nabla_X Y - \nabla_Y X - [X,Y] = 0$$
 (torsionlessness)

5.
$$X \cdot \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$$
 (compatibility with g)

called the **Levi-Civita connection** associated to q.

$$\langle \nabla_X Y, Z \rangle = \frac{1}{2} \left\{ X \cdot \langle Y, Z \rangle + Y \cdot \langle X, Z \rangle - Z \cdot \langle X, Y \rangle + \langle [X, Y], Z \rangle - \langle [Y, Z], X \rangle + \langle [Z, X], Y \rangle \right\}.$$

Similarly, given a Riemannian metric g on (M, π) ,

$$\exists ! \ \mathcal{D} : \Omega^1(M) \times \Omega^1(M) \longrightarrow \Omega^1(M), \ (\alpha, \beta) \mapsto \mathcal{D}_{\alpha}\beta$$

- 3. $\mathcal{D}_{\alpha}(f\beta) = \pi_{\mathsf{H}}(\alpha)(f)\beta + f\mathcal{D}_{\alpha}\beta$ (Leibniz)
- 4. $\mathcal{T}(\alpha, \beta) := \mathcal{D}_{\alpha}\beta \mathcal{D}_{\beta}\alpha [\alpha, \beta]_{\pi} = 0$ (torsionlessness)
- 5. $X \cdot \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$ (compatibility with q)

called the **Levi-Civita connection** associated to q.

$$\langle \nabla_X Y, Z \rangle = \frac{1}{2} \left\{ X \cdot \langle Y, Z \rangle + Y \cdot \langle X, Z \rangle - Z \cdot \langle X, Y \rangle + \langle [X, Y], Z \rangle - \langle [Y, Z], X \rangle + \langle [Z, X], Y \rangle \right\}.$$

Similarly, given a Riemannian metric g on (M, π) ,

$$\exists ! \ \mathcal{D} : \Omega^1(M) \times \Omega^1(M) \longrightarrow \Omega^1(M), \ (\alpha, \beta) \mapsto \mathcal{D}_{\alpha}\beta$$

- 3. $\mathcal{D}_{\alpha}(f\beta) = \pi_{\mathsf{H}}(\alpha)(f)\beta + f\mathcal{D}_{\alpha}\beta$ (Leibniz)
- 4. $\mathcal{T}(\alpha,\beta) := \mathcal{D}_{\alpha}\beta \mathcal{D}_{\beta}\alpha [\alpha,\beta]_{\pi} = 0$ (torsionlessness)
- 5. $\pi_{\#}(\alpha) \cdot \langle \beta, \gamma \rangle = \langle \mathcal{D}_{\alpha} \beta, \gamma \rangle + \langle \beta, \mathcal{D}_{\alpha} \gamma \rangle$ (compatibility with q)

called the **Levi-Civita connection** associated to q.

$$\langle \nabla_X Y, Z \rangle = \frac{1}{2} \left\{ X \cdot \langle Y, Z \rangle + Y \cdot \langle X, Z \rangle - Z \cdot \langle X, Y \rangle + \langle [X, Y], Z \rangle - \langle [Y, Z], X \rangle + \langle [Z, X], Y \rangle \right\}.$$

Similarly, given a Riemannian metric g on (M, π) ,

$$\exists ! \ \mathcal{D} : \Omega^1(M) \times \Omega^1(M) \longrightarrow \Omega^1(M), \ (\alpha, \beta) \mapsto \mathcal{D}_{\alpha}\beta$$

- 1. \mathbb{R} -bilinear 2. $\mathcal{D}_{f\alpha}\beta=f\,\mathcal{D}_{\alpha}\beta$ (tensoriality) $\begin{cases} \text{i.e.} \\ \nabla \text{ is a} \\ \text{(covariant)} \end{cases}$
- 3. $\mathcal{D}_{\alpha}(f\beta) = \pi_{\mathsf{H}}(\alpha)(f)\beta + f\mathcal{D}_{\alpha}\beta$ (Leibniz)
- 4. $\mathcal{T}(\alpha,\beta) := \mathcal{D}_{\alpha}\beta \mathcal{D}_{\beta}\alpha [\alpha,\beta]_{\pi} = 0$ (torsionlessness)
- 5. $\pi_{\#}(\alpha) \cdot \langle \beta, \gamma \rangle = \langle \mathcal{D}_{\alpha}\beta, \gamma \rangle + \langle \beta, \mathcal{D}_{\alpha}\gamma \rangle$ (compatibility with q)

called the *contravariant Levi-Civita connection* associated to (π, q) .

$$\langle \nabla_X Y, Z \rangle = \frac{1}{2} \left\{ X \cdot \langle Y, Z \rangle + Y \cdot \langle X, Z \rangle - Z \cdot \langle X, Y \rangle + \langle [X, Y], Z \rangle - \langle [Y, Z], X \rangle + \langle [Z, X], Y \rangle \right\}.$$

Similarly, given a Riemannian metric g on (M, π) ,

$$\exists ! \ \mathcal{D} : \Omega^1(M) \times \Omega^1(M) \longrightarrow \Omega^1(M), \ (\alpha, \beta) \mapsto \mathcal{D}_{\alpha}\beta$$

- 1. \mathbb{R} -bilinear 2. $\mathcal{D}_{f\alpha}\beta = f\,\mathcal{D}_{\alpha}\beta$ (tensoriality) $\begin{cases} \mathcal{D} \text{ is a } \\ \text{contravariant} \end{cases}$
- 3. $\mathcal{D}_{\alpha}(f\beta) = \pi_{\mathsf{H}}(\alpha)(f)\beta + f\mathcal{D}_{\alpha}\beta$ (Leibniz)
- 4. $\mathcal{T}(\alpha,\beta) := \mathcal{D}_{\alpha}\beta \mathcal{D}_{\beta}\alpha [\alpha,\beta]_{\pi} = 0$ (torsionlessness)
- 5. $\pi_{\#}(\alpha) \cdot \langle \beta, \gamma \rangle = \langle \mathcal{D}_{\alpha}\beta, \gamma \rangle + \langle \beta, \mathcal{D}_{\alpha}\gamma \rangle$ (compatibility with q)

called the *contravariant Levi-Civita connection* associated to (π, q) .

$$\langle \nabla_X Y, Z \rangle = \frac{1}{2} \left\{ X \cdot \langle Y, Z \rangle + Y \cdot \langle X, Z \rangle - Z \cdot \langle X, Y \rangle + \langle [X, Y], Z \rangle - \langle [Y, Z], X \rangle + \langle [Z, X], Y \rangle \right\}.$$

Similarly, given a Riemannian metric g on (M, π) ,

$$\exists ! \ \mathcal{D} : \Omega^1(M) \times \Omega^1(M) \longrightarrow \Omega^1(M), \ (\alpha, \beta) \mapsto \mathcal{D}_{\alpha}\beta$$

- 1. \mathbb{R} -bilinear 2. $\mathcal{D}_{f\alpha}\beta = f\,\mathcal{D}_{\alpha}\beta$ (tensoriality) $\begin{cases} \mathcal{D} \text{ is a } \\ \text{contravariant} \end{cases}$
- 3. $\mathcal{D}_{\alpha}(f\beta) = \pi_{\mathsf{H}}(\alpha)(f)\beta + f\mathcal{D}_{\alpha}\beta$ (Leibniz)
- 4. $\mathcal{T}(\alpha, \beta) := \mathcal{D}_{\alpha}\beta \mathcal{D}_{\beta}\alpha [\alpha, \beta]_{\pi} = 0$ (torsionlessness)
- 5. $\pi_{\#}(\alpha) \cdot \langle \beta, \gamma \rangle = \langle \mathcal{D}_{\alpha}\beta, \gamma \rangle + \langle \beta, \mathcal{D}_{\alpha}\gamma \rangle$ (compatibility with q)

called the *contravariant Levi-Civita connection* associated to (π, q) .

$$\langle \mathcal{D}_{\alpha}\beta, \gamma \rangle = \frac{1}{2} \left\{ \pi_{\sharp}(\alpha) \cdot \langle \beta, \gamma \rangle + \pi_{\sharp}(\beta) \cdot \langle \alpha, \gamma \rangle - \pi_{\sharp}(\gamma) \cdot \langle \alpha, \beta \rangle + \langle [\alpha, \beta]_{\pi}, \gamma \rangle - \langle [\beta, \gamma]_{\pi}, \alpha \rangle + \langle [\gamma, \alpha]_{\pi}, \beta \rangle \right\}.$$

· Riemann curvature

$$R(X,Y)Z := \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z \,.$$

· Riemann curvature

$$R(X,Y)Z := \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

· Ricci curvature

$$\operatorname{Ric}(v) := \sum_{i} R(v, e_i) e_i, \quad \forall v \in T_x M.$$

 (e_i) beeing an orthonormal basis of $T_x M$

· Riemann curvature

$$R(X,Y)Z := \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

· Ricci curvature

$$\operatorname{Ric}(v) := \sum_{i} R(v, e_i) e_i, \quad \forall v \in T_x M.$$

Curvature operator

$$\mathfrak{R}^{\nabla}(u \wedge v) := \frac{1}{2} \sum_{i} (R(u, v) e_i) \wedge e_i.$$

 $\left(e_{i}
ight)$ beeing an orthonormal basis of $T_{x}M$

Riemann curvature

$$R(X,Y)Z := \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

· Ricci curvature

$$\operatorname{Ric}(v) := \sum_{i} R(v, e_i) e_i, \quad \forall v \in T_x M.$$

· Curvature operator

$$\mathfrak{R}^{\nabla}(u \wedge v) := \frac{1}{2} \sum_{i} (R(u, v) e_i) \wedge e_i.$$

Weitzenböck curvature

$$\mathfrak{W}^{\nabla}(\eta) := -\sum_{i,j} \varepsilon_i \wedge [e_j \, \lrcorner \, R(e_i, e_j) \, \eta] \,, \quad \forall \, \eta \in \Omega^{\bullet}(M).$$

 (e_i) beeing an orthonormal basis of T_xM and (ε_i) , the dual basis of T_x^*M .

· Riemann curvature

$$\mathcal{R}(\alpha,\beta)\gamma := \mathcal{D}_{\alpha}\mathcal{D}_{\beta}\gamma - \mathcal{D}_{\beta}\mathcal{D}_{\alpha}\gamma - \mathcal{D}_{[\alpha,\beta]_{\pi}}\gamma.$$

Ricci curvature

$$\operatorname{Ric}(v) := \sum_{i} R(v, e_i) e_i, \quad \forall v \in T_x M.$$

· Curvature operator

$$\mathfrak{R}^{\nabla}(u \wedge v) := \frac{1}{2} \sum_{i} (R(u, v) e_i) \wedge e_i.$$

Weitzenböck curvature

$$\mathfrak{W}^{\nabla}(\eta) := -\sum_{i,j} \varepsilon_i \wedge [e_j \, \lrcorner \, R(e_i,e_j) \, \eta] \,, \quad \forall \eta \in \Omega^{\bullet}(M).$$

 (e_i) beeing an orthonormal basis of T_xM and (ε_i) , the dual basis of T_x^*M .

Riemann curvature

$$\mathcal{R}(\alpha,\beta)\gamma := \mathcal{D}_{\alpha}\mathcal{D}_{\beta}\gamma - \mathcal{D}_{\beta}\mathcal{D}_{\alpha}\gamma - \mathcal{D}_{[\alpha,\beta]_{\pi}}\gamma.$$

Ricci curvature

$$\mathcal{R}$$
ic $(a):=\sum_{i}\mathcal{R}(a,arepsilon_{i})arepsilon_{i}\,, \quad orall\,a\in T_{x}^{st}M.$

Curvature operator

$$\mathfrak{R}^{\nabla}(u \wedge v) := \frac{1}{2} \sum_{i} (R(u, v) e_i) \wedge e_i.$$

Weitzenböck curvature

$$\mathfrak{W}^{\nabla}(\eta) := -\sum_{i,j} \varepsilon_i \wedge [e_j \, \lrcorner \, R(e_i,e_j) \, \eta] \,, \quad \forall \, \eta \in \Omega^{\bullet}(M).$$

 (e_i) beeing an orthonormal basis of T_xM and (ε_i) , the dual basis of T_x^*M .

Riemann curvature

$$\mathcal{R}(\alpha,\beta)\gamma := \mathcal{D}_{\alpha}\mathcal{D}_{\beta}\gamma - \mathcal{D}_{\beta}\mathcal{D}_{\alpha}\gamma - \mathcal{D}_{[\alpha,\beta]_{\pi}}\gamma.$$

· Ricci curvature

$$\mathcal{R}ic(a) := \sum_{i} \mathcal{R}(a, \varepsilon_{i})\varepsilon_{i}, \quad \forall a \in T_{x}^{*}M.$$

Curvature operator

$$\mathfrak{R}^{\mathcal{D}}(a \wedge b) := \frac{1}{2} \sum_{i} (\mathcal{R}(a, b) \, \varepsilon_i) \wedge \varepsilon_i.$$

Weitzenböck curvature

$$\mathfrak{W}^{\nabla}(\eta) := -\sum_{i,j} \varepsilon_i \wedge [e_j \, \lrcorner \, R(e_i,e_j) \, \eta] \,, \quad \forall \, \eta \in \Omega^{\bullet}(M).$$

 (e_i) beeing an orthonormal basis of T_xM and (ε_i) , the dual basis of T_x^*M .

Riemann curvature

$$\mathcal{R}(\alpha,\beta)\gamma := \mathcal{D}_{\alpha}\mathcal{D}_{\beta}\gamma - \mathcal{D}_{\beta}\mathcal{D}_{\alpha}\gamma - \mathcal{D}_{[\alpha,\beta]_{\pi}}\gamma.$$

Ricci curvature

$$\mathcal{R}ic(a) := \sum_{i} \mathcal{R}(a, \varepsilon_{i})\varepsilon_{i}, \quad \forall a \in T_{x}^{*}M.$$

Curvature operator

$$\mathfrak{R}^{\mathcal{D}}(a \wedge b) := \frac{1}{2} \sum_{i} (\mathcal{R}(a, b) \, \varepsilon_i) \wedge \varepsilon_i.$$

Weitzenböck curvature

$$\mathfrak{W}^{\mathcal{D}}(P) := -\sum_{i,j} e_i \wedge [\varepsilon_j \, \lrcorner \, \mathcal{R}(\varepsilon_i, \varepsilon_j)P], \quad \forall P \in \mathfrak{X}^{\bullet}(M).$$

 (e_i) beeing an orthonormal basis of T_xM and (ε_i) , the dual basis of T_x^*M .

A FORMULA ON THE WAY

For any $\eta \in \Omega^p(M)$ and any $X_1, \ldots, X_p \in \mathfrak{X}^1(M)$,

$$\mathfrak{W}^{\nabla}(\eta)(X_1,\ldots,X_p) = \sum_{i=1}^p \eta(X_1,\ldots,X_{i-1},\operatorname{Ric}(X_i),X_{i+1},\ldots,X_p)$$
$$+2\sum_{1\leq i< j\leq p} (-1)^{i+j} (\mathfrak{R}^{\nabla}(X_i \wedge X_j) \, \lrcorner \, \eta)(X_1,\ldots,\widehat{X}_i,\ldots,\widehat{X}_j,\ldots,X_p)$$

A FORMULA ON THE WAY

For any $P \in \mathfrak{X}^p(M)$ and any $\alpha_1, \ldots, \alpha_p \in \Omega^1(M)$,

$$\mathfrak{W}^{\mathcal{D}}(P)(\alpha_1, \dots, \alpha_p) = \sum_{i=1}^p P(\alpha_1, \dots, \alpha_{i-1}, \mathcal{R}ic(\alpha_i), \alpha_{i+1}, \dots, \alpha_p)$$
$$+ 2 \sum_{1 \le i < j \le p} (-1)^{i+j} (\mathfrak{R}^{\mathcal{D}}(\alpha_i \wedge \alpha_j) \, \lrcorner \, P)(\alpha_1, \dots, \widehat{\alpha}_i, \dots, \widehat{\alpha}_j, \dots, \alpha_p).$$

Completing the picture

RIEMANN

Connection Laplacian

$$\Delta^{\!\nabla} = \sum_i (\nabla_{\nabla_{E_i} E_i} - \nabla_{E_i} \circ \nabla_{E_i})$$

 $\left(E_{i}\right)$ is a local orthonormal frame.

RIEMANN

Connection Laplacian

$$\Delta^{\nabla} = \sum_{i} (\nabla_{\nabla_{E_i} E_i} - \nabla_{E_i} \circ \nabla_{E_i})$$

 $\left(E_{i}
ight)$ is a local orthonormal frame.

POISSON

(Contravariant) connection Laplacian

$$\Delta^{\mathcal{D}} := \sum_{i} (\mathcal{D}_{\mathcal{D}_{\theta_{i}} \theta_{i}} - \mathcal{D}_{\theta_{i}} \circ \mathcal{D}_{\theta_{i}})$$

 $(heta_i)$ is a local orthonormal co-frame.

RIEMANN

Connection Laplacian

$$\Delta^{\nabla} = \sum_{i} (\nabla_{\nabla_{E_{i}} E_{i}} - \nabla_{E_{i}} \circ \nabla_{E_{i}})$$
 =

 (E_i) is a local orthonormal frame.

Hodge-de Rham Laplacian

$$\Delta = d \circ \delta + \delta \circ d$$

where $\delta := \sum_i i_{E_i} \circ \nabla_{E_i}$ is the codifferential.

POISSON

(Contravariant) connection Laplacian

$$\Delta^{\mathcal{D}} := \sum_{i} (\mathcal{D}_{\mathcal{D}_{\theta_{i}} \theta_{i}} - \mathcal{D}_{\theta_{i}} \circ \mathcal{D}_{\theta_{i}})$$

 $(heta_i)$ is a local orthonormal co-frame.

RIEMANN

Connection Laplacian

$$\Delta^{\nabla} = \sum_{i} (\nabla_{\nabla_{E_{i}} E_{i}} - \nabla_{E_{i}} \circ \nabla_{E_{i}})$$

 (E_i) is a local orthonormal frame.

Hodge-de Rham Laplacian

$$\Delta = d \circ \delta + \delta \circ d$$

where $\delta := \sum_i i_{E_i} \circ \nabla_{E_i}$ is the codifferential.

POISSON

(Contravariant) connection Laplacian

$$\Delta^{\mathcal{D}} := \sum_{i} (\mathcal{D}_{\mathcal{D}_{\theta_{i}} \theta_{i}} - \mathcal{D}_{\theta_{i}} \circ \mathcal{D}_{\theta_{i}})$$

 (θ_i) is a local orthonormal co-frame.

The operator $\Delta^{\pi,g}$

$$\Delta^{\pi,g} := d_{\pi} \circ \delta_{\pi}^{g} + \delta_{\pi}^{g} \circ d_{\pi}$$

where $\delta_\pi^g:=\sharp\circ\delta_\pi\circ\flat$ and \sharp , \flat are the musical isomorphisms.

RIEMANN

Connection Laplacian

$$\Delta^{\nabla} = \sum_{i} (\nabla_{\nabla_{E_{i}} E_{i}} - \nabla_{E_{i}} \circ \nabla_{E_{i}})$$

 (E_i) is a local orthonormal frame.

Hodge-de Rham Laplaciar

$$\Lambda = d \circ \delta + \delta \circ d$$

where $\delta := \sum_i i_{E_i} \circ \nabla_{E_i}$ is the codifferential.

Beltrami Laplaciar

$$\Delta f = \Delta^{\nabla} f = -\text{div}_g(\operatorname{grad} f)$$

for any function f.

POISSON

(Contravariant) connection Laplacian

$$\Delta^{\mathcal{D}} := \sum_{i} (\mathcal{D}_{\mathcal{D}_{\theta_{i}} \theta_{i}} - \mathcal{D}_{\theta_{i}} \circ \mathcal{D}_{\theta_{i}})$$

 (θ_i) is a local orthonormal co-frame.

The operator $\Delta^{\pi,g}$

$$\Delta^{\pi,g} := d_{\pi} \circ \delta_{\pi}^{g} + \delta_{\pi}^{g} \circ d_{\pi}$$

where $\delta_\pi^g:=\sharp\circ\delta_\pi\circ\flat$ and \sharp , \flat are the musical isomorphisms.

RIEMANN

Connection Laplacian

$$\Delta^{\nabla} = \sum_{i} (\nabla_{\nabla_{E_{i}} E_{i}} - \nabla_{E_{i}} \circ \nabla_{E_{i}})$$

 $\left(E_{i}
ight)$ is a local orthonormal frame.

Hodge-de Rham Laplacian

$$\Lambda = d \circ \delta + \delta \circ d$$

where $\, \delta := \sum_i i_{E_i} \circ \nabla_{E_i} \,$ is the co-differential.

Beltrami Laplaciar

$$\Delta f = \Delta^{\nabla} f = -\text{div}_g(\operatorname{grad} f)$$

for any function f.

POISSON

(Contravariant) connection Laplacian

$$\Delta^{\mathcal{D}} := \sum_{i} (\mathcal{D}_{\mathcal{D}_{\theta_{i}} \theta_{i}} - \mathcal{D}_{\theta_{i}} \circ \mathcal{D}_{\theta_{i}})$$

 (θ_i) is a local orthonormal co-frame.

The operator $\Delta^{\pi,g}$

$$\Delta^{\pi,g} := d_{\pi} \circ \delta_{\pi}^{g} + \delta_{\pi}^{g} \circ d_{\pi}$$

where $\delta_\pi^g:=\sharp\circ\delta_\pi\circ\flat$ and \sharp , \flat are the musical isomorphisms.

The zero degree case

$$\Delta^{\pi,g} f = \Delta^{\mathcal{D}} f$$

for any function f ?

The compatibility condition $\,d(\pi \,\lrcorner\, \mu_g) = 0\,$

Does
$$\Delta^{\pi,g} = \Delta^{\mathcal{D}}$$
 on $\mathcal{C}^{\infty}(M)$?

Proposition

Assume (M,π,g) to be oriented, with Riemannian volume element μ_g . Then

$$\Delta^{\pi,g} = \Delta^{\mathcal{D}} - \pi_{\sharp} \left(\phi_q^{\flat} \right) \text{ on } \mathcal{C}^{\infty}(M)$$

where ϕ_g is the unique vector field on M s. t. $\phi_g \,\lrcorner\, \mu_g = d(\pi \,\lrcorner\, \mu_g)$.

Consequently, $\Delta^{\pi,g}=\Delta^{\mathcal{D}}$ on $\mathcal{C}^{\infty}(M)$ iff $d(\pi \,\lrcorner\, \mu_g)=0$. In which case,

$$\Delta^{\pi,g}(f) = \operatorname{div}_{\mathcal{D}}(\mathcal{H}_f^{\flat}) \quad \forall f \in \mathcal{C}^{\infty}(M).$$

The compatibility condition $d(\pi \sqcup \mu_g) = 0$

Does
$$\Delta^{\pi,g} = \Delta^{\mathcal{D}}$$
 on $\mathcal{C}^{\infty}(M)$?

Proposition

Assume (M, π, g) to be oriented, with Riemannian volume element μ_q . Then

$$\Delta^{\pi,g} = \Delta^{\mathcal{D}} - \pi_{\sharp} \left(\phi_q^{\flat} \right) \text{ on } \mathcal{C}^{\infty}(M)$$

where ϕ_g is the unique vector field on M s. t. $\phi_g \,\lrcorner\, \mu_g = d(\pi \,\lrcorner\, \mu_g)$.

Consequently, $\Delta^{\pi,g}=\Delta^{\mathcal{D}}$ on $\mathcal{C}^{\infty}(M)$ iff $d(\pi \,\lrcorner\, \mu_g)=0$. In which case,

$$\Delta^{\pi,g}(f) = \operatorname{div}_{\mathcal{D}}(\mathcal{H}_f^{\flat}) \quad \forall f \in \mathcal{C}^{\infty}(M).$$

Here, $\operatorname{div}_{\mathcal{D}}: \Omega^{\bullet}(M) \to \Omega^{\bullet-1}(M)$ is the **contravariant divergence** defined by

$$\operatorname{div}_{\mathcal{D}}(\eta)\big|_{x} := \sum_{i} e_{i} \, \lrcorner \, \mathcal{D}_{\varepsilon_{i}} \eta$$

where (e_i) is any basis of T_xM with dual basis (ε_i) . And, $\mathcal{H}_f := \pi_\sharp(df)$ is the **Hamiltonian** vector field of f.

The compatibility condition $\,d(\pi\,\lrcorner\,\mu_q)=0$

DIVERGENCES

If
$$(M,\pi,g)$$
 is oriented, then for any $\eta\in\Omega^{\bullet}(M)$

$$\pi_{\sharp} (\operatorname{div}_{\mathcal{D}} \eta) = \operatorname{div}_{g} (\pi_{\sharp} \eta) - 2 \pi_{\sharp} (\phi_{g} \, \lrcorner \, \eta).$$

In particular, for any 1-form α

$$\operatorname{div}_{\mathcal{D}}(\alpha) = \operatorname{div}_{g}(\pi_{\sharp} \alpha)$$

provided that $d(\pi \,\lrcorner\, \mu_g) = 0$.

The compatibility condition $d(\pi \sqcup \mu_g) = 0$

DIVERGENCES

If (M, π, g) is oriented, then for any $\eta \in \Omega^{\bullet}(M)$

$$\pi_{\sharp} (\operatorname{div}_{\mathcal{D}} \eta) = \operatorname{div}_{g} (\pi_{\sharp} \eta) - 2 \pi_{\sharp} (\phi_{g} \, \lrcorner \, \eta).$$

In particular, for any 1-form α

$$\operatorname{div}_{\mathcal{D}}(\alpha) = \operatorname{div}_{g}(\pi_{\sharp} \alpha)$$

provided that $d(\pi \,\lrcorner\, \mu_g) = 0$.

Theorem

If
$$(M,\pi,g)$$
 is closed and s. t. $d(\pi \,\lrcorner\, \mu_g) = 0$ then

$$\int_{M} \delta_{\pi}(\alpha) \, \mu_{g} = \int_{M} \operatorname{div}_{\mathcal{D}}(\alpha) \, \mu_{g} = 0 \quad \forall \, \alpha \in \Omega^{1}(M).$$

Main properties of $\Delta^{\pi,g}$

SELF-ADJOINTNESS AND NON-NEGATIVITY

Let $\langle\!\langle\cdot,\cdot\rangle\!\rangle$ denote the global inner product defined on $\mathfrak{X}^{ullet}(M)$ by

$$\langle\!\langle P, Q \rangle\!\rangle := \int_{M} \langle P, Q \rangle \,\mu_g \quad \forall P, Q \in \mathfrak{X}^p(M).$$

Theorem

Assume (M,π,g) to be closed and s. t. $d(\pi \,\lrcorner\, \mu_g) = 0$. Then

1. δ_{π}^{g} is the formal adjoint of d_{π} :

$$\langle\!\langle d_{\pi}P, Q \rangle\!\rangle = \langle\!\langle P, \delta_{\pi}^{g} Q \rangle\!\rangle \quad \forall P \in \mathfrak{X}^{p}(M), Q \in \mathfrak{X}^{p+1}(M).$$

2. $\Delta^{\pi,g}$ is formally self-adjoint :

$$\langle\!\langle \Delta^{\pi,g}(P), Q \rangle\!\rangle = \langle\!\langle P, \Delta^{\pi,g}(Q) \rangle\!\rangle \quad \forall P, Q \in \mathfrak{X}^p(M).$$

3. $\Delta^{\pi,g}$ is non-negative : $\langle\!\langle \Delta^{\pi,g}(P), P \rangle\!\rangle \ge 0 \quad \forall P \in \mathfrak{X}^p(M)$.

Two classical techniques from Riemannian geometry

Normal (co-)frames at a point

Lemma

Around any $x\in (M,g)$ there exists a local orthonormal frame (E_k) s. t. $(\nabla E_k)|_x=0$ for all k.

Normal (co-)frames at a point

Lemma

Around any $x \in (M, g)$ there exists a local orthonormal frame (E_k) s. t. $(\nabla E_k)|_x = 0$ for all k.

Let M^{reg} denote the open dense set of (M, π, g) where the map

$$M \ni x \mapsto \operatorname{rank}(\pi_{\sharp}|_{x} : T_{x}^{*}M \to T_{x}M)$$

is locally constant.

Proposition

The following are equivalent.

- 1. Around any $x \in M^{reg}$ there exists a local orthonormal co-frame (θ_k) s. t. $(\mathcal{D}\theta_k)|_x = 0$ for all k.
- 2. \mathcal{D} is an \mathcal{F}^{reg} -connection: $\mathcal{D}_a=0$ whenever $\pi_\sharp(a)=0$, for all $a\in T^*_xM$ with $x\in M^{reg}$.

1st INGREDIENT

Lemma (E. Hopf, 1927)

Assume (M,g) to be closed. If f is a function on M s. t. $\Delta f \geq 0$ then f is constant and $\Delta f = 0$.

1st INGREDIENT

Lemma (E. Hopf, 1927)

Assume (M,g) to be closed. If f is a function on M s. t. $\Delta f \geq 0$ then f is constant and $\Delta f = 0$.

Lemma

Assume (M,π,g) to be closed and s. t. $d(\pi \,\lrcorner\, \mu_g) = 0$. If f is a function on M s. t. $\Delta^{\pi,g}(f) \geq 0$ then f is a Casimir function (i.e. $\mathcal{H}_f = 0$) and $\Delta^{\pi,g}(f) = 0$.

2d INGREDIENT

Theorem (R. Weitzenböck, 1923

On (M,g) the following formula holds good

$$\Delta\,=\,\Delta^{\!\nabla}+\mathfrak{W}^{\!\nabla}.$$

2d INGREDIENT

Theorem (R. Weitzenböck, 1923)

On (M,g) the following formula holds good

$$\Delta = \Delta^{\nabla} + \mathfrak{W}^{\nabla}.$$

Theorem

If
$$(M,\pi,g)$$
 is s.t. $d(\pi \,\lrcorner\, \mu_g) = 0$ then

$$\Delta^{\pi,g} = \Delta^{\mathcal{D}} + \mathfrak{W}^{\mathcal{D}}.$$

THE RECIPE

· Start with following general formula:

$$\Delta\left(-\frac{1}{2}\left|\omega\right|^{2}\right) = \left|\nabla\omega\right|^{2} - \left\langle\Delta\omega,\omega\right\rangle + \left\langle\mathfrak{W}^{\nabla}\omega,\omega\right\rangle \tag{*}$$

for ω a differential form.

THE RECIPE

· Start with following general formula :

$$\Delta\left(-\frac{1}{2}|\omega|^2\right) = |\nabla\omega|^2 - \langle\Delta\omega,\omega\rangle + \langle\mathfrak{W}^\nabla\omega,\omega\rangle \tag{*}$$

for ω a differential form.

- Try to find some assumptions on ω and on the curvature so that

$$-\langle \Delta \omega, \omega \rangle + \langle \mathfrak{W}^{\nabla} \omega, \omega \rangle \ge 0.$$

THE RECIPE

· Start with following general formula :

$$\Delta\left(-\frac{1}{2}|\omega|^2\right) = |\nabla\omega|^2 - \langle\Delta\omega,\omega\rangle + \langle\mathfrak{W}^\nabla\omega,\omega\rangle \tag{*}$$

for ω a differential form.

- Try to find some assumptions on ω and on the curvature so that

$$-\langle \Delta \omega, \omega \rangle + \langle \mathfrak{W}^{\nabla} \omega, \omega \rangle \ge 0.$$

· Once succeeded, the R.H.S. of (*) vanishes, implying in particular that $\nabla \omega = 0$.

Some classical results & their analogues

1st BOCHNER TYPE THEOREM

Recall that a Killing vector field on (M,g) is a vector field $X\in\mathfrak{X}^1(M)$ verifying $\langle \nabla_Y X,Z\rangle = -\langle Y,\nabla_Z X\rangle \quad \forall\, Y,Z\in\mathfrak{X}^1(M).$

Theorem(S. Bochner, 1946

Assume (M,g) to be closed. If $\mathrm{Ric} \leq 0$ (i.e. $\langle \mathrm{Ric}\, v,v \rangle \leq 0 \ \forall v \in TM$) then every Killing vector field X is parallel, i.e. $\nabla X = 0$. Furthermore, if $\mathrm{Ric} < 0$ then there are no non-zero Killing vector field on M.

1st BOCHNER TYPE THEOREM

Recall that a Killing vector field on (M,g) is a vector field $X\in \mathfrak{X}^1(M)$ verifying

$$\langle \nabla_Y X, Z \rangle = -\langle Y, \nabla_Z X \rangle \quad \forall \, Y, Z \in \mathfrak{X}^1(M).$$

Theorem (S. Bochner, 1946

Assume (M,g) to be closed. If $\mathrm{Ric} \leq 0$ (i.e. $\langle \mathrm{Ric} \, v,v \rangle \leq 0 \ \, \forall v \in TM$) then every Killing vector field X is parallel, i.e. $\nabla X = 0$. Furthermore, if $\mathrm{Ric} < 0$ then there are no non-zero Killing vector field on M.

If f is a Casimir function on (M,π,g) then

$$\langle \mathcal{D}_{\alpha} df, \beta \rangle = -\langle \alpha, \mathcal{D}_{\beta} df \rangle \quad \forall \alpha, \beta \in \Omega^{1}(M).$$

Theorem

Assume (M,π,g) to be closed and s. t. $d(\pi \,\lrcorner\, \mu_g)=0$. If $\mathcal{R}ic\leq 0$ then, for any Casimir function $f\in \mathcal{C}^\infty(M)$, $\mathcal{D}df=0$. Furthermore, if $\mathcal{R}ic<0$ then there are no non-constant Casimir functions on M.

2d BOCHNER TYPE THEOREM

Theorem (S. Bochner, 1946

Assume (M,g) to be closed. If $\mathrm{Ric} \geq 0$ then a 1-form α on M is harmonic, i.e. $\Delta \alpha = 0$, iff $\nabla \alpha = 0$. Moreover, if $\mathrm{Ric} > 0$ then there are no non-zero harmonic 1-forms on M.

2d BOCHNER TYPE THEOREM

Theorem (S. Bochner, 1946)

Assume (M,g) to be closed. If $\mathrm{Ric} \geq 0$ then a 1-form α on M is harmonic, i.e. $\Delta \alpha = 0$, iff $\nabla \alpha = 0$. Moreover, if $\mathrm{Ric} > 0$ then there are no non-zero harmonic 1-forms on M.

Theorem

Assume (M,π,g) to be closed and s. t. $d(\pi \,\lrcorner\, \mu_g)=0$. If $\mathcal{R}ic\geq 0$ then a vector field X on M is harmonic, i.e. $\Delta^{\pi,g}X=0$, iff $\mathcal{D}X=0$. Moreover, if $\mathcal{R}ic>0$ then there are no non-zero harmonic vector fields on M.

ANOTHER FORM OF IT

Theorem

Assume (M,π,g) to be closed and s. t. $d(\pi \,\lrcorner\, \mu_g)=0$. If ${\cal R}ic\geq 0$ then for any 1-form α

$$\mathcal{D}\alpha = 0 \quad \text{iff} \quad \begin{cases} \alpha^{\sharp} \text{ preserves } \pi, \text{ i.e. } \mathcal{L}_{\alpha^{\sharp}} \pi = 0 \,; \text{ and} \\ \pi_{\sharp}(\alpha) \text{ preserves } \mu_g \,, \text{ i.e. } \mathcal{L}_{\pi_{\sharp}(\alpha)} \mu_g = 0 \,. \end{cases}$$

Moreover, if $\mathcal{R}ic > 0$ then every \mathcal{D} -parallel 1-form vanishes.

MEYER-GALLOT TYPE THEOREM

Theorem (D. Meyer & S. Gallot, 1975

Assume (M,g) to be closed. If $\mathfrak{R}^{\nabla} \geq 0$ (i.e. if all the eigenvalues of \mathfrak{R}^{∇} are ≥ 0) then a p-form ω on M is harmonic, i.e. $\Delta \omega = 0$, iff $\nabla \omega = 0$. Moreover, if $\mathfrak{R}^{\nabla} > 0$ then every harmonic p-form vanishes for $p = 1, \ldots, \dim M - 1$.

MEYER-GALLOT TYPE THEOREM

Theorem (D. Mever & S. Gallot, 1975

Assume (M,g) to be closed. If $\Re^{\nabla} \geq 0$ (i.e. if all the eigenvalues of \Re^{∇} are ≥ 0) then a p-form ω on M is harmonic, i.e. $\Delta \omega = 0$, iff $\nabla \omega = 0$. Moreover, if $\Re^{\nabla} > 0$ then every harmonic p-form vanishes for $p = 1, \ldots, \dim M - 1$.

Theorem

Assume (M,π,g) to be closed and s. t. $d(\pi \,\lrcorner\, \mu_g) = 0$. If $\Re^{\mathcal{D}} \geq 0$ then a p-vector field P on M is harmonic, i.e. $\Delta^{\pi,g} P = 0$, iff $\mathcal{D}P = 0$. Moreover, if $\Re^{\mathcal{D}} > 0$ then every harmonic p-vector field vanishes for $p = 1, \ldots, \dim M - 1$.

Case of the Poisson tensor π

Theorem

Assume (M, π, g) to be closed and s. t. $\mathfrak{R}^{\mathcal{D}} \geq 0$. The following are then equivalent.

- 1. \mathcal{D} is a Poisson connection, i.e. $\mathcal{D}\pi = 0$.
- 2. $d(\pi \,\lrcorner\, \mu_g) = 0$ and π is harmonic.
- 3. \mathcal{D} is an \mathcal{F}^{reg} -connection and $d(\pi \,\lrcorner\, \mu_g) = d(\pi' \,\lrcorner\, \mu_g) = 0$ where $\pi' := \pi_\sharp(\pi^\flat)$.

Furthermore, if any of these conditions holds, then $\,\mathfrak{R}^{\mathcal{D}}\,$ has (at least) a vanishing eigenvalue.

LICHNEROWICZ TYPE THEOREM

Theorem (A. Lichnerowicz, 1952)

Assume (M,g) to be closed. For any tensor field T on M, if $\nabla^k T=0$ for some integer $k\geq 2$ then $\nabla T=0$.

LICHNEROWICZ TYPE THEOREM

Theorem (A. Lichnerowicz, 1952)

Assume (M,g) to be closed. For any tensor field T on M, if $\nabla^k T=0$ for some integer $k\geq 2$ then $\nabla T=0$.

Theorem

Assume (M,π,g) to be closed and s. t. $d(\pi \,\lrcorner\, \mu_g)=0$. For any tensor field T on M, if $\mathcal{D}^kT=0$ for some $k\geq 2$ then $\mathcal{D}T=0$.

LICHNEROWICZ TYPE THEOREM

Theorem (A. Lichnerowicz, 1952)

Assume (M,g) to be closed. For any tensor field T on M, if $\nabla^k T=0$ for some integer $k\geq 2$ then $\nabla T=0$.

Theorem

Assume (M,π,g) to be closed and s. t. $d(\pi \,\lrcorner\, \mu_g)=0$. For any tensor field T on M, if $\mathcal{D}^kT=0$ for some $k\geq 2$ then $\mathcal{D}T=0$.

Corollary

Assume (M,π,g) to be closed. Then $\mathcal{D}\pi=0$ iff $d(\pi \,\lrcorner\, \mu_g)=0$ and $\mathcal{D}^k\pi=0$ for some $k\geq 2$.

LICHNEROWICZ TYPE ESTIMATE

Theorem (A. Lichnerowicz, 1958

Assume (M,g) to be closed. If $\mathrm{Ric} \geq c\,g$ for some c>0 (i.e. $\langle \mathrm{Ric}\,v,v \rangle \geq c\,\langle v,v \rangle$ for all $v\in TM$) then

$$\lambda \geq c \cdot (\dim M / \dim M - 1)$$

for any non-zero eigenvalue λ of Δ (i.e. for any $\lambda \in \mathbb{R}^*$ s. t. $\Delta f = \lambda f$ for some non-zero function f.

LICHNEROWICZ TYPE ESTIMATE

Theorem (A. Lichnerowicz, 1958)

Assume (M,g) to be closed. If $\mathrm{Ric} \geq c\,g$ for some c>0 (i.e. $\langle \mathrm{Ric}\,v,v \rangle \geq c\,\langle v,v \rangle$ for all $v\in TM$) then

$$\lambda \geq c \cdot (\dim M / \dim M - 1)$$

for any non-zero eigenvalue λ of Δ (i.e. for any $\lambda \in \mathbb{R}^*$ s. t. $\Delta f = \lambda f$ for some non-zero function f.

Theorem

Assume (M,π,g) to be closed and s. t. $d(\pi \,\lrcorner\, \mu_g)=0$. If \mathcal{R} ic $\geq c\,g$ for c>0 then $\lambda \,\geq\, c\cdot (\dim M/\dim M-1)$

for any non-zero eigenvalue λ of $\Delta^{\pi, g}$ (restricted to functions).

Thank you for your attention

Any questions?