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Rack Structures And Leibniz Algebras

"Lie Rack Structures"

~ Lie Rack :

A Lie rack is a pointed smooth manifold (X, 1) together with a
smooth map > : X x X — X, (a, b) — ar> b such that,for any
a,b,ce X,

> the left translation L, : X — X, b+ a> b are diffeomorphisms,
> a>(b>c)=(a>b)>(a>c),
» lpa=aand ab1=1
~ Example :
» Any Lie group G has a Lie rack structure given by
g>h:=g thg.

{Lie groups} C {Lie racks}



Rack Structures And Leibniz Algebras

" Leibniz Algebras"

~~ Leibniz algebra :

A left Leibniz algebral is an algebra (b, [, ]) over a field K such
that, for every element u € b, ad, : h — b, v— [u,v] is a
derivation of b, i.e.,

[u, [v, wi] = [[u, v], w] + [v, [u, w]] (1)

~ Example :
» If the Leibniz bracket is skew, then (h,[, ]) is a Lie algebra.

{Lie algebras} C {Leibniz algebras}

1. J. L. Loday, Une version non-commutative des algebres de Lie, L'Ens. Math
39 (1993) 269-293.



Rack Structures And Leibniz Algebras

From Lie racks to Leibniz algebras
~ Tangent Functor? : Given a pointed Lie rack (X, 1), for any a € X, we
denote by Ad, : T: X = h — b the differential of L, at 1. We have
Losp =LooLyoL;* and Adasp = Ad,o Adp o Ad;l.
Thus Ad : X — GL(b) is an homomorphism of Lie racks. If we put

d

—  Adcyyv, u,vebh c:]—ee— X, c(0)=1,c(0)=u.
dt |t=0

[u,V]e =

Theorem
Any Lie rack (X, >, 1), the tangent space (h,[, ]5) is a left Leibniz algebra.

2. M. Kinyon,Leibniz algebras,Lie racks, and digroups, Journal of Lie Theory,
volume 17 (2007) 99-114.



Analytic Linear Lie Rack Structures On Leibniz Algebras

e Analityc Linear Lie Rack Structures on finite dimensional
vector space.
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Analytic Linear Lie Rack Structures On Leibniz Algebras

e Analityc Linear Lie Rack Structures on finite dimensional
vector space.

e AL.LR.S on Leibniz algebras with H® = H! = 0.
e A.L.L.R.S and Rigidity of sl>(R) and s0(3).



Analytic linear Lie rack structures

Definitions

» A linear Lie rack structure on a finite dimensional vector space
V is a Lie rack operation (x, y) — x > y pointed at 0 and
such that for any x, the map Ly : y — x> y is linear.
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» A linear Lie rack structure on a finite dimensional vector space
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Analytic linear Lie rack structures

Definitions

» A linear Lie rack structure on a finite dimensional vector space
V is a Lie rack operation (x, y) — x > y pointed at 0 and
such that for any x, the map Ly : y — x> y is linear.

> A linear Lie rack operation 1> is called analytic if for any
x,y €V,

Xy =y+loyl+ Y Anlx. . xy),
n=2
where : A, 1V x ... x V — Vs an (n+ 1)-multilinear
map which is symmetric in the n first arguments.



Analytic linear Lie rack structures

Definitions

» A linear Lie rack structure on a finite dimensional vector space
V is a Lie rack operation (x, y) — x > y pointed at 0 and
such that for any x, the map Ly : y +— x> y is linear.

> A linear Lie rack operation 1> is called analytic if for any
x,y €V,

><>y=y—&—[X,y]—&—z:A,,,l(X,...7><,y)7
n=2

where : Aj 1 is the left Leibniz bracket associated to >.



Characterization of analytic linear Lie rack structures
"Main Theorem"
Let V be a real finite dimensional vector space and (An1)n>1 @ sequence of

n + 1-multilinear maps symmetric in the n first arguments. We suppose that
the operation > given by

(o)
ny:y—FZA,,’l(x,...,x,y)

n=1

converges. Then > is a Lie rack structure on V if and only if for any p,qg € N*
and x,y,z €V,

Ap,1(x, Agaly, 2)) = 3 Aq1(Asy 105, ), - - Asg (X, ¥), Ak 1 (x, 2)),
sy+...+sqt+k=p
where for sake of simplicity Ap1(x,y) = Ap.1(X,...,x,¥).
In particular, if p=q =1 we get that [, | := A1,1 is a left Leibniz bracket
which is actually the left Leibniz bracket associated to (V/,r>).



Invariant maps
If p=1and g € N*, the relation3 becomes

EXAq,l(.yla"'qu+1) = [Xqu,l(ylw"ay(H»l)]
q+1

_E Aq,1(y1,...,[X,y;],...,yq+1)
i=1
= 0.

A multilinear map A on a left Leibniz algebra satisfying £,A =0
will be called invariant.

Ap,a(x, Aqaly, 2)) = > Aq1(Asy 105, ), - - Asg (X, ¥), Ak 1(x; 2))-
S1+...fsq+k=p



Canonical A.L.L.R.S on Leibniz algebras

» If (h,[, ]) be a left Leibniz algebra then the operation
>:h x [ —s b given by
UG v = exp(ad,)(v)

defines an (canonical) analytic linear Lie rack structure on b
such that the associated left Leibniz bracket on Tgh = b is the

initial bracket [, ]. Where AOl(X y) =y and
A?Ll(xl,.. JXn YY) n| 5 Z ady, o ady,, (¥)-
O'GSn
» Corollary

The (A?, 1) N satisfy the sequence of equations®.
>/ ne

4.

Ap,1(x, Aq1ly, 2)) = > Aq1(Asy 1(x, ) - -0 Asga (X, y), Ak (X, 2))-
spt...tsqtk=p



Large class of Analytic Linear Lie rack structures on Leibniz algebras

Main Proposition

Let (h,[, ]) be a left Leibniz algebra, F : R — R a smooth function and
P:phx...x h— R asymmetric multilinear p-form such that, for any
YsX1...,% €H,

P
ZP(Xl,...7[y7X[],...7Xp) =0.
i=1

Then the operation > given by

x>y =exp(F(P(x,...,x))ads)(y) (2

is a linear Lie rack structure on b and its associated left Leibniz bracket is
[, I = F(0)[, ]. Moreover, if F is analytic then > is analytic .



Large class of Analytic Linear Lie rack structures on Leibniz algebras

Main Proposition

Let (h,[, ]) be a left Leibniz algebra, F : R — R a smooth function and
P:phx...x h— R asymmetric multilinear p-form such that, for any
YsX1...,% €H,

P
ZP(Xl,...7[y7X[],...7Xp) =0.
i=1

Then the operation > given by

x>y =exp(F(P(x,...,x))ads)(y) (2

is a linear Lie rack structure on b and its associated left Leibniz bracket is
[, I = F(0)[, ]. Moreover, if F is analytic then > is analytic .

~ If F is the identity map, the > is the canonical A.L.L.R.S on b.



Large class of Analytic Linear Lie rack structures on Leibniz algebras

Main Proposition

Let (h,[, ]) be a left Leibniz algebra, F : R — R a smooth function and
P:phx...x h— R asymmetric multilinear p-form such that, for any

YiX1...,% € b, )
ZP(Xl,...7[y7X[],...7Xp) =0.
i=1
Then the operation > given by
x>y:exp(F(P(x,...,x))adx)(y) (2)

is a linear Lie rack structure on b and its associated left Leibniz bracket is
[, I = F(0)[, ]. Moreover, if F is analytic then > is analytic .
~~ If one takes F(0) = 0, the two pointed Lie rack structures

x>oy=y and xp1y=exp(F(P(x,...,x)))ads)(y)

are two pointed Lie rack structures on abelian Leibniz algebra which are not

equivalent (even locally near 0).



Large class of Analytic Linear Lie rack structures on Leibniz algebras

Main Proposition

Let (h,[, ]) be a left Leibniz algebra, F : R — R a smooth function and
P:phx...x h— R asymmetric multilinear p-form such that, for any
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P
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structure > on b such that [, ]» =, ] is given by

x>y =exp(F(P(x,...,x)))ads)(y),

(2)



Large class of Analytic Linear Lie rack structures on Leibniz algebras

Main Proposition

Let (h,[, ]) be a left Leibniz algebra, F : R — R a smooth function and
P:phx...x h— R asymmetric multilinear p-form such that, for any
YsX1...,% €H,

P
ZP(Xl,...7[y7X[],...7Xp) =0.
i=1

Then the operation > given by

x>y =exp(F(P(x,...,x))ads)(y)

is a linear Lie rack structure on b and its associated left Leibniz bracket is
[, I = F(0)[, ]. Moreover, if F is analytic then > is analytic .

Rigid Leibniz algebra :

A left Leibniz algebra (b, [, ]) is called rigid if any analytic linear Lie rack
structure > on b such that [, ]» =, ] is given by

x>y =exp(F(P(x,...,x)))ads)(y),

where F : R — R is analytic with F(0) =1,

(2)



Large class of Analytic Linear Lie rack structures on Leibniz algebras

Main Proposition

Let (h,[, ]) be a left Leibniz algebra, F : R — R a smooth function and
P:phx...x h— R asymmetric multilinear p-form such that, for any
YsX1...,% €H,

P
ZP(Xl,...7[y7X[],...7Xp) =0.
i=1

Then the operation > given by

x>y =exp(F(P(x,...,x))ads)(y) (2

is a linear Lie rack structure on h and its associated left Leibniz bracket is
[, I = F(0)[, ]. Moreover, if F is analytic then > is analytic .

Rigid Leibniz algebra :

A left Leibniz algebra (h,[, ]) is called rigid if any analytic linear Lie rack
structure > on b such that [, ]» =, ] is given by

x>y =exp(F(P(x,...,x)))ads)(y),

where P :h x...x h — R invariant symmetric multilinear p-form on §.



Characterization of A.L.L.R.S and Cohomological
Interpretation

APal(X7A¢771(yaz)) = Z AChl(Asl,l(va):-"7A5q»1(Xay)7Ak,1(sz))7

s1+...+sqt+k=p

where for sake of simplicity Ay 1(x,y) = Ap1(x,...,x,¥).
For g = 1, The above equation can be written for any x,y,z € b,

5(ix L. iXAp,l)(y,Z) = — Z_:[Ar,l(xvy)aAP*'J(sz)]1



Characterization of A.L.L.R.S and Cohomological
Interpretation

APal(X7A‘771(yaz)) = Z ACI71(A51,1(X7y)7-"7A5q»1(Xay)7Ak,1(sz))7

s14...4sq+k=p

where for sake of simplicity Ay 1(x,y) = Ap1(x,...,x,¥).
For g = 1, The above equation can be written for any x,y,z € b,

i iAo )(9:2) = = S [Aca(x.9). Ap-ra(x. 2]

where
~ § 1 Hom(®"h, ) — Hom(®™h, ) given by

n—1
N —1
S(W)(x0s - Xn) = D [xiw(x0s s K xa)] + (1) w(xos - - Xn—1), Xn]
i—o
i+1 N
3 (=1 k0, - Ry X1 X X Xt - s Xn)s
i<j

and then defines a cohomology HP(h) for p € N.



Characterization of A.L.L.R.S and Cohomological
Interpretation

APal(X7A‘771(yaz)) = Z ACI71(A51,1(X7y)7-"7A5q»1(Xay)7Ak,1(sz))7

s14...4sq+k=p

where for sake of simplicity Ay 1(x,y) = Ap1(x,...,x,¥).
For g = 1, The above equation can be written for any x,y,z € b,

i iAo )(9:2) = = S [Aca(x.9). Ap-ra(x. 2]

where
~ § 1 Hom(®"h, ) — Hom(®™h, ) given by

n—1
N —1
S(W)(x0s - Xn) = D [xiw(x0s s K xa)] + (1) w(xos - - Xn—1), Xn]
i—o
i+1 N
3 (=1 k0, - Ry X1 X X Xt - s Xn)s
i<j

and then defines a cohomology HP(h) for p € N.
i ixApa i —— by = Apa(x, ..., X, ¥)-



A.L.L.R.S on Leibniz algebras with H® = H! =0



A.L.L.R.S on Leibniz algebras with H® = H! =0

~~ The sequence (Ag’l)neN defining the canonical linear Lie rack structure of b

satisfies
p—1

(i A ) (Y, 2) = = D [A2a(x,¥), Ap—ra(x, 2)],

r=1



A.L.L.R.S on Leibniz algebras with H® = H! =0

~~ Main Theorem :

Let (b,[, ]) be a left Leibniz algebra such that H°(h) = H*(h) = 0. Let
(An,1)n>0 be a sequence where Ag1(x,y) =y and A1 1(x,y) = [x, y] and, for
any n>2, Anp1: b x ... x h — bis multilinear invariant and symmetric in the
n first arguments. We suppose that the A, 1 satisfy®. Then there exists a
unique sequence (B,)n>2 of invariant symmetric multilinear maps

Bn:bh x...xbh—> bsuch that, for any x,y € b,

Apa(x,y) = AD 1 (x,y) + > A 1(By () Bl (3, AY_ 106 ), (3)

where Ap1(x,y) = Api(x,...,x,y) and Bi/(x) = Bi(x,...,x).

Ap,a(x, Aqaly, 2)) = > Aq1(Asy 105, ), - - Asg (X, ¥), Ak 1(x; 2))-
S1+...fsq+k=p



A.L.L.R.S and Rigidity of sl,(R) and so(3)

Main Theorem

Let b be either sl>(R) or s0(3) and > an analytic linear Lie rack
structure on b such that [, ]. is the Lie algebra bracket of . Then
there exists an analytic function F : R — R given by

F(uy=1+ Zakuk
k=1

such that, for any x,y € b,
x >y = exp(F({x, x))adx)(y),

where (x,x) = tr(ady o ady). So b is rigid.



A.L.L.R.S and Rigidity of sl,(R) and so(3)

Steps of the proof
» Consider b be either sl>(R) or so0(3). Since
H°(h) = H(h) = 0, we will use characterization® of A.L.L.R.S
with H® = H! = 0. Therefore, we will need to determine the
space of Invariant multilinear symmetric forms on b.
» Explicit A.L.L.R.S on b.
» Proof that there exists a unique sequence (a,)n>1 such that

oo
the function F(t) =1+ ) a,t" converge and
t=1

x>y = eXP(F(<X x))adx)(y)

—Y+ZF (06 X)) A 11 (%, ) +ZF ((x,X))°" A% 1 (%, y)-
n=0 n=1

Ana(x,y) = AD 1 (6, ) + > AD (B (<), - Bl (%), AY_ 1 (%)), (4)
<



A.L.L.R.S and Rigidity of sl,(R) and so(3)
Invariant multilinear symmetric forms on sl>(R) and s0(3)
Let g = 51>(C), g = slx(R) or g = s0(3).

~ Since H%(g)) = H'(g) = 0, then the A, 1 which define the A.L.L.R.S on g
can be written as follows :

Ana(x,y) = AS 1 (x,y) + > AD 1(Biy (%), - - By (), Ad_g 1(%,¥))-

~ Forany ne¢e N*, we define P : g3" — K (JK:R,(C) by

Z (Xo(1)) X0 (2)) - - - Xo(2n—1)s Xo(2n)) and  Po =1,

(2") o ESap

where (x, x) = %tr(adf). This defines a symmetric invariant form on g and the map

B : g2t 5 g given by
2n+1
BR(x1s - sxanta) = D Palxa, oy Kies ooy xanta )Xk
k=1

is symmetric and invariant. We denote by 52 (g, g) the vector space of g-invariant n-multilinear
symmetric forms on g with values in g.



A.L.L.R.S and Rigidity of sl,(R) and so(3)

Invariant multilinear symmetric forms on on sl>(R) and s0(3)

Theorem :
Let g = slp(C). Then”’, for any n € N*, we have

S2gn(g7g) =0 and 52gn+1(gag) = CBS

Corollary :
If g =sl(R) or g = s0(3) then, for any n € N*, we have

S3,(9.9)=0 and S5 .,(g,9) =RB}.

7. M. Balagovic, Chevalley restriction theorem for vector-valued functions on quantum groups, Re-
presentation Theory An Electronic Journal of the American Mathematical Society Volume 15, Pages
617-645 (2011).



A.L.L.R.S and Rigidity of sl,(R) and so(3)

Main Proposition :
Let b be either sl>(R) or s0(3) and > an analytic linear Lie rack
product on b such that [, |- is the Lie algebra bracket of ). Then

there exists a sequence (U,),cn* With Uy =1, Us = % for any
X,y €h,

X>y=y-+ <Z U2n+1<x,x>"> [x, y]+ <Z U2n<X,X>n_1) ad)z((y)

n=0

and for any n € N*,

n—1 n—1
Z Uzrs1Us(n_ry—1 — E Uerz(nr):| . (5)
r=0 r=1

1
U2n:§



A.L.L.R.S and Rigidity of sl,(R) and so(3)

Proof of the theorem

The idea of the proof is showing that there exists a unique sequence

o0
(an)n>1 such that the function F(t) =14 ) apt” converge and
t=1

Xy = exp(F(<X x))adx)(y)

_}/+ZF X, X) )2n+1A2n+11 (x,y +ZF X, X) )2"A2n1(X,)/)~
n=0 n=1

Using the following formulas

x,x)" 1 x. x)" x, x)"H(x,
A2n(X )/) < (72 >) ad2( ): <(2a )>' y— < ) >(2n)< )/>X’ n> 1’
ASria(x,y) = é,,H [x,y], n>0.



A.L.L.R.S and Rigidity of sl,(R) and so(3)

Proof of the theorem

one can see that

exp(F((x, x))ad,)(y (Z [F({x 2n]+n41r) (x, x>”> o
+ <n§_:1 [F( X,x()2]n)!<x, x)= ) 20

Put [F((x,x))]" = > Bn,m(x,x)™ and compute the
coefficients B .

n

[F(x, ™ = (14 a1(x,x) + a2(x,x)% + ... + am{x,x)™ + R)
= (1—|—31<X,X>—|—32<X,X>2+...—|—am<X,X>m)n+P,

where P contains terms of degree > m + 1.



A.L.L.R.S and Rigidity of sl,(R) and so(3)

Proof of the theorem

The multinomial theorem gives

1
(1 +a1(x, %) +a(x, )2 ..+ a,,,(x,x)m)n = %a‘;l . af"’” <x,x>k1+2k2+”‘+mk’”.
ko+...+km=n ko'ka!. .. km!
Thus
n! k k
Bn m = E —_— gt .. a
’ kolki!. . kp! ™t m’

ki+2ka+...4+mkm=m,ko+ki+...4+-km=n

for m>1and B,o = 1.



A.L.L.R.S and Rigidity of sl,(R) and so(3)

Proof of the theorem

m+n

> F({x,x))>™™ (x, x)" _ S Bont1,m(x, x)
D e D D) D T
>

0 =0 m=0
_ - BZp+l, —p n
= 2 (; (2P+1)|) < X>
o~ FOx))* 060" g Ban (X 0) ™!
; (2n)! - nz:;mzzo (2n)!




A.L.L.R.S and Rigidity of sl,(R) and so(3)

Proof of the theorem
For sake of simplicity and clarity, put

Bn,m

Vom(at,...,am) = o

k1 km
_ Z al e am
kolki!. .. kpy!
ki+2ka+...4+mkm=m,ko+ki+...4+km=n

To prove the theorem we need to show that there exists a unique
sequences (ap)n>1 such that

n
Usnpr = > Vaprinp(an,-- a0 p), n>1, (7)
p=0

Uap = Z V2p,nfp(31a AR anfp)’ n=1. (8)
p=1



A.L.L.RS and Rigidity of sl,(R) and s0(3)

Proof of the theorem
Note first that the relation(5) and the fact that U, = 3 defines the
sequence (Uap)n>1 entirely in function of the sequence (Uzn11)n>o0.
On the other hand, since Vi ,(a1,...,a,) = a, and U; =1 then

1 n
Us=a1+— and Uspy1 = an+z Vopii,n—p(at,...,an—p), n=>2.

|
3! =
Since the quantity Zgzl Vop+1.n—p(ai,-..,an—p) depends only on
(a1,...,an—1), these relations define inductively and uniquely the

sequence (ap)n>1 in function of (Uzp+1)n>0. To achieve the proof
we need to prove (8). We will proceed by induction and we will use
the following relation

0 Vn,m
63,

(al, ey am) = V,,,Lm,,(al, ceey am,,), I = 1, cee,Mm.

(9)



A.L.L.R.S and Rigidity of sl,(R) and so(3)

Proof of the theorem

Indeed,
avn,m _ a]‘fl . 'a;(/_l tc a’l;m
B, (a1, -5 am) = Z kolki!. .. (ki — 1)V . ky!

ki+2ka+...+mkyp=m,
kot+ki+...+km=nk>1

ky K

K=k —1 Z al*...a’ ...a%
h kolky! ... (K. . ky!
ket 2kat o 1K+ mkm=m—1, O (k) m
ko+ki+...4+k/+...4+km=n—1
To conclude, one needs to remark that in the relation

ki +2ky + ...+ ki + ...+ mkp=m—1

the left side is a sum of nonnegative number and the right side is
nonnegative so (m — | + 1)kp_j11 = ... = mky, = 0 and hence the
relation is equivalent to

ki +2ky+ ...+ (m— Nkp—y=m— 1.



A.L.L.RS and Rigidity of sl,(R) and s0(3)

Proof of the theorem

We can now prove (8). We proceed by induction. For n =1, we
have U, = % and Voo = % Suppose that the relation holds from 1

to n — 1. By virtue of (5), we have

n—1 n—1
1
= 382t 1 S

r=0 r=1

and all the U, appearing in this formula are given by (7) and (8)
this implies that U, = H(a1,...,an—1). On the other hand, we
have

n
Z V2p,n—p(ala ey a,,_p) = G(al, ey a,,_l).
p=1



A.L.L.R.S and Rigidity of sl,(R) and so(3)

Proof of the theorem
To show that U, satisfies (8) is equivalent to showing

oH _ 96
83/ - 83/’

But Vi, m(0) =0 if m>1and V,0(0) = L.

H(0) = G(0) and I=1,...n—1.

Ho - L (3 1 S 1
0 =3 ;(2r+1)!(2(nr)1)! _;(2r)!(2(nr))!
1 n—1 1 n 1
T2 (r_o @r+DI2(n—r)—1)1 z_;) (2n1(2(n — r))!)
on)!
1 . 11
= 0D @n)! ~ @)’



A.L.L.R.S and Rigidity of sl,(R) and so(3)

Proof of the theorem

G(0) = Von0(0) = ﬁ = H(0). For r=0,...,n—1, by induction

hypothesis Ua,41 is given by (7) and by using (9) on can see easily

that OUari1 = Uyp—py if I=1,...,rand 0 if / > r+ 1. Similarly,
8a,

we have OUar = Us(p—p-1ifI=1,...,r—1and 0if / > r. For
8a,
sake of simplicity, we put

8a, N U2(r—l) and 6a,

= Uz(r——1

with the convention Uy = 1 and Us = 0 if s is negative. Then, for
I=1,...,n—1, we have



A.L.L.R.S and Rigidity of sl,(R) and so(3)

Proof of the theorem

OH 1|3 OUzr41 8U2(nfr)71 = AUz, aUz(nfr)
= = = R U pyn + — 020 - Us(n_py + —2y
day > |:;< day 2(n—r)—1 day 2r+1 ; Day 2(n—r) £ 2r
1 n—1 n—1
= 3 > (Uz(rfl)UZ(nfr)fl + Uz(n7,7/71)U2r+1) - (Uz(rfl)fluz(n—r) + Uz(n—r—1-1 U2r)
r=0 r=1
n —1—/ 1= 1
= = > UaUsoyopy1+ = ZUzn r—i—1)U2rt1
2 r=0 r=0
1 n—I1—2 1 n—1
-z Z Uz2riaUz(n—r—j—1) — > > Us(nor—py—1Uzr
r=0 r=1
1 1 n—1 n—1
= Euz(n—l)—1+5 > Ustner—i— 1)U2r+1_’ > Ustn—r—ny—1 U2
r=n—I—1 r=n—|
= Uzpn—p-1

This completes the proof.



