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Rack Structures And Leibniz Algebras
"Lie Rack Structures"

 Lie Rack :
A Lie rack is a pointed smooth manifold (X , 1) together with a
smooth map B : X × X −→ X , (a, b) 7→ aB b such that,for any
a, b, c ∈ X ,
I the left translation La : X −→ X , b 7→ a B b are diffeomorphisms,
I a B (b B c) = (a B b)B (a B c),
I 1B a = a and a B 1 = 1.

 Example :
I Any Lie group G has a Lie rack structure given by

g B h := g−1hg .

{Lie groups} ⊂ {Lie racks}



Rack Structures And Leibniz Algebras
" Leibniz Algebras"

 Leibniz algebra :
A left Leibniz algebra 1 is an algebra (h, [ , ]) over a field K such
that, for every element u ∈ h, adu : h −→ h, v 7→ [u, v ] is a
derivation of h, i.e.,

[u, [v ,w ]] = [[u, v ],w ] + [v , [u,w ]] (1)

 Example :
I If the Leibniz bracket is skew, then (h, [ , ]) is a Lie algebra.

{Lie algebras} ⊂ {Leibniz algebras}

1. J. L. Loday, Une version non-commutative des algebres de Lie, L’Ens. Math
39 (1993) 269-293.



Rack Structures And Leibniz Algebras
From Lie racks to Leibniz algebras

 Tangent Functor 2 : Given a pointed Lie rack (X , 1), for any a ∈ X , we
denote by Ada : T1X = h −→ h the differential of La at 1. We have

LaBb = La ◦ Lb ◦ L−1a and AdaBb = Ada ◦Adb ◦Ad−1a .

Thus Ad : X −→ GL(h) is an homomorphism of Lie racks. If we put

[u, v ]B =
d

dt |t=0
Adc(t)v , u, v ∈ h, c :]− ε, ε[−→ X , c(0) = 1, c ′(0) = u.

Theorem
Any Lie rack (X ,B, 1), the tangent space (h, [ , ]B) is a left Leibniz algebra.

2. M. Kinyon,Leibniz algebras,Lie racks, and digroups, Journal of Lie Theory,
volume 17 (2007) 99–114.



Analytic Linear Lie Rack Structures On Leibniz Algebras

• Analityc Linear Lie Rack Structures on finite dimensional
vector space.

• A.L.L.R.S on Leibniz algebras with H0 = H1 = 0.
• A.L.L.R.S and Rigidity of sl2(R) and so(3).
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Definitions
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Analytic linear Lie rack structures
Definitions

I A linear Lie rack structure on a finite dimensional vector space
V is a Lie rack operation (x , y) 7→ x B y pointed at 0 and
such that for any x , the map Lx : y 7→ x B y is linear.

I A linear Lie rack operation B is called analytic if for any
x , y ∈ V ,

x B y = y + [x , y ] +
∞∑
n=2

An,1(x , . . . , x , y),

where : A1,1 is the left Leibniz bracket associated to B.



Characterization of analytic linear Lie rack structures
"Main Theorem"

Let V be a real finite dimensional vector space and (An,1)n≥1 a sequence of
n + 1-multilinear maps symmetric in the n first arguments. We suppose that
the operation B given by

x B y = y +
∞∑
n=1

An,1(x , . . . , x , y)

converges. Then B is a Lie rack structure on V if and only if for any p, q ∈ N∗
and x , y , z ∈ V ,

Ap,1(x, Aq,1(y, z)) =
∑

s1+...+sq+k=p

Aq,1(As1,1(x, y), . . . , Asq ,1(x, y), Ak,1(x, z)),

where for sake of simplicity Ap,1(x , y) := Ap,1(x , . . . , x , y).
In particular, if p = q = 1 we get that [ , ] := A1,1 is a left Leibniz bracket
which is actually the left Leibniz bracket associated to (V ,B).



Invariant maps
If p = 1 and q ∈ N∗, the relation 3 becomes

LxAq,1(y1, . . . , yq+1) := [x ,Aq,1(y1, . . . , yq+1)]

−
q+1∑
i=1

Aq,1(y1, . . . , [x , yi ], . . . , yq+1)

= 0.

A multilinear map A on a left Leibniz algebra satisfying LxA = 0
will be called invariant.

3.

Ap,1(x, Aq,1(y, z)) =
∑

s1+...+sq+k=p

Aq,1(As1,1(x, y), . . . , Asq ,1(x, y), Ak,1(x, z)).



Canonical A.L.L.R.S on Leibniz algebras

I If (h, [ , ]) be a left Leibniz algebra then the operation
c
B: h× h −→ h given by

u
c
B v = exp(adu)(v)

defines an (canonical) analytic linear Lie rack structure on h
such that the associated left Leibniz bracket on T0h = h is the
initial bracket [ , ]. Where A0

0,1(x , y) = y and

A0
n,1(x1, . . . , xn, y) :=

1
(n!)2

∑
σ∈Sn

adxσ(1) ◦ . . . ◦ adxσ(n)(y).

I Corollary
The

(
A0
n,1

)
n∈N

satisfy the sequence of equations 4.

4.
Ap,1(x, Aq,1(y, z)) =

∑
s1+...+sq+k=p

Aq,1(As1,1(x, y), . . . , Asq ,1(x, y), Ak,1(x, z)).



Large class of Analytic Linear Lie rack structures on Leibniz algebras

Main Proposition

Let (h, [ , ]) be a left Leibniz algebra, F : R −→ R a smooth function and
P : h× . . .× h −→ R a symmetric multilinear p-form such that, for any
y , x1 . . . , xp ∈ h,

p∑
i=1

P(x1, . . . , [y , xi ], . . . , xp) = 0.

Then the operation B given by

x B y = exp(F (P(x , . . . , x))adx)(y) (2)

is a linear Lie rack structure on h and its associated left Leibniz bracket is
[ , ]B = F (0)[ , ]. Moreover, if F is analytic then B is analytic .



Large class of Analytic Linear Lie rack structures on Leibniz algebras

Main Proposition

Let (h, [ , ]) be a left Leibniz algebra, F : R −→ R a smooth function and
P : h× . . .× h −→ R a symmetric multilinear p-form such that, for any
y , x1 . . . , xp ∈ h,

p∑
i=1

P(x1, . . . , [y , xi ], . . . , xp) = 0.

Then the operation B given by

x B y = exp(F (P(x , . . . , x))adx)(y) (2)

is a linear Lie rack structure on h and its associated left Leibniz bracket is
[ , ]B = F (0)[ , ]. Moreover, if F is analytic then B is analytic .
 If F is the identity map, the B is the canonical A.L.L.R.S on h.
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Main Proposition

Let (h, [ , ]) be a left Leibniz algebra, F : R −→ R a smooth function and
P : h× . . .× h −→ R a symmetric multilinear p-form such that, for any
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is a linear Lie rack structure on h and its associated left Leibniz bracket is
[ , ]B = F (0)[ , ]. Moreover, if F is analytic then B is analytic .
 If one takes F (0) = 0, the two pointed Lie rack structures

x B0 y = y and x B1 y = exp(F (P(x , . . . , x)))adx)(y)

are two pointed Lie rack structures on abelian Leibniz algebra which are not
equivalent (even locally near 0).
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Large class of Analytic Linear Lie rack structures on Leibniz algebras

Main Proposition

Let (h, [ , ]) be a left Leibniz algebra, F : R −→ R a smooth function and
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Characterization of A.L.L.R.S and Cohomological
interpretation

Ap,1(x ,Aq,1(y , z)) =
∑

s1+...+sq+k=p

Aq,1(As1,1(x , y), . . . ,Asq ,1(x , y),Ak,1(x , z)),

where for sake of simplicity Ap,1(x , y) := Ap,1(x , . . . , x , y).
For q = 1, The above equation can be written for any x , y , z ∈ h,

δ(ix . . . ixAp,1)(y , z) = −
p−1∑
r=1

[Ar,1(x , y),Ap−r,1(x , z)],

where
 δ : Hom(⊗nh, h) −→ Hom(⊗n+1h, h) given by

δ(ω)(x0, . . . , xn) =

n−1∑
i=0

[xi , ω(x0, . . . , x̂i , . . . , xn)] + (−1)n−1[ω(x0, . . . , xn−1), xn ]

+
∑
i<j

(−1)i+1
ω(x0, . . . , x̂i , . . . , xj−1, [xi , xj ], xj+1, . . . , xn),

and then defines a cohomology Hp(h) for p ∈N.

 ix . . . ixAp,1 : h −→ h, y 7→ Ap,1(x, . . . , x, y).
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A.L.L.R.S on Leibniz algebras with H0 = H1 = 0

 The sequence (A0
n,1)n∈N defining the canonical linear Lie rack structure of h

satisfies

δ(ix . . . ixA
0
p,1)(y , z) = −

p−1∑
r=1

[A0
r,1(x , y),A

0
p−r,1(x , z)],



A.L.L.R.S on Leibniz algebras with H0 = H1 = 0

 Main Theorem :
Let (h, [ , ]) be a left Leibniz algebra such that H0(h) = H1(h) = 0. Let
(An,1)n≥0 be a sequence where A0,1(x , y) = y and A1,1(x , y) = [x , y ] and, for
any n ≥ 2, An,1 : h× . . .× h −→ h is multilinear invariant and symmetric in the
n first arguments. We suppose that the An,1 satisfy 5. Then there exists a
unique sequence (Bn)n≥2 of invariant symmetric multilinear maps
Bn : h× . . .× h −→ h such that, for any x , y ∈ h,

An,1(x, y) = A0
n,1(x, y) +

∑
1 ≤ k ≤

[
n
2

]
s = l1 + . . . + lk ≤ n

A0
k,1(Bl1 (x), . . . , Blk

(x), A0
n−s,1(x, y)), (3)

where Ap,1(x , y) = Ap,1(x , . . . , x , y) and Bl(x) = Bl(x , . . . , x).

5.

Ap,1(x, Aq,1(y, z)) =
∑

s1+...+sq+k=p

Aq,1(As1,1(x, y), . . . , Asq ,1(x, y), Ak,1(x, z)).



A.L.L.R.S and Rigidity of sl2(R) and so(3)
Main Theorem

Let h be either sl2(R) or so(3) and B an analytic linear Lie rack
structure on h such that [ , ]B is the Lie algebra bracket of h. Then
there exists an analytic function F : R −→ R given by

F (u) = 1+
∞∑
k=1

aku
k

such that, for any x , y ∈ h,

x B y = exp(F (〈x , x〉)adx)(y),

where 〈x , x〉 = 1
2tr(adx ◦ adx). So h is rigid.



A.L.L.R.S and Rigidity of sl2(R) and so(3)
Steps of the proof

I Consider h be either sl2(R) or so(3). Since
H0(h) = H1(h) = 0, we will use characterization 6 of A.L.L.R.S
with H0 = H1 = 0. Therefore, we will need to determine the
space of Invariant multilinear symmetric forms on h.

I Explicit A.L.L.R.S on h.
I Proof that there exists a unique sequence (an)n≥1 such that

the function F (t) = 1+
∞∑
t=1

ant
n converge and

x B y = exp(F (〈x , x〉)adx)(y)

= y +
∞∑
n=0

F (〈x , x〉)2n+1A0
2n+1,1(x , y) +

∞∑
n=1

F (〈x , x〉)2nA0
2n,1(x , y).

6.
An,1(x, y) = A0

n,1(x, y) +
∑

1 ≤ k ≤
[
n
2

]
s = l1 + . . . + lk ≤ n

A0
k,1(Bl1 (x), . . . , Blk

(x), A0
n−s,1(x, y)), (4)



A.L.L.R.S and Rigidity of sl2(R) and so(3)
Invariant multilinear symmetric forms on sl2(R) and so(3)

Let g = sl2(C), g = sl2(R) or g = so(3).

 Since H0(g)) = H1(g) = 0, then the An,1 which define the A.L.L.R.S on g
can be written as follows :

An,1(x, y) = A0
n,1(x, y) +

∑
1 ≤ k ≤

[
n
2

]
s = l1 + . . . + lk ≤ n

A0
k,1(Bl1 (x), . . . , Blk

(x), A0
n−s,1(x, y)).

 For any n ∈N∗, we define P : g2n −→ K (K = R,C) by

Pn(x1, . . . , x2n) =
1

(2n)!

∑
σ∈S2n

〈xσ(1), xσ(2)〉 . . . 〈xσ(2n−1), xσ(2n)〉 and P0 = 1,

where 〈x, x〉 = 1
2 tr(ad2

x ). This defines a symmetric invariant form on g and the map
Bg
n : g2n+1 −→ g given by

Bg
n (x1, . . . , x2n+1) =

2n+1∑
k=1

Pn(x1, . . . , x̂k , . . . , x2n+1)xk

is symmetric and invariant. We denote by Sg
n (g, g) the vector space of g-invariant n-multilinear

symmetric forms on g with values in g.



A.L.L.R.S and Rigidity of sl2(R) and so(3)
Invariant multilinear symmetric forms on on sl2(R) and so(3)

Theorem :
Let g = sl2(C). Then 7, for any n ∈ N∗, we have

Sg
2n(g, g) = 0 and Sg

2n+1(g, g) = CBg
n .

Corollary :
If g = sl2(R) or g = so(3) then, for any n ∈ N∗, we have

Sg
2n(g, g) = 0 and Sg

2n+1(g, g) = RBg
n .

7. M. Balagovic, Chevalley restriction theorem for vector-valued functions on quantum groups, Re-
presentation Theory An Electronic Journal of the American Mathematical Society Volume 15, Pages
617-645 (2011).



A.L.L.R.S and Rigidity of sl2(R) and so(3)

Main Proposition :
Let h be either sl2(R) or so(3) and B an analytic linear Lie rack
product on h such that [ , ]B is the Lie algebra bracket of h. Then
there exists a sequence (Un)n∈N∗ with U1 = 1, U2 = 1

2 , for any
x , y ∈ h,

x B y = y +

(
∞∑
n=0

U2n+1〈x , x〉n
)
[x , y ] +

(
∞∑
n=1

U2n〈x , x〉n−1
)

ad2x (y)

and for any n ∈ N∗,

U2n =
1
2

[
n−1∑
r=0

U2r+1U2(n−r)−1 −
n−1∑
r=1

U2rU2(n−r)

]
. (5)



A.L.L.R.S and Rigidity of sl2(R) and so(3)
Proof of the theorem

The idea of the proof is showing that there exists a unique sequence

(an)n≥1 such that the function F (t) = 1+
∞∑
t=1

ant
n converge and

x B y = exp(F (〈x , x〉)adx)(y)

= y +
∞∑
n=0

F (〈x , x〉)2n+1A0
2n+1,1(x , y) +

∞∑
n=1

F (〈x , x〉)2nA0
2n,1(x , y).

Using the following formulas A0
2n(x , y) =

〈x , x〉n−1

(2n)!
ad2

x(y) =
〈x , x〉n

(2n)!
y − 〈x , x〉

n−1〈x , y〉
(2n)!

x , n ≥ 1,

A0
2n+1(x , y) =

〈x ,x〉n
(2n+1)! [x , y ], n ≥ 0.

(6)



A.L.L.R.S and Rigidity of sl2(R) and so(3)
Proof of the theorem

one can see that

exp(F (〈x , x〉)adx)(y) = y +

( ∞∑
n=0

[F (〈x , x〉)]2n+1〈x , x〉n

(2n + 1)!

)
[x , y ]

+

( ∞∑
n=1

[F (〈x , x〉)]2n〈x , x〉n−1

(2n)!

)
ad2

x(y).

Put [F (〈x , x〉)]n =
∑∞

m=0 Bn,m〈x , x〉m and compute the
coefficients Bn,m.

[F (〈x , x〉)]n =
(
1+ a1〈x , x〉+ a2〈x , x〉2 + . . .+ am〈x , x〉m + R

)n
=

(
1+ a1〈x , x〉+ a2〈x , x〉2 + . . .+ am〈x , x〉m

)n
+ P,

where P contains terms of degree ≥ m + 1.



A.L.L.R.S and Rigidity of sl2(R) and so(3)
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The multinomial theorem gives
(
1 + a1〈x, x〉 + a2〈x, x〉2 + . . . + am〈x, x〉m

)n
=

∑
k0+...+km=n

n!

k0!k1! . . . km!
a
k1
1 . . . akmm 〈x, x〉

k1+2k2+...+mkm .

Thus

Bn,m =
∑

k1+2k2+...+mkm=m,k0+k1+...+km=n

n!

k0!k1! . . . km!
ak11 . . . akmm ,

for m ≥ 1 and Bn,0 = 1.
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∞∑
n=0

F (〈x , x〉)2n+1〈x , x〉n

(2n + 1)!
=

∞∑
n=0

∞∑
m=0

B2n+1,m〈x , x〉m+n

(2n + 1)!

=
∞∑
n=0

(
n∑

p=0

B2p+1,n−p

(2p + 1)!

)
〈x , x〉n,

∞∑
n=1

F (〈x , x〉)2n〈x , x〉n−1

(2n)!
=

∞∑
n=1

∞∑
m=0

B2n,m〈x , x〉m+n−1

(2n)!

=
∞∑
n=1

(
n∑

p=1

B2p,n−p

(2p)!

)
〈x , x〉n−1.
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For sake of simplicity and clarity, put

Vn,m(a1, . . . , am) =
Bn,m

n!

=
∑

k1+2k2+...+mkm=m,k0+k1+...+km=n

ak11 . . . akmm
k0!k1! . . . km!

.

To prove the theorem we need to show that there exists a unique
sequences (an)n≥1 such that

U2n+1 =
n∑

p=0

V2p+1,n−p(a1, . . . , an−p), n ≥ 1, (7)

U2n =
n∑

p=1

V2p,n−p(a1, . . . , an−p), n ≥ 1. (8)
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Note first that the relation(5) and the fact that U2 = 1
2 defines the

sequence (U2n)n≥1 entirely in function of the sequence (U2n+1)n≥0.
On the other hand, since V1,n(a1, . . . , an) = an and U1 = 1 then

U3 = a1+
1
3!

and U2n+1 = an+
n∑

p=1

V2p+1,n−p(a1, . . . , an−p), n ≥ 2.

Since the quantity
∑n

p=1 V2p+1,n−p(a1, . . . , an−p) depends only on
(a1, . . . , an−1), these relations define inductively and uniquely the
sequence (an)n≥1 in function of (U2n+1)n≥0. To achieve the proof
we need to prove (8). We will proceed by induction and we will use
the following relation

∂Vn,m

∂al
(a1, . . . , am) = Vn−1,m−l(a1, . . . , am−l), l = 1, . . . ,m.

(9)
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Indeed,

∂Vn,m

∂al
(a1, . . . , am) =

∑
k1+2k2+...+mkm=m,
k0+k1+...+km=n,kl≥1

ak1
1 . . . akl−1

l . . . akmm
k0!k1! . . . (kl − 1)! . . . km!

k′l =kl−1
=

∑
k1+2k2+...+lk′l +...+mkm=m−l,

k0+k1+...+k′l +...+km=n−1

ak1
1 . . . a

k′l
l . . . akmm

k0!k1! . . . (k ′l )! . . . km!
.

To conclude, one needs to remark that in the relation

k1 + 2k2 + . . .+ lk ′l + . . .+mkm = m − l

the left side is a sum of nonnegative number and the right side is
nonnegative so (m − l + 1)km−l+1 = . . . = mkm = 0 and hence the
relation is equivalent to

k1 + 2k2 + . . .+ (m − l)km−l = m − l .
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We can now prove (8). We proceed by induction. For n = 1, we
have U2 = 1

2 and V2,0 = 1
2 . Suppose that the relation holds from 1

to n − 1. By virtue of (5), we have

U2n =
1
2

[
n−1∑
r=0

U2r+1U2(n−r)−1 −
n−1∑
r=1

U2rU2(n−r)

]

and all the Ur appearing in this formula are given by (7) and (8)
this implies that U2n = H(a1, . . . , an−1). On the other hand, we
have

n∑
p=1

V2p,n−p(a1, . . . , an−p) = G (a1, . . . , an−1).
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To show that U2n satisfies (8) is equivalent to showing

H(0) = G (0) and
∂H

∂al
=

∂G

∂al
, l = 1, . . . n − 1.

But Vn,m(0) = 0 if m ≥ 1 and Vn,0(0) = 1
n! .

H(0) =
1
2

(
n−1∑
r=0

1
(2r + 1)!(2(n − r)− 1)!

−
n−1∑
r=1

1
(2r)!(2(n − r))!

)

=
1
2

(
n−1∑
r=0

1
(2r + 1)!(2(n − r)− 1)!

−
n∑

r=0

1
(2r)!(2(n − r))!

)

+
1

(2n)!

= −1
2
(1− 1)2n +

1
(2n)!

=
1

(2n)!
,
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G (0) = V2n,0(0) = 1
(2n)! = H(0). For r = 0, . . . , n− 1, by induction

hypothesis U2r+1 is given by (7) and by using (9) on can see easily

that
∂U2r+1

∂al
= U2(r−l) if l = 1, . . . , r and 0 if l ≥ r + 1. Similarly,

we have
∂U2r

∂al
= U2(r−l)−1 if l = 1, . . . , r − 1 and 0 if l ≥ r . For

sake of simplicity, we put

∂U2r+1

∂al
= U2(r−l) and

∂U2r

∂al
= U2(r−l)−1

with the convention U0 = 1 and Us = 0 if s is negative. Then, for
l = 1, . . . , n − 1, we have
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∂H

∂al
=

1

2

n−1∑
r=0

(
∂U2r+1

∂al
U2(n−r)−1 +

∂U2(n−r)−1

∂al
U2r+1

)
−

n−1∑
r=1

(
∂U2r

∂al
U2(n−r) +

∂U2(n−r)

∂al
U2r

)
=

1

2

n−1∑
r=0

(
U2(r−l)U2(n−r)−1 + U2(n−r−l−1)U2r+1

)
−

n−1∑
r=1

(
U2(r−l)−1U2(n−r) + U2(n−r−l)−1U2r

)
=

1

2

n−1−l∑
r=0

U2rU2(n−r−l)−1 +
1

2

n−1∑
r=0

U2(n−r−l−1)U2r+1

−
1

2

n−l−2∑
r=0

U2r+1U2(n−r−l−1) −
1

2

n−1∑
r=1

U2(n−r−l)−1U2r

=
1

2
U2(n−l)−1 +

1

2

n−1∑
r=n−l−1

U2(n−r−l−1)U2r+1 −
1

2

n−1∑
r=n−l

U2(n−r−l)−1U2r

= U2(n−l)−1.

This completes the proof.


