An Introduction to the Geometry of Symmetric Spaces - I -

Abdelhak Abouqateb and Othmane Dani

Cadi Ayyad University Faculty of Sciences and Technologies, Marrakesh, Morocco

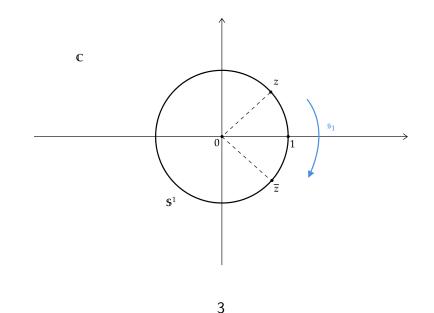
Interuniversity Geometry Seminar (IGS)

12th March 2022

For any Lie group G we have a canonical involution:

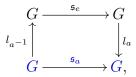
 $\mathfrak{s}_e: G \to G$, written $g \mapsto g^{-1}$.

1 s_e(e) = e.
 2 s_e ∘ s_e = Id_G.



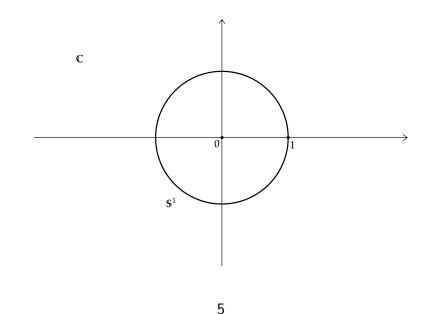
Symmetries (\mathfrak{s}_a) in a Lie group G

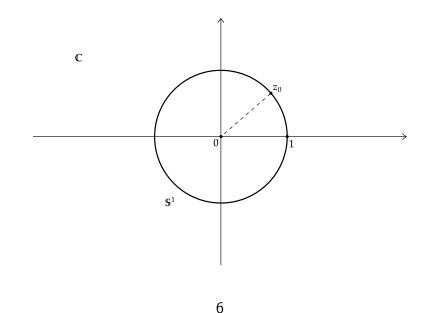
For any fixed point a in G, there exists a smooth involution of G such that a is an isolated fixed point for it. It is defined by:

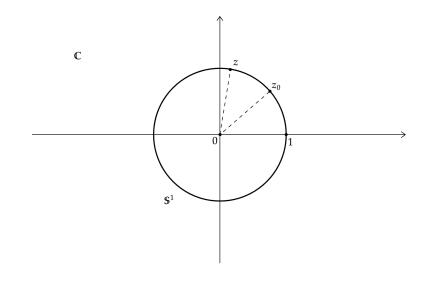


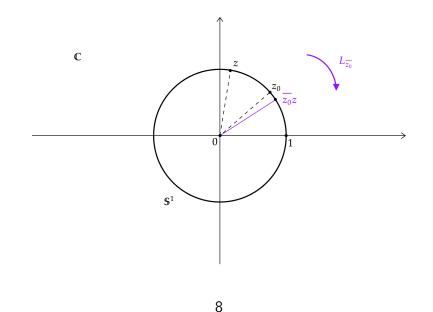
where $l_g: G \to G$ is the left translation by the element $g \in G$. More precisely, the map \mathfrak{s}_a is given by:

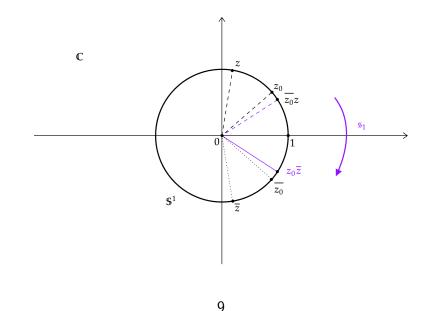
 $\mathfrak{s}_a(b) := ab^{-1}a.$

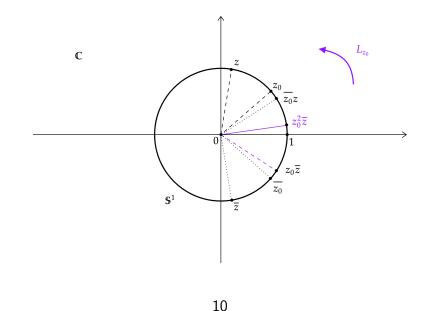




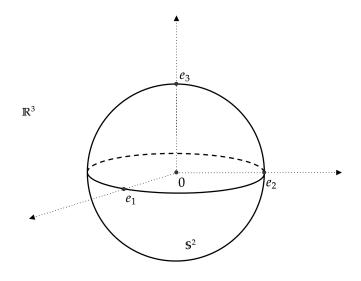




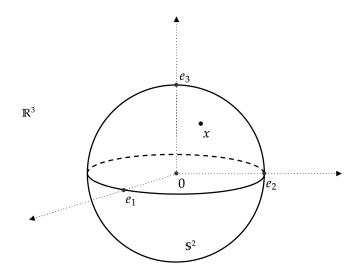




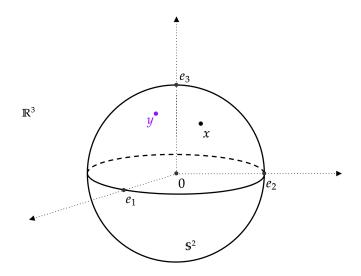
What about the unit sphere \mathbb{S}^2 ?



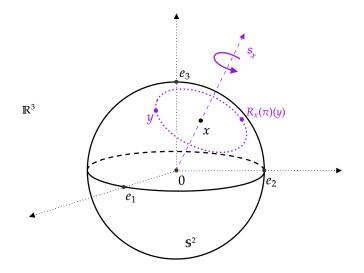
The unit sphere $\mathbb{S}^2 \subset \mathbb{R}^3$



The unit sphere $\mathbb{S}^2 \subset \mathbb{R}^3$



The unit sphere $\mathbb{S}^2 \subset \mathbb{R}^3$



For each $x \in \mathbb{S}^2$, we have an involution:

$$\mathfrak{s}_x : \mathbb{S}^2 \longrightarrow \mathbb{S}^2 \\
y \longmapsto R_x(\pi)(y),$$

where $R_x(\pi)$ is the rotation around the *x*-axis by angle π . Explicitly, it is given by:

$$R_x(\pi)(y) := 2\langle x, y \rangle x - y.$$

Symmetries on the Poincaré Half-Plane

Consider $\mathbb{H} := \{z = x + iy \in \mathbb{C} / y > 0\}$ with the metric $ds^2 := \frac{1}{y^2}(dx^2 + dy^2)$. The group $\mathrm{SL}(2, \mathbb{R})$ acts transitively and isometrically on \mathbb{H} via:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z := \frac{az+b}{cz+d}$$

Moreover, a symmetry (an isometry of \mathbb{H}) at *i* is given by:

$$\mathfrak{s}_i(z) := -\frac{1}{z} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot z.$$

Hence, under conjugaison by elements in $SL(2, \mathbb{R})$ we get symmetries: $\mathfrak{s}_a : \mathbb{H} \to \mathbb{H}$ for any $a \in \mathbb{H}$.

What is a Symmetric Space?

Definition

A symmetric space is a connected smooth manifold M with a smooth family of involutions $\{\mathfrak{s}_x\}_{x\in M}$, in the sense that

$$\begin{array}{cccc} M \times M & \longrightarrow & M \\ (x,y) & \longmapsto & \mathfrak{s}_x(y), \end{array}$$

is smooth, and which satisfies the following properties:

For each x ∈ M, there exists a neighborhood U_x ⊆ M of x such that x is the only fixed point of s_x in U_x.

An equivalent definition

Definition

A symmetric space is a connected smooth manifold M with a smooth map $\mu: M \times M \to M$ written as $\mu(x, y) := x \cdot y$, which satisfies the following properties:

$$2 x \cdot (x \cdot y) = y, \quad \forall x, y \in M;$$

$$\begin{cases} x \cdot y = y \\ y \in U_x \end{cases} \quad \Rightarrow \quad y = x.$$

Example: Lie groups

For a connected Lie group G, we have

 $\mu: G \times G \to G$, written $a \cdot b := ab^{-1}a$.

Only the last property requires verification. Using the fact that $\exp_G : \mathfrak{g} \to G$ is a local diffeomorphism on a neighborhood of $0 \in \mathfrak{g}$, there exists a neighborhood $U_e \subseteq G$ of $e \in G$ such that

$$\begin{cases} g^2 = e \\ g \in U_e \end{cases} \Rightarrow g = e.$$

So for each $a \in G$, we define $U_a := U_e a$, then we get

$$\begin{cases} a \cdot b = b \\ b \in U_a \end{cases} \Leftrightarrow \begin{cases} (ba^{-1})^2 = e \\ b \in U_a \end{cases} \Rightarrow b = a.$$

Example: Symmetric Pairs

Definition

A symmetric pair is a triple (G, H, σ) such that:

- \bigcirc G is a connected Lie group and H a closed subgroup;
- **2** $\sigma: G \to G$ is an involutive automorphism of G satisfying the following condition

 $\operatorname{Fix}^{0}(\sigma) \subseteq H \subseteq \operatorname{Fix}(\sigma),$

where $\operatorname{Fix}(\sigma) := \{g \in G \mid \sigma(g) = g\}.$

Main example: $(\mathrm{GL}^+(n,\mathbb{R}),\mathrm{SO}(n),\sigma)$, where the involution automorphism σ is

 $\sigma: \mathrm{GL}^+(n, \mathbb{R}) \to \mathrm{GL}^+(n, \mathbb{R}), \quad A \mapsto \left(A^{-1}\right)^T.$

From Symmetric Pairs to Symmetric Spaces

Theorem

Let (G, H, σ) be a symmetric pair, then M := G/H is a symmetric space.

Proof. Let $\pi: G \to M, g \mapsto \overline{g}$ be the projection map. Define:

$$\begin{split} \mathfrak{s}_{\overline{e}}(\overline{b}) &:= \overline{\sigma(b)}, \qquad \mathfrak{s}_{\overline{a}} := \lambda_a \circ \mathfrak{s}_{\overline{e}} \circ \lambda_{a^{-1}}, \\ \text{where } \lambda_a : M \to M, \quad \overline{b} \mapsto \overline{ab}; \\ \mu : M \times M \to M, \qquad \overline{a} \cdot \overline{b} := \mathfrak{s}_{\overline{a}}(\overline{b}) = \overline{a\sigma(a^{-1}b)}. \end{split}$$

This is well defined since $H \subseteq Fix(\sigma)$. For $a, b \in G$, we have

$$\overline{a} \cdot (\overline{a} \cdot \overline{b}) = \overline{a} \cdot \overline{a\sigma(a^{-1}b)}$$
$$= \overline{a\sigma(a^{-1}a\sigma(a^{-1}b))}$$
$$= \overline{b}.$$

Moreover, for $g \in G$, we have

$$\overline{g} \cdot (\overline{a} \cdot \overline{b}) = \overline{g\sigma (g^{-1}a\sigma(a^{-1}b))}$$
$$= \overline{g\sigma(g^{-1}a)\sigma (\sigma(a^{-1}g)\sigma(g^{-1}b))}$$
$$= \overline{g\sigma(g^{-1}a)\sigma (\sigma(a^{-1}g)g^{-1}g\sigma(g^{-1}b))}$$
$$= (\overline{g} \cdot \overline{a}) \cdot (\overline{g} \cdot \overline{b}).$$

Finally, let $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}$ be the canonical decomposition of \mathfrak{g} . Consider a symmetric neighborhood $V_0 \subseteq \mathfrak{m}$ of 0 in \mathfrak{m} such that $\pi \circ \exp_{G|_{V_0}} : V_0 \to U_{\overline{e}} \subset M$ is a diffeomorphism. For $u \in V_0$, we get

$$\overline{e} \cdot \overline{\exp_G(u)} = \overline{\sigma(\exp_G(u))}$$
$$= \overline{\exp_G(\sigma'(u))}$$
$$= \overline{\exp_G(-u)}.$$

Thus

$$\begin{cases} \overline{e} \cdot \overline{a} = \overline{a} \\ \overline{a} \in U_{\overline{e}} \end{cases} \quad \Rightarrow \quad \overline{a} = \overline{e}.$$

Similarly, for each $a\in G$, we put $U_{\overline{a}}:=\lambda_{a}\left(U_{\overline{e}}\right)$, then we obtain

$$\left\{ \begin{array}{ll} \overline{a} \cdot \overline{b} = \overline{b} \\ \overline{b} \in U_{\overline{a}} \end{array} \right. \Rightarrow \quad \overline{b} = \overline{a}. \quad \bullet$$

Examples of Symmetric Pairs

• $(G \times G, \Delta G, \sigma)$, where G is a connected Lie group and $\sigma : G \times G \to G \times G$, $(a, b) \mapsto (b, a)$. • $(\operatorname{SO}(p+q), \operatorname{SO}(p) \times \operatorname{SO}(q), \sigma)$, with σ given by: $\sigma : \operatorname{SO}(p+q) \to \operatorname{SO}(p+q)$, $A \mapsto I_{p,q}AI_{p,q}$, where $I_{p,q} := \begin{pmatrix} I_p & 0\\ 0 & -I_q \end{pmatrix}$.

Examples of Symmetric Pairs

• $(SO^0(p,q), SO(p) \times SO(q), \sigma)$, where $SO^0(p,q)$ is the identity component of the generalized orthogonal group defined by:

$$\mathcal{O}(p,q) := \Big\{ A \in \mathrm{GL}(p+q,\mathbb{R}) \mid A^T I_{p,q} A = I_{p,q} \Big\},\$$

and σ is the following automorphism:

 $\sigma : \mathrm{SO}^0(p,q) \to \mathrm{SO}^0(p,q), \quad A \mapsto \left(A^{-1}\right)^T = I_{p,q} A I_{p,q}.$

• $(SO(2n), U(n), \sigma)$, with σ given by:

 $\sigma: \mathrm{SO}(2n) \to \mathrm{SO}(2n), \quad A \mapsto J_n A J_n^T,$

where
$$J_n := \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$$
.

Proposition

Let (G, H, σ) be a symmetric pair, then M := G/H is a reductive homogeneous G-space. More precisely we have:

- 1. The Lie algebra of H is $\mathfrak{h} := \{ u \in \mathfrak{g} / \sigma'(u) = u \}.$
- 2. $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$, where $\mathfrak{m} := \{ u \in \mathfrak{g} / \sigma'(u) = -u \}$.
- 3. $\operatorname{Ad}(H)(\mathfrak{m}) \subseteq \mathfrak{m}$, and $[\mathfrak{m}, \mathfrak{m}] \subseteq \mathfrak{h}$.

Definition

Let $\tau : \mathfrak{g} \to \mathfrak{g}$ be an involutive automorphism of a Lie algebra \mathfrak{g} .

- The pair (\mathfrak{g}, τ) is called an *involutive* Lie algebra.
- The canonical decomposition of \mathfrak{g} is $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$, where $\mathfrak{h} := \ker (\tau \mathrm{Id}_{\mathfrak{g}})$ and $\mathfrak{m} := \ker (\tau + \mathrm{Id}_{\mathfrak{g}})$.

 $\begin{array}{l} \text{The following relations hold:} \\ [\mathfrak{h},\mathfrak{h}]\subseteq\mathfrak{h}, \quad [\mathfrak{h},\mathfrak{m}]\subseteq\mathfrak{m}, \quad [\mathfrak{m},\mathfrak{m}]\subseteq\mathfrak{h}. \end{array}$

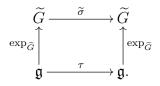
Conversely, we have

Proposition

Any involutive automorphism $\tau : \mathfrak{g} \to \mathfrak{g}$ of a Lie algebra \mathfrak{g} gives rise to a symmetric pair $(\widetilde{G}, \widetilde{H}, \widetilde{\sigma})$, where

- \widetilde{G} is a simply connected Lie group having $\mathfrak g$ as Lie algebra;
- $\widetilde{H} := \langle \exp_{\widetilde{G}}(\mathfrak{h}) \rangle$, with $\mathfrak{h} := \ker (\tau \operatorname{Id}_{\mathfrak{g}})$;
- $\widetilde{\sigma} \in \operatorname{Aut}(\widetilde{G})$ such that $\widetilde{\sigma}' = \tau$.

Moreover, if (G, H, σ) is a symmetric pair with (\mathfrak{g}, τ) as associated involutive Lie algebra and such that G/H is simply connected, then $\widetilde{G}/\widetilde{H} \cong G/H$. **Proof.** Since $\text{Lie}(\text{Fix}(\tilde{\sigma})) = \mathfrak{h}$, it suffices to check that $\widetilde{H} \subseteq \text{Fix}(\tilde{\sigma})$. But this is obvious by using the following commutative diagram



The last assertion follows from the uniqueness of the universal covering manifold.

The Canonical decomposition of \mathfrak{g} for the previous Examples

• For $(\operatorname{GL}^+(n,\mathbb{R}),\operatorname{SO}(n),\sigma)$, we have

 $\mathfrak{h} = \mathfrak{so}(n), \text{ and } \mathfrak{m} = \operatorname{Sym}(n, \mathbb{R}).$

• For $(G \times G, \Delta G, \sigma)$, we have $\mathfrak{h} = \{(u, u) \mid u \in \mathfrak{g}\}, \text{ and } \mathfrak{m} = \{(u, -u) \mid u \in \mathfrak{g}\}.$ • For $(\mathrm{SO}(p+q), \mathrm{SO}(p) \times \mathrm{SO}(q), \sigma)$, we have $\mathfrak{h} = \mathfrak{so}(p) \times \mathfrak{so}(q), \text{ and } \mathfrak{m} = \left\{\begin{pmatrix}0 & X\\ -X^T & 0\end{pmatrix} \mid X \in \mathcal{M}_{p,q}(\mathbb{R})\right\}.$

The Canonical decomposition of \mathfrak{g} for the previous Examples

• For $(SO^0(p,q), SO(p) \times SO(q), \sigma)$, we have

 $\mathfrak{h} = \mathfrak{so}(p) \times \mathfrak{so}(q), \quad \text{and} \quad \mathfrak{m} = \left\{ \begin{pmatrix} 0 & X \\ X^T & 0 \end{pmatrix} \mid X \in \mathcal{M}_{p,q}(\mathbb{R}) \right\}.$

• For $(SO(2n), U(n), \sigma)$, we have $\mathfrak{h} = \left\{ \begin{pmatrix} X & Y \\ -Y & X \end{pmatrix} \mid X \in \mathfrak{so}(n), Y \in Sym(n, \mathbb{R}) \right\},$

and

$$\mathfrak{m} = \left\{ \begin{pmatrix} X & Y \\ Y & -X \end{pmatrix} \mid X, Y \in \mathfrak{so}(n) \right\}$$

Homomorphism of Symmetric Spaces

A homomorphism between two symmetric spaces (M_1, μ_1) and (M_2, μ_2) is a smooth map $\Phi: M_1 \to M_2$ such that:

$$\Phi(x \cdot y) = \Phi(x) \cdot \Phi(y), \qquad \forall x, y \in M_1.$$

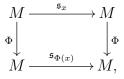
An *isomorphism* between two symmetric spaces (M_1, μ_1) and (M_2, μ_2) is both a homomorphism and diffeomorphism.

An *automorphism* of a symmetric space (M, μ) is just an isomorphism from M to itself. We denote by Aut(M) the group of all automorphisms of M.

Let (M, μ) be a symmetric space. Define the *group of displacements* of M by:

$$G(M) := \langle \mathfrak{s}_x \circ \mathfrak{s}_y \, ; \, x, y \in M \rangle.$$

If $\Phi \in Aut(M)$, then using the following commutative diagram



we get that

$$\Phi \circ (\mathfrak{s}_x \circ \mathfrak{s}_y) \circ \Phi^{-1} = \mathfrak{s}_{\Phi(x)} \circ \mathfrak{s}_{\Phi(y)}.$$

Hence G(M) is a normal subgroup of Aut(M).

Let $o \in M$ be a fixed point, then for each $x,y \in M$ we have

$$\mathfrak{s}_x \circ \mathfrak{s}_y = \mathfrak{s}_x \circ \mathfrak{s}_o \circ \mathfrak{s}_o \circ \mathfrak{s}_y = (\mathfrak{s}_x \circ \mathfrak{s}_o) \circ (\mathfrak{s}_y \circ \mathfrak{s}_o)^{-1}$$

Thus

$$G(M) = \langle \mathfrak{s}_x \circ \mathfrak{s}_o ; \ x \in M \rangle.$$

For each $u \in T_oM$, we define a vector field $\widetilde{u} \in \mathfrak{X}(M)$ by:

$$\widetilde{u}_x := \frac{1}{2} u \cdot (o \cdot x), \qquad \forall x \in M.$$

From Symmetric Spaces to Symmetric Pairs

Theorem

Let (M, μ) be a symmetric space and $o \in M$ a fixed point, then the following properties hold.

1. Aut(M) is a Lie transformation group with Lie algebra

$$\operatorname{Der}(M) := \Big\{ X \in \mathfrak{X}(M) \mid X_{x \cdot y} = x \cdot X_y + X_x \cdot y, \ \forall x, y \in M \Big\}.$$

2. G(M) is a connected Lie subgroup of Aut(M) with Lie algebra

$$\mathfrak{g}(M) := \left\{ \widetilde{u} \mid u \in T_o M \right\}.$$

3. G(M) acts transitively on M.

From Symmetric Spaces to Symmetric Pairs

Theorem (Continued)

4. $(G(M), H_o, \sigma_o)$ is a symmetric pair, where H_o denotes the isotropy group of o, and σ_o given by:

 $\sigma_o: G(M) \to G(M), \quad F \mapsto \mathfrak{s}_o \circ F \circ \mathfrak{s}_o.$

Moreover, M is isomorphic to $G(M)/H_o$.

- 5. G(M) is the smallest subgroup of Aut(M) which is transitive on M and stable under σ_o .
- 6. The canonical decomposition of $\mathfrak{g}(M)$ corresponding to σ_o is

 $\mathfrak{g}(M) = \mathfrak{m} \oplus [\mathfrak{m}, \mathfrak{m}],$

where $\mathfrak{m} := \ker (\sigma'_o + \mathrm{Id}_\mathfrak{g}).$

For a full proof one can see Loos, Ottmar. *Symmetric spaces: General theory.* Vol. 1. WA Benjamin, 1969₃₅

Affine Symmetric Spaces

Definition

An *affine symmetric space* is a connected smooth manifold M endowed with a connection ∇ which satisfies the following:

• For each $x \in M$, there exists an affine map $\mathfrak{s}_x : M \to M$ such that:

$$\mathfrak{s}_x\left(\gamma(t)\right) = \gamma(-t),$$

where $\gamma: (-\varepsilon, \varepsilon) \to M$ is a geodesic of ∇ with $\gamma(0) = x$.

The affine map $\mathfrak{s}_x : M \to M$ is called the *geodesic symmetry* about x.

$$\mathfrak{s}_x: M o M$$
, $\mathfrak{s}_x\left(\gamma(t)
ight) = \gamma(-t)$.

Clearly a geodesic symmetry \mathfrak{s}_x is different from Id_M and admits x as an isolated fixed point. Moreover, if $\gamma : (-\varepsilon, \varepsilon) \to M$ is a geodesic of ∇ with $\gamma(0) = x$ and $u_x = \dot{\gamma}(0)$, then

$$T_x \mathfrak{s}_x(u_x) = \frac{d}{dt} |_{t=0} \mathfrak{s}_x(\gamma(t))$$
$$= \frac{d}{dt} |_{t=0} \gamma(-t)$$
$$= -u_x.$$

Thus

$$T_x \mathfrak{s}_x = -\operatorname{Id}_{T_x M}.$$

Furthermore, using the following Lemma

Lemma

Let M be a connected smooth manifold, and ∇ a connection on it. If $F_1, F_2 : M \to M$ are two affine maps such that:

$$F_1(x_0) = F_2(x_0),$$
 and $T_{x_0}F_1 = T_{x_0}F_2.$

Then $F_1 = F_2$.

We deduce that

•
$$\mathfrak{s}_x \circ \mathfrak{s}_x = \mathrm{Id}_M, \quad \forall x \in M;$$

• $\mathfrak{s}_x \circ \mathfrak{s}_y \circ \mathfrak{s}_x = \mathfrak{s}_{\mathfrak{s}_x(y)}, \quad \forall x, y \in M.$

 (M,∇) An affine symmetric space

 (M, ∇)

An affine symmetric space

 $(M, \{\mathfrak{s}_x\}_{x \in M})$ A symmetric space

Proposition

Let (M, ∇) be an affine symmetric space.

- If ∇' a connection on M such that the geodesic symmetries of ∇ also preserve the connection ∇', then ∇' = ∇.
- The torsion T of ∇ is 0, and the curvature tensor R is parallel (i.e. ∇R = 0).

Proof. Let $D \in \Gamma(T^{(1,2)}M)$ be the difference tensor between ∇ and ∇' , i.e

$$D(X,Y) := \nabla'_X Y - \nabla_X Y, \qquad \forall X,Y \in \mathfrak{X}(M).$$

Let $x \in M$ and \mathfrak{s}_x its associated geodesic symmetry, then for any $u, v \in T_x M$ we have

$$D_x(u, v) = D_x \left(T_x \mathfrak{s}_x(u), T_x \mathfrak{s}_x(v) \right)$$
$$= T_x \mathfrak{s}_x \left(D_x(u, v) \right)$$
$$= -D_x(u, v).$$

Hence $D_x(u, v) = 0$ and therefore $D \equiv 0$.

Properties

Proposition

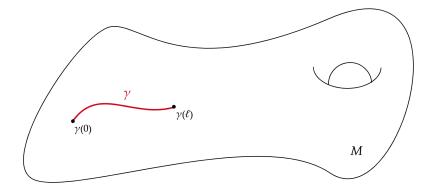
Let (M, ∇) be an affine symmetric space, then we have

- 1. ∇ is complete.
- 2. Aff (M, ∇) acts transitively on M, and the same is true for its identity component Aff⁰ (M, ∇) .

Proof. For the first assertion, if $\gamma : [0, \ell] \to M$ is a geodesic segment, then it can be extended to $[0, 2\ell]$ by reflecting γ about the point $\gamma(\ell)$:

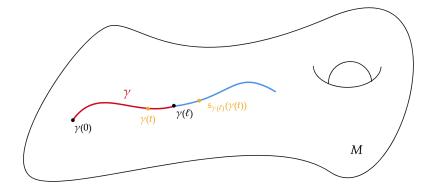
$$\widetilde{\gamma}(t) := \begin{cases} \gamma(t) & \text{for } t \in [0, \ell] \\ \mathfrak{s}_{\gamma(\ell)} \left(\gamma(2\ell - t) \right) & \text{for } t \in [\ell, 2\ell]. \end{cases}$$

Proof. ∇ is complete



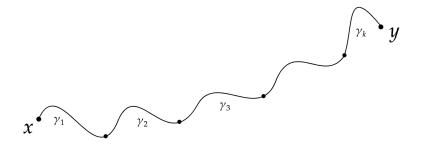
44

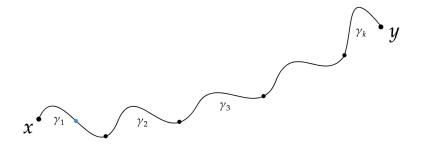
Proof. ∇ is complete

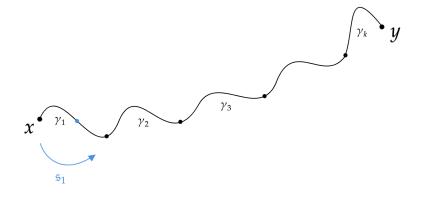


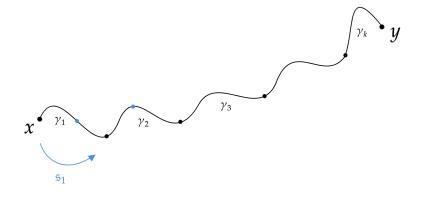
• y

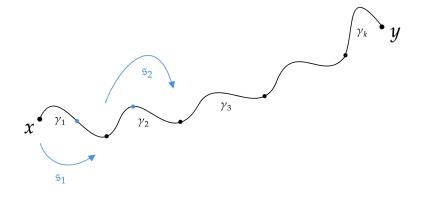
46



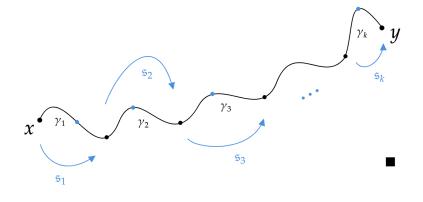








51



Symmetric Pair associated to Affine Symmetric Space

If (M, ∇) is an affine symmetric space, then we can write

 $M \cong \operatorname{Aff}^0(M, \nabla) / H_{x_0},$

where H_{x_0} denotes the isotropy group of a point $x_0 \in M$ in $\operatorname{Aff}^0(M, \nabla)$. Let \mathfrak{s}^0 be the geodesic symmetry about x_0 , and define a homomorphism

 $\sigma^{\nabla} : \operatorname{Aff}^{0}(M, \nabla) \to \operatorname{Aff}^{0}(M, \nabla), \quad \text{written} \quad F \mapsto \mathfrak{s}^{0} \circ F \circ \mathfrak{s}^{0}.$ In fact σ^{∇} is an involutive automorphism of $\operatorname{Aff}^{0}(M, \nabla)$.

Symmetric Pair associated to Affine Symmetric Space

Proposition

With the notations above, the triple $(Aff^0(M, \nabla), H_{x_0}, \sigma^{\nabla})$ is a symmetric pair.

Proof. It only remains to check that

$$\operatorname{Fix}^{0}(\sigma^{\nabla}) \subseteq H_{x_{0}} \subseteq \operatorname{Fix}(\sigma^{\nabla}).$$

For the first inclusion, let $w \in \text{Lie}(\text{Fix}(\sigma^{\nabla}))$ and put

$$\beta_t := \exp_{\operatorname{Aff}(M, \nabla)}(tw), \quad \forall t \in \mathbb{R}.$$

Since β lies in $\operatorname{Fix}^0(\sigma^{\nabla})$, we have $\mathfrak{s}^0 \circ \beta_t \circ \mathfrak{s}^0 = \beta_t$.

Thus

$$\mathfrak{s}^0\left(\beta_t(x_0)\right) = \beta_t(x_0).$$

Using the fact that x_0 is an isolated fixed point of \mathfrak{s}^0 we get that $\beta_t(x_0) = x_0$ for t lies in a small enough neighborhood of 0. Hence β_t lies in $H^0_{x_0}$ for t sufficiently small, which implies by taking the derivative of β_t with respect to t = 0 that $w \in \mathfrak{h}_{x_0}$.

For the second inclusion, let $F \in H_{x_0}$ be an element of H_{x_0} , then a direct computation yields

$$T_{x_0}\left(\mathfrak{s}^0\circ F\circ\mathfrak{s}^0\right)=T_{x_0}F.$$

Since M is connected it follows that $\mathfrak{s}^0 \circ F \circ \mathfrak{s}^0 = F$ and hence $H_{x_0} \subseteq \operatorname{Fix}(\sigma^{\nabla})$.