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Goal

To study the homogeneous neutral semi-symmetric manifolds of dimension
4

A. Benroummane (UHP) Semisymmetric spaces Marrakech 4 / 77



Table of Contents

1 Goal

2 Introduction

3 Semi-symmetric curvature tensor on four dimensional neutral space

4 Semi-symmetric manifolds

5 Four dimensional semi-symmetric neutral Lie groups

6 Proof of Theorem

7 4-homogeneous semi-symmetric neutral manifolds with Ric2 = 0

A. Benroummane (UHP) Semisymmetric spaces Marrakech 5 / 77



Introduction

A pseudo-Riemannian manifold (M, g) is said to be semi-symmetric if its
Riemannian curvature tensor R satisfies R.R = 0. This is equivalent to

[R(X ,Y ),R(Z ,T )] = R(R(X ,Y )Z ,T ) + R(Z ,R(X ,Y )T ), (1)

for any vector fields X ,Y ,Z ,T .

Semi-symmetric pseudo-Riemannian manifolds generalize obviously locally
symmetric manifolds (∇R = 0). They also generalize second-order locally
symmetric manifolds (∇2R = 0 and ∇R 6= 0) où ∇ est la connexion de
Levi-Civita.
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Semi-symmetric Riemannian manifolds have been first investigated by E.
Cartan [Cartan] in his study of locally symmetrical Riemannian manifolds.
These are defined as Riemannian manifolds for which the curvature tensor
is invariant under all parallel translations. E. Cartan set himself the
problem of giving a complete classification of these spaces. In an
ingeneous manner he gave the problem two different group-theoretic
formulations [Cartan2]. One of these is particularly effective and strikingly
enough reduces the problem to the classification of simple Lie algebras
over R, a problem which Cartan himself had solved already in 1914.
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Cartan’s first method was based on the so-called holonomy group. If o is a
point in a Riemannian manifold M, then the holonomy group of M is the
group of all linear transformations of the tangent space ToM obtained by
parallel translation along closed curves starting at o. Of course each
element of the holonomy group leaves the Riemannian structure g
invariant; if M is locally symmetric the curvature tensor Ro is also left
invariant, that each element of the holonomy group induces an isometry of
a neighborhood of o in M onto itself leaving o fixed. This leads to
algebraic relations between the Lie algebra H0 of the identity component
of the holonomy group and the tensors go and Ro namely,

go(AX ,Y ) + go(X ,AY ) = 0,
[A,Ro(X ,Y )] = Ro(AX ,Y )+ Ro(X ,AY ),
Ro(X ,Y ) ∈ H0

(2)

A ∈ H0, X ,Y ∈ ToM.
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Cartan showed ([Cartan2], p. 225) that if for a given Lie algebra H0 a
tensor and R of type (1, 3) satisfies these formulas 2, then there exists a
locally symmetric space for which it is the curvature tensor at a point o.

Now, for a semi-symmetric Riemannian manifolds (M, g), the space
H0 = h(R) = span{R(u, v)/ u, v ∈ ToM} is a Lie algebra which g and R
are satisfied formulas 2.
-In 1968, K. Nomizu gave a conjucture [Nomizu]: Any irreducible,
complete, semi-symmetric space of dimension ≥ 3 is locally symmetric.
-The first example of a semi-symmetric not locally symmetric Riemannian
manifold was given by Takagi [Takagi] in 1972.
-From 1983 to 1985, Szabo [Zabo1, Zabo2] gave a complete description of
these manifolds.
-In 2018, the author with M. Boucetta and A. Ikemakhen give a complet
classification of four-dimensional homogeneous semi-symmetric Lorentzian
manifolds [Benroummane].
-Recently, A. Haji-Badali and A. Zaeim give a complet classification of
four-dimensional semi-symmetric neutral Lie groups [Ali].
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Main results

• Let (V , 〈 , 〉) be a vector space with metric of signature (2, n),
K : V ∧ V −→ V ∧ V a semi-symmetric algebraic curvature tensor
and RicK : V −→ V its Ricci operator. The main result here (see
Proposition 2.2 ) is that RicK has at most two non-real complex
eigenvalues and if we note z et z̄ such that eigenvalues, we get

dim(ker(Ric2
K − (z + z̄)RicK + zz̄IdV )) = 4

• In second main proposition (see Proposition3.1), we give the list of
the semi-symmetric curvature tensor on a four dimensional neutral
space (V , 〈 , 〉).
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Theorem

A four-dimensional Einstein neutral manifold with non null scalar curvature
is semi-symmetric if and only if it is locally symmetric.

Theorem

Let M be a simply connected homogeneous semi-symmetric 4-dimensional
neutral manifold. If the Ricci tensor of M has a non zero eigenvalue in C,
then M is symmetric and in this case it is a product of a space of constant
curvature and a Cahen-Wallach space or it admits a complex structure.

• In the end, we give the list of 4-homogenous semisymmetric
notsymmetric neutral manifolds.
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Tools

Let (V , 〈 , 〉) be a n-dimensional pseudo-Riemannian vector space. We
identify V and its dual V ∗ by the means of 〈 , 〉. This implies that the Lie
algebra V ⊗ V ∗ of endomorphisms of V is identified with V ⊗ V , the Lie
algebra so(V , 〈 , 〉) of skew-symmetric endomorphisms is identified with
V ∧ V and the space of symmetric endomorphisms is identified with
V ∨ V (the symbol ∧ is the outer product and ∨ is the symmetric
product). For any u, v ∈ V ,

(u ∧ v)w = 〈v ,w〉u − 〈u,w〉v (3)

(u ∨ v)w =
1

2
(〈v ,w〉u + 〈u,w〉v) . (4)

We denote Au,v := u ∧ v .
The space V ∧ V can be provided with a metric also denoted by 〈 , 〉 and
given by

〈u ∧ v ,w ∧ t〉 := 〈u ∧ v(w), t〉 = 〈v ,w〉〈u, t〉 − 〈u,w〉〈v , t〉. (5)

We identify V ∧ V with its dual by means of this metric.
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Bianchi application

B the linear Bianchi application on the space
P = (∧2V ) ∨ (∧2V ) = ∨2(∧2V ) given by:

B((a∧b)∨(c∧d)) = (a∧b)∨(c∧d)+(b∧c)∨(a∧d)+(c∧a)∨(b∧d). (6)

Let be g a subalgebra of so(V ) and the action of g on P given by

A.T : (u∧v) 7→ A.T (u∧v) = [A,T (u∧v)]−T (A(u)∧v)−T (u∧A(v)),
(7)

for all (A,T ) ∈ g× P.
We pute:

R(g) := ker(B/g) = {T ∈ g∨g/ B(T ) = 0} and gsym = {T ∈ R(g)/g.T = 0}.

- R(g) is called space of curvature tensor of type g and we say curvature
tensor of V each element of R(so(V )).
- gsym is called space of symmetric curvature tensor of type g.
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Semisymmetric curvature tensor

A curvature tensor on (V , 〈 , 〉) is a K ∈ R(so(V )) (i.e. K is a symmetric
endomorphism of ∧2V and B(K) = 0). Then, it is satisfying the algebraic
Bianchi’s identity:

K(u, v)w + K(v ,w)u + K(w , u)v = 0, u, v ,w ∈ V .

The Ricci curvature tensor associated to K is the symmetric bilinear form
on V given by:

ricK (u, v) = tr(τ(u, v)), where τ(u, v)(a) = K(u, a)v . (8)

The Ricci operator is the symmetric endomorphism RicK : V −→ V given
by 〈RicK (u), v〉 = ricK(u, v).
K is called Einstein (resp. Ricci isotropic) if RicK = λIdV (resp. RicK 6= 0
and Ric2

K = 0).
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Example:

If K = (u ∧ v) ∨ (w ∧ t)
then,

ricK = 〈u,w〉t ∨ v + 〈v , t〉u ∨ w − 〈v ,w〉t ∨ u − 〈u, t〉v ∨ w . (9)
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Primitive holonomy algebra

We denote by h(K) the vector subspace of V ∧ V image of K, i.e.,
h(K) = span{K(u, v)/ u, v ∈ V }. The Lie algebra genrated by h(K) is
called primitive holonomy algebra of K.

A curvature tensor K is called semi-symmetric if it is invariant by h(K),
i.e.,

K(u, v).K = 0, ∀(u, v) ∈ V 2. (10)

This is equivalent to

[K(u, v),K(a, b)] = K(K(u, v)a, b) + K(a,K(u, v)b), ∀(u, v , a, b) ∈ V 4.
(11)

In this case, h(K) is a Lie subalgebra of so(V , 〈 , 〉) and it is primitive
holonomy algebra of K.

Remark

If K is semi-symmetric, then its Ricci operator is also invariant by h(K),
i.e.,

K(u, v) ◦ RicK = RicK ◦K(u, v), ∀(u, v) ∈ V 2. (12)

The Ricci operator is said semi-symmetric if it is satisfaying 12.
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C. Boubel

Theorem

([Boubel]) Let (M, g) a pseudo-Riemannian manifold with parallel Ricci
(i.e, ∇.Ric = 0) and let χ be minimal polynomial of Ric. Then, the
following properties are checked:

1 χ = ΠiPi with :

• ∀i 6= j , Pi ∧ Pj = 1 (i.e, Pi and Pj are mutually prime),
• ∀i , Pi is irreducible or Pi = X 2.

2 There is a canonical family (Mi )i of pseudo-Riemannian manifolds
such that the minimal polynomial of Rici = RicMi

on each Mi is Pi ,
and a local isometry f mapping the Riemarmian product ΠMi onto
M. f is unique up to composition with a product of isometries of each
factor Mi . If M is complete and simply connected, f is an isometry.
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In the proof of the first result of this theorem, C. Boubel used only the
following algebraic hypothesis: On each tangent space TxM at the point
x ∈ M, the Ricci operator Ricx commutes with each endomorphisms
Rx(u, v) for all u, v ∈ TxM. that is said Ricci operator is semi-symmetric
which was verified for spaces with semi-symmetric curvature.
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Proposition

Let K be a semi-symmetric curvature tensor on the pseudo-Riemannian
space (V , 〈 , 〉) and let χ be a minimal polynomial of RicK. Then, the
following properties are checked:

1 χ = ΠiPi , with;

• ∀i 6= j , Pi ∧ Pj = 1 (i.e, Pi and Pj are mutually prime),
• ∀i , Pi is irreducible or Pi = X 2.

2 V splits orthogonally:

V = V0 ⊕ V1 ⊕ . . .⊕ Vr , (13)

where V0 = ker((Ric2)) and Vi = ker(Pi (Ric)).
Moreover, the following situations is verified:

a) for all u, v ∈ V and i ∈ {0, . . . , r}, Vi is h(K)-invariant,,
b) for all i , j ∈ {0, . . . , r} with i 6= j , K|Vi∧Vj

= 0,
c) for all i = 1, . . . , r , dimVi ≥ 2.
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Proposition

Let K be a semi-symmetric curvature tensor on the pseudo-Riemannian
space (V , 〈 , 〉) with metric of signature (2, n) such that n ≥ 2. Then the
Ricci curvature RicK admits at most two non-real eigenvalues. Denote by
α1, . . . , αr the non-zero real eigenvalues and V1, . . . ,Vr the corresponding
eigenspaces. Then one of the following situations is verified:

1 RicK has two non-real eigenvalues z and z̄ and V splits orthogonally

V = Vc ⊕ V0 ⊕ . . .⊕ Vr ,

where V0 = ker(Ric) and Vc = ker(Ric2
K − (z + z̄)RicK + |z |2I ).

Moreover, dim(Vc) = 4 and Vi is a Riemannian semi-symmetric
space for all i ≥ 0.
In this case, RicK is said complex Ricci.

2 RicK has only real eigenvalues and V splits orthogonally:

V = V0 ⊕ V1 ⊕ . . .⊕ Vr , where V0 = ker(Ric2
K).
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proof

We will only show the following result: If Ric = RicK admits a non real
eigenvalue z , then, z and z̄ are the only non-real eigenvalues of Ric and
Vc = ker(Ric2 − (z + z̄)Ric + |z |2I ) is the neutral space of dimension 4.
The other results are easy to proof.
Now, we suppose that Ric admits a non-real eigenvalue z with the
associated caractestic subspace Vc = ker(Ric2 − (z + z̄)Ric + |z |2I ), that
subspace is a pseudo-Riemannian semi-symmetric of even dimension and
necessarily, Vc admits the metric of signature (2, 2p), otherwise, we have
Vc is a non degenerete space then, one and only one of two following
situations is checked:

1 Vc is a Riemannian space . So Ric is a symmetric endomorphism and
it’s diagonalizable admitting only the real eigenvalues,

2 Vc is a Lorentzian semi-symmetric space. According to
[Benroummane], Ric has only the real eigenvalues.

Which is impossible in both situations.
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proof

So, (Vc)⊥ will be a Riemannian space which Ric has only real eigenvalues.
Now, we choose a non-zero isotropic vector e in Vc . Then, (e,Ric(e)) is a
free family in Vc , otherwise, e will be an eigenvector associated of a real
eigenvalue of Ric on Vc , which is impossible.
On the other hand, the subspace V e

c = span{e,Ric(e)} generated by e
and its image Ric(e), is totally isotropic if and only if e and Ric(e) are
orthogonal. Then, one of the two following situations is verified:

a) If e and Ric(e) are not orthogonl (i.e 〈e,Ric(e)〉 6= 0), then, V e
c will

be a Lorentzian space stable by Ric and let V e
c be a subspace such

that Vc splits orthogonally Vc = V e
c ⊕ V e

c . Then V e
c is a Lorentzian

subspace invariant by Ric then it’s semi-symmetric and necessarily,
V e
c is of dimension 2 and dim(Vc) = 4.

b) Now, if V e
c = span{e,Ric(e)} is totally isotropic.

We choose ē a dual vector of Ric(e) in Vc . So, Ric(ē) is a dual
vector of e and one of the two following situations is verified:
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b1) ē and Ric(ē) are duals vectors. Then, V e
c = vect{ē, Ric(ē)} is a

Lorentzian subspace of Vc , stable by Ric and we come back to the
case (a).

b2) ē and Ric(ē) are orthogonals. Then, V e
c = vect{ē, Ric(ē)} is a

totally isotropic subspace of Vc and a dual subspace of V e
c and

Vc = V e
c ⊕ V e

c . This completes the proof of the proposition.
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Remark

This proposition reduces the determination of semi-symmetric curvature
tensors on vector space equiped with metric of signature (2, n) to the
determination of three classes of semi-symmetric curvature tensors:
Einstein semi-symmetric curvature tensors, semi-symmetric curvature with
Ricci isotropic, semi-symmetric curvature tensor with complex Ricci on
four dimensional neutral space.
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Neutral 4-spaces

Let K be curvature tensor on pseudo-Riemannian vector space (V , 〈 , 〉).
K is semi-symmetric curvature tensors if only if h(K ) is a Lie subalgebra of
so(V , 〈 , 〉) and h(K).K = 0.

1 First step: According of the classification of Lie subalgebra of so(2, 2)
given by Komrakov in[Komrakov] and for each subalgebra g of
so(2, 2), we give all curvature tensor and all symmetric curvature of
type g.

2 In second step: We give a list of non flat semi-symmetric curvature
tensors on the four dimensional neutral vector space (V , 〈 , 〉) by
giving the list of Lie subalgebras g 6= {0} of so(V ) such that
g = gsym.
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tensors on the four dimensional neutral vector space (V , 〈 , 〉) by
giving the list of Lie subalgebras g 6= {0} of so(V ) such that
g = gsym.
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theorem

For each Lie subalgebra g of so(2, 2), the space R(g) of all curvature
tensor of type g and the space gsym of all symmetric curvature tensor of
type g are the following:
• dim g = 1:

• g : 1.11 = R{Ax,z + a.Ay ,t}, with 〈x , z〉 = 〈y , t〉 = 1, a ∈ [0, 1]
If a = 0, we get; R(g) = gsym = R{Ax,z ∨ Ax,z}.
Otherwise, R(g) = 0,

• g : 1.12 = R{Ax,z + a.Ay ,t}, with
〈x , x〉 = −〈y , y〉 = 〈z , z〉 = −〈t, t〉 = 1, a ∈ [0, 1]
If a = 0, we get; R(g) = gsym = R{Ax,z ∨ Ax,z}.
Otherwise, R(g) = 0,

• g : 1.21 = R{Ax,z + Ax,t + Ay ,t}, with 〈x , z〉 = 〈y , t〉 = 1,
R(g) = 0.

• g : 1.22 = R{Ax,y + Ax,t + Ay ,z}, with 〈x , z〉 = 〈y , t〉 = 1,
R(g) = 0.

• g : 1.31 = RAx,y , with 〈x , t〉 = 〈y , z〉 = 1,
R(g) = gsym = R.Ax,y ∨ Ax,y .

• g : 1.41 = RAx,y , with 〈x , z〉 = −〈y , y〉 = 〈t, t〉 = 1,
R(g) = gsym = RAx,y ∨ Ax,y .
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• dim g = 1:
• g : 1.15 = R{cos(φ)(Ax,t + Ay ,z) + sin(φ)(Ay ,z + At,y )} with
〈x , t〉 = 〈y , z〉 = 1 and φ ∈]0, π4 ],
R(g) = 0,

• g : 1.16 = R{cos(φ)(Ax,t + Az,y ) + sin(φ)(Ax,z + Ay ,t)} with
〈x , z〉 = 〈y , t〉 = 1 and φ ∈]0, π4 [,
R(g) = 0,

• dim g = 2:
• g : 2.11 = vect{Ax,z , Ay ,t}, with 〈x , z〉 = 〈y , t〉 = 1,

R(g) = gsym = span{Ax,z ∨ Ax,z , Ay ,t ∨ Ay ,t}.
• g : 2.13 = span{Ax,z , Ay ,t}, with
〈x , x〉 = −〈y , y〉 = 〈z , z〉 = −〈t, t〉 = 1,
R(g) = gsym = span{Ax,z ∨ Ax,z , Ay ,t ∨ Ay ,t}.

• g : 2.14 = span{π1 = Ax,z + At,y , π2 = Ax,t + Ay ,z}, with
〈x , t〉 = 〈y , z〉 = 1,
R(g) = gsym = span{(π1 ∨ π1 − π2 ∨ π2), π1 ∨ π2}.

• g : 2.21 = span{π1 = Ax,z + aAy ,t , π2 = Ax,t} with
〈x , z〉 = 〈y , t〉 = 1 and a ∈ [−1, 1],
If a = 0, we get R(g) = span{π1 ∨π1, π2 ∨π2, π1 ∨π2}, and gsym = 0.
If a = 1, we get R(g) = span{π2 ∨ π2, π1 ∨ π2} = gsym.
If a 6= 1 and a 6= 0, we get R(g) = span{π2 ∨ π2, π1 ∨ π2} and
gsym = 0.

• g : 2.23 = span{π1 = cos(φ)(Ax,t + Az,y ) + sin(φ)(Ax,z + Ay ,t), π2 =
Ax,y} with 〈x , z〉 = 〈y , t〉 = 1 and φ ∈]0, π2 [,
R(g) = span{Ax,y ∨ Ax,y , Ax,y ∨ π1} and gsym = 0.

• g : 2.31 = span{π1 = Ax,z + Ax,y + At,y , π2 = Ax,t}, with
〈x , z〉 = 〈y , t〉 = 1,
R(g) = R.π2 ∨ π2 and gsym = 0.

• g : 2.41 = span{Ax,z ,Ax,y}, with 〈x , z〉 = −〈y , y〉 = 〈t, t〉 = 1 ,
R(g) = span{Ax,z ∨ Ax,z , Ay ,x ∨ Ay ,x , Ax,z ∨ Ay ,x} and gsym = 0.

• g : 2.51 = span{Ax,t ,Ax,y}, with 〈x , z〉 = 〈y , t〉 = 1 ,
R(g) = gsym = span{Ax,y ∨ Ax,y , Ax,t ∨ Ax,t , Ax,y ∨ Ax,t}.
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• dim g = 3:
• g : 3.11 = span{Ax,z ,Ax,t ,Ay ,t}, with 〈x , z〉 = 〈y , t〉 = 1 ,

R(g) =
span{Ax,z ∨ Ax,z , Ax,t ∨ Ax,t , Ay ,t ∨ Ay ,t , Ax,t ∨ Ay ,t , Ax,z ,Ax,t},
and gsym = 0

• g : 3.21 = span{π1 = Ax,z + aAy ,t , π2 = Ax,t , π3 = Ax,y}, with
〈x , z〉 = 〈y , t〉 = 1 and a ≥ 0,
If a = 0, we get
R(g) = span{π1 ∨ π1, π2 ∨ π2, π3 ∨ π3, π2 ∨ π3, π1 ∨ π2, π1 ∨ π3}
and gsym = 0.
Otherwise, R(g) = span{π2 ∨π2, π3 ∨π3, π2 ∨π3, π1 ∨π2, π1 ∨π3},
and if more a 6= 1, we get gsym = R{π2 ∨ π2}, otherwise, we get;
gsym = 0 ,

• g : 3.31 = span{π1 = Ay ,t , π2 = Ax,t , π3 = Ax,y} with
〈x , z〉 = 〈y , t〉 = 1,
R(g) = span{π1 ∨ π1, π2 ∨ π2, π3 ∨ π3, π2 ∨ π3, π1 ∨ π2, π1 ∨ π3},
gsym = R.π2 ∨ π3.

• g : 3.41 = span{π1 = Ax,z + At,y , π2 = Ax,t , π3 = Ay ,z} with
〈x , z〉 = 〈y , t〉 = 1,
R(g) = span{(π1∨π1−2π2∨π3), π2∨π2, π3∨π3, π1∨π2, π1∨π3},
gsym = 0.

• g : 3.51 = span{π1 = Ax,z , π2 = Ax,y , π3 = Ay ,z}, with
〈x , z〉 = 〈y , y〉 = −〈t, t〉 = 1, R(g) =
span{(π1 ∨ π1), (π2 ∨ π2), (π3 ∨ π3), (π1 ∨ π2), π1 ∨ π3, π2 ∨ π3},
and gsym = R.(π1 ∨ π1 + 2π2 ∨ π3).
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• dim g = 4:
• g : 4.11 = span{Ax,y ,Ax,z ,Ax,t ,Ay ,t} with 〈x , z〉 = 〈y , t〉 = 1 ,

R(g) = span{Ax,y ∨ Ax,y , Ax,z ∨ Ax,z , Ax,y ∨ Ax,z , Ax,t ∨
Ax,z , Ax,t ∨Ax,t , Ay ,t ∨Ax,t , Ax,y ∨Ax,t , Ay ,t ∨Ay ,t , Ax,y ∨Ay ,t},
gsym = 0

• g : 4.21 = span{Ax,t ,Ax,z ,Ay ,t ,Ay ,z} with 〈x , z〉 = 〈y , t〉 = 1 ,
R(g) = span{Ax,z ∨ Ax,z , Ax,t ∨ Ax,t , Ay ,z ∨ Ay ,z , Ay ,t ∨ Ay ,t , Ax,z ∨
Ax,t , Ax,z ∨Ay ,z , (Ax,z ∨Ay ,t + Ax,t ∨Ay ,z), Ax,t ∨Ay ,t , Ay ,z ∨Ay ,t},
and gsym = R{Ax,z ∨ Ax,z + Ay ,t ∨ Ay ,t + Ax,z ∨ Ay ,t + Ax,t ∨ Ay ,z}

• g : 4.31 = span{π1 = Ax,y , π2 = Ax,t , π3 = At,y + Ax,z , π4 = Ay ,z} with
〈x , z〉 = 〈y , t〉 = 1 ,
R(g) = span{π1 ∨ π1, π2 ∨ π2, (π3 ∨ π3 − 2π2 ∨ π4), π4 ∨ π4, π1 ∨
π2, π1 ∨ π3, π1 ∨ π4, π2 ∨ π3, π3 ∨ π4},
and gsym = R{π1 ∨ π1}.

• dim g ∈ {5, 6}:
• g : 5.11 = span{Ax,y ,Ax,z ,Ax,t ,Ay ,z ,Ay ,t} with 〈x , z〉 = 〈y , t〉 = 1 ,

dim(R(g)) = 14 and gsym = 0.
• g : 6.11 = so(2, 2), we get dim(R(g)) = 19

gsym = R(Ax,z∨Ax,z+Ay ,t∨Ay ,t+Ax,z∨Ay ,t+2.Ax,t∨Ay ,z+2.Ax,y∨At,z)
with 〈x , z〉 = 〈y , t〉 = 1
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Proposition

Let K be a semi-symmetric curvature tensor on the four dimensional
neutral vector space (V , 〈 , 〉). Then, there is the basis (x , y , z , t) of V
such that the one of following situations is checked:
• dim h(K) = 1 and K has one of the following forms:

• K = b.Ax,z ∨ Ax,z and Ric = −2b.z ∨ x, where b ∈ R∗
with 〈x , z〉 = 〈y , t〉 = 1.

• K = b.Ax,z ∨ Ax,z and Ric = b.(x ∨ x + z ∨ z) where b ∈ R∗,
with 〈x , x〉 = −〈y , y〉 = 〈z , z〉 = −〈t, t〉 = 1.

• K = a.Ax,y ∨ Ax,y , Ric = 0 and a ∈ R∗,
with 〈x , t〉 = 〈y , z〉 = 1.

• K = aAx,y ∨ Ax,y and Ric = −a.x ∨ x,
with a ∈ R∗ and 〈x , z〉 = −〈y , y〉 = 〈t, t〉 = 1.
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Proposition

• dim h(K) = 2 and K has one of the following forms:
• K = a.Ax,z ∨ Ax,z + bAy ,t ∨ Ay ,t , Ric = −2(a.x ∨ z + b.y∨t),

with (a, b) ∈ R∗ × R∗ and 〈x , z〉 = 〈y , t〉 = 1.
• K = a.Ax,z∨Ax,z + bAy ,t∨Ay ,t ,

Ric = a(x ∨ x + z ∨ z)− b(y ∨ y + t ∨ t),
with (a, b) ∈ R∗ × R∗ and 〈x , x〉 = −〈y , y〉 = 〈z , z〉 = −〈t, t〉 = 1,

• K = a(π1 ∨ π1 − π2 ∨ π2) + b.π1 ∨ π2, Ric =
−4a(x ∨ t + y ∨ z) + 2b(y ∨ t − x ∨ z),
with (a, b) ∈ R∗ × R∗, π1 = Ax,z + At,y , π2 = Ax,t + Ay ,z and
〈x , t〉 = 〈y , z〉 = 1,

• K = cπ2 ∨ π2 + dπ1 ∨ π2, Ric = −2d .x ∨ t,
with (c , d) ∈ R∗ × R∗ and π1 = Ax,z + Ay ,t , π2 = Ax,t and
〈x , z〉 = 〈y , t〉 = 1.

• K = a.Ax,y ∨ Ax,y + b.Ax,t ∨ Ax,t + c .Ax,y ∨ Ax,t , Ric = c .x ∨ x ,
with (a, b, c) ∈ R∗ × R∗ × R∗ and 〈x , z〉 = 〈y , t〉 = 1.
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Proposition

• dim h(K) = 3 and there is a ∈ R∗ such that :
K = a(Ax ,z ∨ Ax ,z + 2Ax ,y ∨ Ay ,z) and Ric = −2a(2x ∨ z + y ∨ y),
with 〈x , z〉 = 〈y , y〉 = −〈t, t〉 = 1 ,

• dim h(K) = 4 and there is a ∈ R∗ such that:
K = a(Ax ,z ∨ Ax ,z + Ay ,t∨Ay ,t + Ax ,z∨Ay ,t + Ax ,t∨Ay ,z),
Ric = −3a(.x ∨ z + y ∨ t),
with 〈x , z〉 = 〈y , t〉 = 1.

• dim h(K) = 6 then, h(K) = so(2, 2) and there is a ∈ R∗ such that:

K = a(Ax ,z∨Ax ,z+Ay ,t∨Ay ,t+Ax ,z∨Ay ,t+2.Ax ,t∨Ay ,z+2.Ax ,y∨At,z), and Ric = −6a(x∨z+y∨t),

with 〈x , z〉 = 〈y , t〉 = 1
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In the following corollary, we give all curvature tensors on the four
dimensional neutral vector space in the some particuler cases: Einstein,
isotropic Ricci or complex Ricci.

Corollary

Let K be a semi-symmetric curvature tensor on the four dimensional
neutral vector space (V , 〈 , 〉). Then, there is the basis (x , y , z , t) of V
such that:
• If K is the Einstein curvature tensor with non zero scalar curvature.

Then, one of the following situations is checked::
• dim h(K) = 6, then;

K = a(Ax,z ∨Ax,z +Ay ,t∨Ay ,t +Ax,z∨Ay ,t +2.Ax,t∨Ay ,z +2.Ax,y∨At,z),
Ric = −6a(.x ∨ z + y ∨ t),
with a ∈ R∗ and 〈x , z〉 = 〈y , t〉 = 1

• dim h(K) = 4, then,
K = a(Ax,z ∨ Ax,z + Ay ,t∨Ay ,t + Ax,z∨Ay ,t + Ax,t∨Ay ,z) ,
with a ∈ R∗ and 〈x , z〉 = 〈y , t〉 = 1.

• dim h(K) = 2, then;
K = a.(Ax,z∨Ax,z + Ay ,t∨Ay ,t) or K = a.(Ax,y∨Ax,y + Az,t∨Az,t),
with a ∈ R∗ and 〈x , x〉 = −〈y , y〉 = 〈z , z〉 = −〈t, t〉 = 1,
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Corollary

• If K is a Ricci flat, then, there is (a, b) ∈ R∗ × R∗ such that ;
K = a.Ax ,y ∨ Ax ,y + b.Ax ,t ∨ Ax ,t ,
with 〈x , z〉 = 〈y , t〉 = 1.
• If K is an isotropic Ricci, Then the one of following situations is

checked:
• K = aAx,y ∨ Ax,y and Ric = −a.x ∨ x ,

with a ∈ R∗ and 〈x , z〉 = −〈y , y〉 = 〈t, t〉 = 1.
• K = cπ2 ∨ π2 + d(π1 ∨ π2), Ric = −2d .x ∨ t,

with (c , d) ∈ R× R∗ , π1 = Ax,z + Ay ,t , π2 = Ax,t and
〈x , z〉 = 〈y , t〉 = 1.

• K = a.Ax,y ∨ Ax,y + b.Ax,t ∨ Ax,t + c .Ax,y ∨ Ax,t , Ric = c .x ∨ x ,
with (a, b, c) ∈ R2 × R∗ and 〈x , z〉 = 〈y , t〉 = 1

• If Ricci has a non-real eigenvalue, then, there is (a, b) ∈ R× R∗ such
that

K = a(π1∨π1−π2∨π2)+b.π1∨π2 and Ric = −4a(x∨t+y∨z)+2b(y∨t−x∨z)

with π1 = Ax ,z + At,y , π2 = Ax ,t + Ay ,z and 〈x , t〉 = 〈y , z〉 = 1.
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Semi-symmetric manifolds

Let (M, g) be pseudo-Riemannian manifolds of dimension n with
Levi-Civita connexion ∇ and Riemannian curvature R, ric and Ric are the
Ricci tensor and the Ricci operator respectively and let X (M) be the space
of all vetor fields on M.

Definition

(M, g) has said semi-symmetric if, R.R = 0, i.e, R verifies

[R(X ,Y ),R(Z ,T )] = R(R(X ,Y )Z ,T )+R(Z ,R(X ,Y )T ), X ,Y ,Z ,T ∈ X (M).
(14)
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Let (M, g) be pseudo-Riemannian semi-symmetric manifolds. Then, for
each point m ∈ M, the restriction Rm of R on tangent space TmM is
semi-symmetric curvature tensor. So, the minimal polynomial of Ricm is
of the form χ =

∏
i Pi such that the polynomials (Pi )i are mutually prim

between them and for all i , Pi is irreducible or Pi = X 2. We can suppose
that Pi is irreducible for all i ≥ 1 and define the distributions:

V0(m) := ker(Ric2
m) et Vi (m) := ker(Pi (Ricm)) for all i ≥ 1,

and we get the following proposition:

Proposition

The distributions (Vi )i have the following proprietes:
For all i 6= j , we get:

∇Vj
Vi ⊂ Vi , ∇Vi

Vi ⊂ V0+Vi , ∇V0Vi ⊂ Vi , ∇V0V0 ⊂ V0, ∇Vi
V0 ⊂ V0+Vi .

(15)
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proof

Let m ∈ M. According the propositon.2.1, we get:

Vm := TmM = V0(m)⊕ V1(m)⊕ ...⊕ Vr (m). (16)

In first, we show that for i ≥ 1 and X ∈ V⊥i , ∇XVi ⊂ Vi :
We choose i ≥ 1 and X ∈ V⊥i . Then, we get ∇X (R(Vi ,Vi )Vi ) ⊂ Vi .
Indeed:
Let Y , Z , T ∈ Vi . According the second identity of Bianchi, we get:
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∇XR(Y ,Z ,T ) := (∇XR)(Y ,Z )T

= −∇YR(Z ,X ,T )−∇ZR(X ,Y ,T )

= −∇Y (R(Z ,X )T ) + R(∇YZ ,X )T + R(Z ,∇YX )T

+R(Z ,X )∇YT −∇Z (R(Y ,X )T ) + R(∇ZY ,X )T

+R(Y ,∇ZX )T + R(Y ,X )∇ZT

= R(∇YZ ,X )T + R(Z ,∇YX )T

+R(∇ZY ,X )T + R(Y ,∇ZX )T .

According the proposition.2.1, we take: R(V ,V )(Vi ) ⊂ Vi and
∇XR(Y ,Z ,T ) ∈ Vi .
The otherwise,

∇XR(Y ,Z ,T ) = ∇X (R(Y ,Z )T )− R(∇XY ,Z )T

−R(Y ,∇XZ )T − R(Y ,Z )∇XT

= ∇X (R(Y ,Z )T )− R(∇XY ,Z )T − R(Y ,∇XZ )T

+R(Z ,∇XT )Y + R(∇XT ,Y )Z .

Then, ∇X (R(Y ,Z )T ) ∈ Vi .
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Now, we will show that ∇XRic(Y ) ∈ Vi .
We choose a pseudo-orthonormally basis (e1, ..., en) adapted to the
decomposition (16) and we put εk = 〈ek , ek〉. Let Z ∈ V⊥i .
If ek ∈ Vi , we have seen that ∇X (R(Y , ek)ek) ∈ Vi and if ek ∈ V⊥i , we
get R(Y , ek) = 0. Then,

〈∇X (Ric(Y )),Z 〉 = −〈Ric(Y ),∇XZ 〉

=
n∑

k=1

εk〈R(Y , ek)ek ,∇X z〉

= −
n∑

k=1

εk〈∇X (R(Y , ek)ek),Z 〉

= 0.
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So, ∇XRic(Y ) ∈ Vi and;

If Pi (t) = t2 + at + b with b 6= 0. Then for all Y ∈ Vi , we get

Y = −1

b
(Ric2(Y ) + aRic(Y )) and, ∇XY ∈ Vi .

If Pi (t) = t − λi with λi 6= 0. Then, for all Y ∈ Vi , we get

Y =
1

λi
Ric(Y ) and , ∇XY ∈ Vi .

So, ∇XVi ⊂ Vi , this shows that ∇Vj
Vi ⊂ Vi and ∇V0Vi ⊂ Vi , for all

i , j ≥ 1 with i 6= j .
The other results are obtained immediatly because the metric g is parallel
(∇g = 0).
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Corollary

Let (M, g) be pseudo-Riemannian semi-symmetric manifolds. Let
χ =

∏
i Pi be the minimal polynomial of Ric. If we put V0 = ker(Ric2)

and ∀i ≥ 1, Vi = ker(Pi (Ric)). Then, for all i ≥ 1, the distribution V0 and
V0 + Vi are involutives.

Remark

The distribution V0 and V0 + Vi are involutives spaces and not necessairly
parallels.
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Proof of Theorem 2.1

Let (M, g) be a four dimensional neutral manifold and the tensor
curvature R is considered a symmetric endomorphism in the space Λ2TM;

R : Λ2TM → Λ2TM
x ∧ y 7→ R(x ∧ y) := R(x , y).

(17)
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Let J : Λ2TM → Λ2TM be a Hodge morphism given by:

α ∧ β = 〈Jα, β〉1ω,

for all m ∈ M, α, β ∈ Λ2TmM, ω = e1 ∧ e2 ∧ e3 ∧ e4, such that
(e1, e2, e3, e4) is a positive-oriented orthonormal basis of TmM and 〈 , 〉1 is
the metric of Λ2TmM induced by g . It’s easy to proof that J2 = idΛ2TM

and we put Λ+TmM and Λ−TmM the eigenspaces of Jm associated
respectively to eigenvalues 1 and −1, they are the same dimension 3.

On
the other hand, if R is the Einstein curvature, we get,

J ◦ R = R ◦ J.

Therefore, Λ+TM and Λ−TM are invariant by R.
Moreover,

e1 ∧ e2 ± e3 ∧ e4, e1 ∧ e3 ∓ e2 ∧ e4, and e1 ∧ e4 ± e2 ∧ e3

is a basis of Λ±TmM. The proof is based on Corollary 3.1 and the
following theorem proved in [Derdzinski]
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Theorem

[Derdzinski] Let the self-dual curvature operator R+ : Λ+TM → Λ+TM of
an oriented four-dimensional Einstein manifold (M, g) of the metric
signature (2, 2) be complex-diagonalizable at every point, with complex
eigenvalues forming constant functions M −→ C. If ∇R+ 6= 0 somewhere
in M, then (M, g) is locally homogeneous, namely, locally isometric to a
Lie group with a left-invariant metric. More precisely, (M, g) then is
locally isometric to one of Petrov’s Ricci-flat manifolds.[Derdzinski]
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Proof of Theorem2.1

Let (M, g) be a four dimensional Einstein semi-symmetric neutral
manifold. Then the Ricci tensor satisfies the following relationship:

ric =
s

4
g , (18)

such that s is the scalar curvature.

On the other way, the Ricci tensor
satisfies the following relationship:

δ(ric) = −1

2
d(s), (19)

where δ and d are the contravariant and the covariant differential on M
respectively (See [Besse],Proposition1.94, page 43).
This induces that the scalar curvature s is a constant function.
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So, (M, g) is semi-symmetric and according of the corollary3.1 we get that
morphism R+ : Λ+TM −→ Λ+TM is diagonalizable and it satisfies of one
of the following situations:

1 R+ is an homothety with a report s
4 ,

2 R+ is diagonalizable as C-linear endomorphism of ∧+TpM with
eigenvalues 0 and s

4 of multiplicity 2 and 1 respectively, where s is the
scalar curvature.

Then M is a no Ricci flat. According to theorem4.1, we get that M is
localy symmetric. This completes the proof of the theorem.2.1.
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Four dimensional semi-symmetric neutral Lie groups

In this section, we give some general properties of semi-symmetric neutral
Lie groups and we prove Theorem 2.2 when M is a neutral Lie group.

A Lie group G together with a left-invariant pseudo-Riemannian metric g
is called a pseudo-Riemannian Lie group.
The metric g defines a pseudo-Euclidean product 〈 , 〉 on the Lie algebra
g = TeG of G , and conversely, any pseudo-Euclidean product on g gives
rise to an unique left-invariant pseudo-Riemannian metric on G .
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We will refer to a Lie algebra endowed with a pseudo-Euclidean product as
a pseudo-Euclidean Lie algebra. The Levi-Civita connection of (G , g)
defines a product L : g× g −→ g called the Levi-Civita product and given
by Koszul’s formula:

2〈Luv ,w〉 = 〈[u, v ],w〉+ 〈[w , u], v〉+ 〈[w , v ], u〉. (20)

For any u, v ∈ g, Lu : g −→ g is skew-symmetric and [u, v ] = Luv − Lvu.
We will also write u.v = Luv .

The Riemannian curvature on g is given by:

K(u, v) = L[u,v ] − [Lu,Lv ]. (21)
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It is well-known that K is a curvature tensor on (g, 〈 , 〉) and, moreover, it
satisfies the differential Bianchi identity

Lu(K)(v ,w) + Lv (K)(w , u) + Lw (K)(u, v) = 0, u, v ,w ∈ g (22)

where

Lu(K)(v ,w) = [Lu,K(v ,w)]−K(Luv ,w)−K(v ,Luw). (23)

Denote by h(g) the holonomy Lie algebra of (G , g). It is the smallest Lie
algebra containing h(K) = span{K(u, v) : u, v ∈ g} and satisfying
[Lu, h(g)] ⊂ h(g), for any u ∈ g.

(G , g) is semi-symmetric iff K is a semi-symmetric curvature tensor of
(g, 〈 , 〉).
Without reference to any Lie group, we call a pseudo-Euclidean Lie algebra
(g, 〈 , 〉) semi-symmetric if its curvature is semi-symmetric.
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Let (g, 〈 , 〉) be a semi-symmetric Lie algebra with metric 〈 , 〉 of signature
(2, n) such that n > 2. According to Proposition 2.2, g splits orthogonally
as

g = g0 ⊕ g1 ⊕ . . .⊕ gr , (24)

where g0 = ker(Ric2) and g1, . . . , gr are the eigenspaces associated to the
non zero eigenvalues of Ric,
or

g = g0 ⊕ gc ⊕ g1 ⊕ . . .⊕ gr , (25)

where g0 = ker(Ric), gc = ker(Ric2 − (z + z̄)Ric+ | z |2 I ) such that z is
non real eigenvalue of Ric and g1, . . . , gr are the eigenspaces associated to
the non zero real eigenvalues of Ric.
Moreover, K(gi , gj) = 0 for any i 6= j , dim(gc) = 4 and dim gi ≥ 2 if
i 6= 0. According the Proposition4.1, the following proposition gives more
properties of the gi ’s involving the Levi-Civita product.
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Proposition

Let (g, 〈 , 〉) be a semi-symmetric Lie algebra with metric 〈 , 〉 of signature
(2, n) such that n > 2. Then, for any i , j ∈ {c , 1, . . . , r} and i 6= j ,

gj .gi ⊂ gi , gi .gi ⊂ g0 + gi , g0.gi ⊂ gi , g0.g0 ⊂ g0, gi .g0 ⊂ g0 + gi .
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Let (G , g) be a four dimensional semi-symmetric neutral Lie group with
Ricci curvature having a non zero eigenvalue and, according to (24) , (25)
and Proposition 5.1, the Lie algebra g of G has one of the following types:

• (S4λ): dim g = 4 and g = gλ with λ 6= 0.

• (S4µλ): g = gµ ⊕ gλ with dim gµ = dim gλ = 2, λ 6= µ, λ 6= 0,
µ 6= 0, gµ.gλ ⊂ gλ, gλ.gµ ⊂ gµ, gλ.gλ ⊂ gλ and gµ.gµ ⊂ gµ.

• (S4λ01) : g = g0 ⊕ gλ with dim g0 = 1, g0.gλ ⊂ gλ, g0.g0 ⊂ g0 and
λ 6= 0.

• (S4λ02): g = g0 ⊕ gλ with dim gλ = 2, g0.gλ ⊂ gλ, g0.g0 ⊂ g0 and
λ 6= 0,

• (Szz̄): g = ker(Ric2 − (z + z̄)Ric+ | z |2 I ) with z ∈ C− R.

where gλ = ker(Ric− λIdg) and g0 = ker(Ric).
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Proposition

Ricci is neither flat nor isotropic
Let (g, 〈 , 〉) be a four dimensional semi-symmetric neutral Lie algebra
with Ricci curvature admitting a non-zero eigenvalue. Then g is a
symmetric space. Precisely, one of the following cases occurs:

• g is of type (S4µλ). Then gλ.gµ = gµ.gλ = 0 and g is a product of
two Lie algebras with the same metric et and the same dimension 2.

• g is of type (S4λ01). Then g.g0 = 0, gλ.gλ ⊂ gλ and hence g is the
semi-direct product of g0 with the three dimensional Lorentzian Lie
algebra gλ of constant curvature and the action of g0 on gλ is by a
skew-symmetric derivation.

A. Benroummane (UHP) Semisymmetric spaces Marrakech 56 / 77



Proposition

• g is of type (S4λ02). Then g0.g = 0, gλ.gλ ⊂ gλ, gλ.g0 ⊂ g0 and
hence g is the semi-direct product of the pseudo-Euclidean Lie algebra
gλ with the abelian Lie algebra g0 and the action of gλ on g0 is given
by skew-symmetric endomorphisms.

• g is of type (S4λ) with λ 6= 0. In this case, we get
dim(h(K)) ∈ {2, 4, 6}.
• g is of type (S4zz̄). In this case, dim(h(K)) = 2.
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proof

-For types (S4µλ), (S4λ01) and (S4λ02), Ric admits two real eigenvalues.
Then each eigenspace is either Lorentzian or Riemannian and the
demonstration of similar cases in [Benroummane] remains valid in the
current situation.
-For type (S4λ), it is a result of the theorem(2.1).
-For type (S4zz̄), it is the same proof in the case Ricci complex for a
homogeneous semi-symmetric manifolds.
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According to this proposition, we get the following theorem:

Theorem

Let G be a four-dimensional connexe simply connected neutral Lie group.
If (G , g) is semi-symmetric space admitting a left invariant metric g and
it’s Ricci cuvature admits no zero eigenvalue, then G is localy symmetric.

Corollary

Let g be a four-dimensional semi-symmetric nonsymmetric neutral Lie
algebra. Then, its Ricci operator satisfies the condition

Ric2 = 0

i.e; Ricci is plat or istrope. Precisely, Ricci has only 0 eigenvalue.
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Remark

There are some four dimensional neutral semi-symmetric non-symmetric
Lie algebras with Ricci plat:
Example: Let g = vect(x , y , z , t) be a Lie algebra equipped with a metric
〈 , 〉 given by: 〈x , z〉 = 〈y , t〉 = 1 and the non zero brackets are:
[x , y ] = Ax + Bt, [x , z ] = 2Dx, [y , z ] = Cx − Dy + Az,
[y , t] = −2At and [z , t] = −AD

B x − Dt.
Then g is semi-symmetric non symmetric with Ricci plat and the
courvature:

R = 4AC .Ax ,t ∨ Ax ,t .

This example makes the difference between the Lorentzian case and the
case of the signature (2, 2): In the first case, the semi-symmetric Lie
algebras of Ricci flat are flat and locally symmetrical.

Remark

let g be a four-dimensional semi-symmetric neutral Lie algebra with
isotropic Ricci. Then, two cases are possibles: rank(Ric) = 1 or
rank(Ric) = 2 and dim(h(K)) ∈ {1, 2}

and we get the following Proposition:
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Proposition

Let (g, 〈 , 〉) be a four dimensional semi-symmetric neutral Lie algebra
with K the curvature tensor and Ric the Ricci operator.

1 If K 6= 0 and Ric = 0, then, there is a basis (x , y , z , t) such that
〈x , t〉 = 〈y , z〉 = 1 and K = aAx ,z ∨ Ax ,y , where a ∈ R∗.

2 If Ric 6= Ric2 = 0. Then, one of the following situations is checked:
• h(K) is of type 1.41. Then, there is a basis (x , y , z , t) such that
〈x , z〉 = −〈y , y〉 = 〈t, t〉 = 1 and K = qAx,y ∨ Ax,y , Ric = −q(x ∨ x),
q 6= 0.

• h(K) is of type 2.51. Then, there is a basis (x , y , z , t) such that
〈x , z〉 = 〈y , t〉 = 1 and
K = rAx,y ∨ Ax,y + p.Ax,t ∨ Ax,t + q.Ax,y ∨ Ax,t , Ric = q(x ∨ x),
p 6= 0 6= q and r 6= 0.

• h(K) is of type 2.21. Then, dim h(K) = 2 and there is a basis
(x , y , z , t) such that 〈x , z〉 = 〈y , t〉 = 1 and
K = sAx,t ∨ Ax,t + p.((Ax,z + Ay ,t) ∨ .Ax,t), Ric = −p(x ∨ t),
p 6= 0 6= s.

• h(K) is of type 2.22. Then, there is a basis (x , y , z , t)such that
〈x , t〉 = 〈y , z〉 = 1 and
K = pAx,y ∨ Ax,y + q.Ax,y ∨ (Ax,z + Ay ,t) et Ric = q(x ∨ x − y ∨ y) ,
p 6= 0 6= q.
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In [Ali], A. Haji-Badali and A. Zaeim give a complet classification of
four-dimensional semi-symmetric nonsymmetric neutral Lie algebras.
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Proof of Theorem 2.2

Let (M, g) be a four dimensional simply connected homogeneous neutral
semi-symmetric manifold with Ricci curvature having a non zero
eigenvalue. According to proposition3.1. If the Ricci curvature has a non
zero eigenvalue in C, Then, M is one of the following types: (S4λ),
(S4λµ), (S4λ01), (S4λ02) or (Szz̄).

Lemma

Let (M, g) be a four dimensional simply connected homogeneous neutral
semi-symmetric manifold of type (S4λµ) or (S4λ01) or (S4λ02) then
(M, g) is either Ricci-parallel or locally isometric to a Lie group equipped
with a left invariant neutral metric.
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Proof of Lemma 6.1

If M is one of the following types (S4λµ) or (S4λ02), the proof of
theorem 4.1 in [Calvaruso-Zaeim] remains valid in the current situation.
For the case (S4λ01) and according to [Komrakov], we find the same
homogeneous manifolds as the theorem 4.6 in [Calvaruso-Zaeim] and
consequently its proof remains valid in the current situation. This
completes the proof of the Lemma6.1.�
So if (M, g) is of type (S4λ) such that λ 6= 0, that is, M is the Einstein
space with non null scalar curvature and we can apply Theorem 2.1 to get
that M is locally symmetric.
If (M, g) is Ricci-parallel and the Ricci operator has two distinct real
eigenvalues then, according to Theorem 7.3 [Boubel] and the
Proposition4.1 , (M, g) is a product of two Einstein homogeneous
semi-symmetric pseudo-Riemannian manifolds of dimension less or equal 3
and according the some results of same situation in [Benroummane] we
get that (M, g) is localy symmetric.

A. Benroummane (UHP) Semisymmetric spaces Marrakech 65 / 77



If M is locally isometric to a Lie group equipped with a left invariant
neutral metric, we have shown in section 5 that M is locally symmetric.
Suppose now that (M, g) is of type (Szz̄). Let z = a + ib and z̄ = a− ib
be the eigenvalues of Ric such that b 6= 0. Then there is a
pseudo-orthonormal frame B = (e, f , u, v) such that g(e, u) = g(f , v) = 1
in which the matrix of Ric has the following form:

[Ric]B =


a −b 0 0
b a 0 0
0 0 a −b
0 0 b a


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Let J be the operator given by J := 1
b (Ric− a.I ). We have J2 = −I such

that I is the identity operator of the tangent fibre of M. Then, by
complexification, we get that the complex semi-symmetric manifolds
(MC, gC) which RicC the complex Ricci is semi-symmetric operator
admitting two eigenvalues z = a + ib and z̄ = a− ib which are the
constant functions because M is homogeneous. Moreover, RicC must be
diagonalizable in C. More precisely, ker(RicC − z .I ) = ker(J − i .I ) and
ker(RicC − z̄ .I ) = ker(J + i .I ). Applying the procedure of the proof of the
proposition4.1, we find that the two two-dimensional orthogonaly
eigenspaces of RicC are parallel and consequently, they are locally
symmetric. So (MC, gC) is locally symmetric. As a result, (M, g) is locally
symmetric. This completes the proof of the Teorem2.2.
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Ricci flat or isotropic

In this section, we deal with non flat semi-symmetric four-dimensional
neutral manifolds with ithe Ricci curvature is either isotropic or flat .
We use Komrakov’s classification [Komrakov] of four-dimensional
homogeneous pseudo-Riemannian manifolds and we apply the following
algorithm to find among Komrakov’s list the pairs (g, g) corresponding to
four-dimensional Ricci flat or Ricci isotropic homogeneous semi-symmetric
neutral manifolds which are not locally symmetric.
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Let M = G/G be an homogeneous manifold with G connected and
g = g⊕m, where g is the Lie algebra of G , g the Lie algebra of G and m
an arbitrary complementary of g (not necessary g-invariant). The pair
(g, g) uniquely defines the isotropy representation ρ : g −→ gl(m) by
ρ(x)(y) = [x , y ]m, for all x ∈ g, y ∈ m. Let {e1, . . . , er , u1, . . . , un} be a
basis of g where {ei} and {uj} are bases of g and m, respectively. The
algorithm goes as follows.
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• Determination of invariant pseudo-Riemannian metrics on M:
It is well-known that invariant pseudo-Riemannian metrics on M are
in a one-to-one correspondence with nondegenerate invariant
symmetric bilinear forms on m. A symmetric bilinear form on m is
determined by its matrix B in {ui} and its invariant if
ρ(ei )

t ◦ B + B ◦ ρ(ei ) = 0 for i = 1, . . . , r .
• Determination of the Levi-Civita connection:

Let B be a nondegenerate invariant symmetric bilinear form on m. It
defines uniquely an invariant linear Levi-Civita connection
∇ : ḡ −→ gl(m) given by

∇(x) = ρ(x), ∇(y)(z) =
1

2
[y , z ]m + ν(y , z), x ∈ g, y , z ∈ m,

where ν : m×m −→ m is given by the formula

2B(ν(a, b), c) = B([c , a]m, b) + B([c , b]m, a), a, b, c ∈ m.

• Determination of the curvature:
The curvature of B is the bilinear map K : m×m −→ gl(m) given by

K(a, b) = [∇(a),∇(b)]−∇([a, b]m)− ρ([a, b]g), a, b ∈ m.
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• Determination of the Ricci curvature:
It is given by its matrix in {ui}, i.e., ric = (ricij)1≤i ,j≤n where

ricij =
n∑

r=1

Kri (ur , uj).

• Determination of the Ricci operator:
We have Ric = B−1ric.

• Checking the semi-symmetry condition.

The following theorem gives the list of four dimensional homogeneous
neutral semi-symmetric manifolds non flat which Ricci is either isotropic or
flat.
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Theorem

Let M = Ḡ/G be a 4-homogeneous neutral semi-symmetrique no
symmetric manifolds.
Let ḡ = span{e1, .., en, u1, u2, u3, u4} and g = span{e1, .., en} the Lie
algebras associted respectively to Ḡ and G . Then, M is isometric to one
of the following types:

I) ḡ = span{e1, u1, u2, u3, u4};
• 〈u1, u4〉 = −〈u2, u3〉 = a, 〈u3, u3〉 = −〈u4, u4〉 = b, 〈u3, u4〉 = c

1.31 : 2, 3, 4, 6, 7, 10, 15, 16, 24, 26− 30,
1.31 : 5 with (λ, µ) 6= (0, 2),
1.31 : 8, 19, 20, 22 with b 6= 0,
1.31 : 9 with bλ(λ+ 1) 6= 0,
1.31 : 12 with (λ− µ− 1)(λ− µ+ 1) 6= 0,
1.31 : 13 with λ 6= 1

2 ,

1.31 : 21 with bλ(λ− 1) 6= 0,
1.31 : 25 with (b, λ) 6= (0, 2),
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• 〈u1, u3〉 = −〈u2, u2〉 = a, 〈u3, u3〉 = b, 〈u3, u4〉 = d , 〈u4, u4〉 = a− b,
1.41 : 2 with b 6= 0 and p = 1,
1.41 : 9− 11, 13, 15− 20.

II) ḡ = span{e1, e2, u1, u2, u3, u4} with 〈u1, u3〉 = 〈u2, u4〉 = a;
• 2.21 : 2 with λ(λ2 − 4) 6= 0
• 2.21 : 3.
• 2.51 : 3− 6.

III) ḡ = span{e1, e2, e3, u1, u2, u3, u4};
3.31 : 1 with 〈u1, u3〉 = 〈u2, u4〉 = a:
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Thank you for watching me

A. Benroummane (UHP) Semisymmetric spaces Marrakech 77 / 77


	Goal
	Introduction
	 Semi-symmetric curvature tensor on four dimensional neutral space 
	Semi-symmetric manifolds
	Four dimensional semi-symmetric neutral Lie groups 
	Proof of Theorem 
	4-homogeneous semi-symmetric neutral manifolds with Ric2=0 

