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Plan

1. Homology spheres : definition and characterization.

2. Classical constructions of homology spheres.
3. Seifert fibered 3-manifolds :

• Definition, constructions.
• Invariants.
• Classification by homeomorphisms and recognition.
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I.1 Preliminaries on algebraic topology

Note 1. In dimension three the categories Top, Diff and PL (piecewise linear)
are equivalent. Then according to our needs, we can consider every smooth
3-manifold as a polyhedral manifold (ie. a PL manifold).
Note 2. For any manifold the spaces of homology singular, simplitial and
cellular are equivalent.
Then to each manifold M3 which is connected, compact, oriented and
without boundary we associate a list of commutative homology groups :

Hk(M3,Z) = {0},∀k ≥ 4 (geometric dimension)

In fact, since Hk(M3,Z) is an abelian group, it can be decomposed as follows :

Hk(M3,Z) = Zbk(M3)
⊕ Tor(Hk(M3,Z))

= free abelian group ⊕ torsion group

where bk(M3) ∈N is called the Betti number of M3.
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• by connectedness we have H0(M3,Z) =Zb0(M3) =Z.
• by orientability, compactness and Poincaré duality we show that :

H3(M3,Z) =Zb3(M3) =Z

• Since M3 is arcwise connected then its first simgular homology group

H1(M3,Z) '
π1(M3)

[π1(M3),π1(M3)]
'Zb1(M)

⊕Tor(H1(M,Z))

• Since M3 is closed (in fact oriented) then the second homology group
H2(M3,Z) is free abelian, that is, H2(M) =Zb2(M).
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I.2 Homology spheres : definition and topological properties

Definition
Let M3 be a compact, without boundary and oriented 3-manifold (closed).
We say that M3 is an integer (resp. rational) homology sphere if in the
singular (or simplicial) we have

H∗(M3,Z) 'H∗(S3,Z) =

{
Z if ∗ = 0 or 3
0 if ∗ = 1 or 2

resp.

H∗(M3,Q) = H∗(M3,Z)⊗Q 'H∗(S3,Q) =

{
Q if ∗ = 0 or 3
0 if ∗ = 1 or 2
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Proposition 1.
M3 is an integer homology sphere if and only, if π1(M3) = [π1(M3),π1(M3)].

Proof
1) If M3 is an integer holomogy sphere then

H1(M3,Z) = 0 =⇒ π1(M3) = [π1(M3),π1(M3)]

2) Conversely, if we suppose that π1(M3) = [π1(M3),π1(M3)] we see that
H1(M3,Z) = 0. Thus, as the abelian group H2(M3,Z) is free, then by Poincaré
duality we obtain :

H2(M3,Z) 'H1(M3,Z) = 0

Consequently, the manifold M3 is an integer homology sphere.
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Proposition 2.

M3 is a rational homology sphere if and only, if
π1(M3)

[π1(M3),π1(M3)]
is finite.

Proof
1) H1(M3,Q) = 0 =⇒H1(M3,Z) is finite : evident.
2) Conversely, if H1(M,Z) is a finite torsion abelian group, then its first Betti
number b1(M3) = 0 (rank). Thus, by Poincaré duality b2(M3) = b3−2(M3) = 0.
Consequently, as H2(M3,Z) = 0 (is free abelian) then M3 is a rational
homology sphere.
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In the rest of this part, we apply three deferent method to construct
3-homology spheres manifods :
Method 1 : group action
We consider a discrete group G who verify the properties :

1. G acts freely and properly on a simply connected, without boundary and
oriented 3-manifolds M̃3.

2. G/[G,G] is finite.

3. M3 = M̃3/G is a rational homology sphere.

Method 2 : Heegaard splitting.
Method 3 : Dhen surgery on knots and links.
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II.1 Poincaré homology sphere S3/G.

Now, consider the alternating group of five letters A5 of order 5!/2 = 60. The
group A5 has the following properties :

1. A5 is non abelian simple group, then its derived group [A5,A5] = A5.

2. A5 can be realized as a subgroup of the Lie group SO(3).

3. A5 is the rotational symmetry group of the regular dodecahedron (see
figure).
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Figure: Dodecahedron in the closed unite euclidian boule B̄3
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To construct a finite group which acts on the 3-sphere S3, then we consider
the simply connected covering Spin(3) 'US(2) ' S3 of the Lie group SO(3) :

0→Z2 −→ Spin(3)
p
−→SO(3)→ 1

And, by the pullback via the projection p we obtain a subgroup, G ⊂ Spin(3),
knowing by binary isocahedron group of order 120 :

0→Z2 −→ G
p
−→A5→ 1

The binary isocahedron group G admits the following algebraic and
geometric properties :

1. finite presentation G =< a,b | a3 = b5 = (ab)2 >.

2. the derived group [G,G] = G.

3. G acts freely on the 3-sphere S3, and whose fundamental domain
coincides with the dodecahedron.

4. In fact, the 3-sphere is an union of 120 dodecahedron.

Theorem (H. Poincaré 1904)
The quotient 3-manifold, S3/G, is an homology 3-sphere which can be
obtained by identifying two opposite faces after a rotation of π/5.
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II.2 Weber-Seifert homology spheresH3/G.

The euclidian open boule B3 = {(x,y,z) ∈R3;x2 + y2 + z2 < 1}will be endowed
by the riemannian metric

ds2 = 4
dx2 + dy2 + dz2

(1−x2−y2− z2)2

• The geodesics of (B3,hyp) are the diameters of B3 and half-circles which
are orthogonal to the boundary ∂B3 = S2.

• The isometry group of (B3,hyp) is isomorphic to Lie group
PSL(2,C) := SL(2,C)/{−I, I} (noncompact).

• The sectional curvature of (B3,hyp), K = −1.

Then, in the hyperbolic (B3,ds2) we consider the hyperbolic dodecahedron Ph
whose faces are totaly geodesic in B3 (see the figure) :
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Figure: Hyperbolic dodecahedron in the hyperbolic boule (B3,hyp)
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Now, the hyperbolic polyhedron Ph can be see as a fundamental domain of
the discrete group G ⊂ PSL(2,C) generated by hyperbolic inversions along the
faces of Ph. It is showed that :

1. the group G ⊂ PSL(2,C) is infinite.

2. G =< x1,x2,x3,x4,x5,y | x1x2x3x4x5 = 1,x−1
i xi+1xi+3x−1

i+4 = y; i mod5 >

3. the quotient G/[G,G] ' (Z/5Z)3.

Theorem (Weber-Seifert 1933)
M3 = B3/G is an rational homology sphere which can be obtained by
identification of opposite faces of the hyperbolic dodecahedron after a
rotation of 3π/5.
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Figure: First iteration of tilling (B3,hyp) by Ph
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Figure: Seconde iteration of tilling (B3,hyp) by Ph
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II.3 Heegaard splitting.

Definition : handlebodie
We call handlebodie of genus g ≥ 0 any 3-manifold, H3

g , which is
homeomorphic to the tubular neighbored of a wedge of g-circles :

S1
∨· · ·∨S1︸        ︷︷        ︸
g−times

when g = 0, S1
∨· · ·∨S1︸        ︷︷        ︸
0−times

= ∅

Note that the boundary ∂H3
g = Σ2

g is a closed surface of genus g.
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Figure: Examples de handelbodies
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Definition : gluing two handlebodies
Let U and V are two handlebodies of same genus g ≥ 0, and let f : ∂V→ ∂U be
a homeomorphism which reverse the orientation. Then,

M3
f =

U
⊔

V
x ∈ ∂V,x ∼ f (x) ∈ ∂U

is a closed 3-manifolds, which called obtained by gluing two handlebodies of
same genus g.
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Note that the closed 3-manifold M3
f contains two open 3-manifolds

homeomorphic to handlebodies U′ 'H3
g and V′ 'H3

g , and such that
U′∩V′ ' Σ2

g×]−1,1[.
Consequently, by Mayer-Vietoris we can calculate the homology of M3

f :

Theorem (Mayer-Vietoris)
Let U and V be handlebodies of genus g ≥ 0 and let f : ∂V→ ∂U be a
homeomorphism which reverse orientation. Then the following sequence is
exact :

0 −→H2(Mf ) δ
−→H1(∂V)

∆f
−→H1(V)⊕H1(U)

j∗
−→H1(Mf ) −→ 0

where ∆f (z) = (inV(z), inU(f∗(z))) and j∗(a,b) = InV
M(a)− InU

M(b).

Corollary

1. H2(Mf ) = Ker(∆f ) and H1(Mf ) = coker(∆f ).

2. Mf is a rational homology sphere if and only if ∆f is injective.

3. Mf is an integer homology sphere if and only if ∆f is bijective.



I. Homology Spheres : definition and first properties II Classical constructions of homology spheres III. Seifert fibred 3-manifolds

Note that the closed 3-manifold M3
f contains two open 3-manifolds

homeomorphic to handlebodies U′ 'H3
g and V′ 'H3

g , and such that
U′∩V′ ' Σ2

g×]−1,1[.
Consequently, by Mayer-Vietoris we can calculate the homology of M3

f :

Theorem (Mayer-Vietoris)
Let U and V be handlebodies of genus g ≥ 0 and let f : ∂V→ ∂U be a
homeomorphism which reverse orientation. Then the following sequence is
exact :

0 −→H2(Mf ) δ
−→H1(∂V)

∆f
−→H1(V)⊕H1(U)

j∗
−→H1(Mf ) −→ 0

where ∆f (z) = (inV(z), inU(f∗(z))) and j∗(a,b) = InV
M(a)− InU

M(b).

Corollary

1. H2(Mf ) = Ker(∆f ) and H1(Mf ) = coker(∆f ).

2. Mf is a rational homology sphere if and only if ∆f is injective.

3. Mf is an integer homology sphere if and only if ∆f is bijective.



I. Homology Spheres : definition and first properties II Classical constructions of homology spheres III. Seifert fibred 3-manifolds

Note that the closed 3-manifold M3
f contains two open 3-manifolds

homeomorphic to handlebodies U′ 'H3
g and V′ 'H3

g , and such that
U′∩V′ ' Σ2

g×]−1,1[.
Consequently, by Mayer-Vietoris we can calculate the homology of M3

f :

Theorem (Mayer-Vietoris)
Let U and V be handlebodies of genus g ≥ 0 and let f : ∂V→ ∂U be a
homeomorphism which reverse orientation. Then the following sequence is
exact :

0 −→H2(Mf ) δ
−→H1(∂V)

∆f
−→H1(V)⊕H1(U)

j∗
−→H1(Mf ) −→ 0

where ∆f (z) = (inV(z), inU(f∗(z))) and j∗(a,b) = InV
M(a)− InU

M(b).

Corollary

1. H2(Mf ) = Ker(∆f ) and H1(Mf ) = coker(∆f ).

2. Mf is a rational homology sphere if and only if ∆f is injective.

3. Mf is an integer homology sphere if and only if ∆f is bijective.



I. Homology Spheres : definition and first properties II Classical constructions of homology spheres III. Seifert fibred 3-manifolds

The following diagram give us the attaching system of curves α and β ⊂ Σ2
2 = ∂U ' ∂H3

2 considered

by Poincaré for to construct his dodecahedral 3-homology integer sphere. The two curves α and

β ⊂ Σ2
2 = ∂U ' ∂H3

2 are obtained by the attached map f : ∂V→ ∂U from two meridional curves

considered on the handlebody ∂V.

Figure: Identification scheme of Dehn and Heegaard (1907)
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This planar diagram is obtained from the precedent figure by cutting the surface Σ2
2 = ∂U it along

the meridional curves C1 and C2.

Figure: Poincaré-Heegaard diagram (1904)
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II.4 Dehn surgery on links

Let M3 be a homology sphere. A Dehn’s surgery along a knot K ⊂M3 is any
operation that remove a tubular neighbored N(K) ⊂M3 and sew it by the
mean of a torus homeomorphism

f : ∂(E(K) = M3
\ Int(N(K))) −→ ∂(D2

×S1)

Concretely, on the boundary ∂E(K) =T2 we choose two simple closed curves :

1. longitude : λ is parallel to K defined from a Seifert surface in M ;

2. meridain : µ is definied by the linking number lk(µ,K) = +1.

Now, the pair (λ,µ) realize a base in the group H1(∂E(K)) = [µ]Z⊕ [λ]Z.

Consequently, any reducible rational number
m
l
∈Q∪{

1
0
} such that (m, l) = 1

allow us to define a unique closed curve α ∼mµ+ lλ on the boundary ∂E(K)
that we sew to the meridian of a standard solid torus D2

×S1.
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Definition
The resulting 3-manifold is closed and denoted by,

M3(K;
m
l

) := M3
\ Int(N(K))

⋃
f

D2
×S1

where f : ∂(M3
\ Int(N(K)))→ ∂(D2

×S1) generated (in isotopy) by the closed
curve α ∼mµ+ lλ.

Actually, by Van-Kampen we are able to calculate the fundamental group of

M3(K;
m
l

). And, by Mayer-Vietoris theorem we calculate its homolgy :

Proposition (Mayer-Vietoris)
H1(M3(K;

m
l

)) =Z
|m| and H2(M(K;

m
l

)) = {0}.

Consequently, M3(K;
m
l

) is an integer homology sphere if and only if |m |= 1.

Theorem (Dehn 1910)
The 3-manifold S3(K,1) which is obtained by surgery along the hand-right
trefoil knot K2,3 ⊂ S3 (see the figure) is homeomorphic to the Poincaré
homology sphere.
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Figure: Dehn surgery on the hand-right trefoil knot (1910)
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III.1 Definition and examples

Definition
Let M3 be an oriented 3-manifold. We say that M3 is a Seifert manifold if it
supports a locally free action of the circle S1 (as Lie group). In this cas, the
canonical map M3

→ B2 := M3/S1 will be called a Generalized Seifert
Fibration.

In a Seifert 3-manifold the orbit of each point x ∈M3 is homeomorphic to a
circle Lx := S1/S1

x where S1
x =Zp ⊂ S1 is a finite isotropy subgroup. Then we

have two type of orbits :

1. If S1
x = {1} (is trivial) we say that the orbit Lx is a regular fiber.

2. If S1
x =Zp , {1}, (is nontrivial) we say that the orbit Lx is a singular or an

exceptional fiber.

3. The orbit space B2 := M3/S1 is homeomorphic to a topological 2-surface.

Note that every 3-manifold which is a S1-principal fibre is an example of
generalized Seifert fibration.
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Example 1 : Hopf fibration
Let S3 = {(z1,z2) ∈ C2; | z1 |

2 + | z2 |
2= 1} be the 3-sphere, it is a Lie subgroup of

the multiplicative Lie group C2
\ {(0,0)}. The natural action of the circle

S1 = {z ∈ C; | z |= 1} on C2
\ {(0,0)} give us a free action on S3 defined by :

θ : S1
×S3

→ S3

(z, (z1,z2)) 7→ (zz1,zz2)

Note that in the 3-sphere, S3 = {(z1,z2) ∈ C2; | z1 |
2 + | z2 |

2= 1}, the two circles
S1
×{0} and {0}×S1 are S1-orbits of (1,0) and (0,1) respectively. And, for any

z1 , 0 and z2 , 0 the S1-orbit

S1
· (z1,z2) = {(zz1,zz2);z ∈ S1

}

is a trivial knot which can be viewed as a closed curve on the torus (level
surface)

T2
(|z1 |,|z2 |)

= {(u,v) ∈ S3; | u |=| z1 | and | v |=| z2 |}

homologous to : meridian + longetude (see figure).

Consequently, the 3-sphere S3 = {(z1,z2) ∈ C2; | z1 |
2 + | z2 |

2= 1} is a Seifert
3-manifolds without singular fibers, then its canonical projection
p : S3

→ S3/S1 = S2 is a locally trivial S1-bundle.
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Figure: Fibers of the Hopf fibration
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Figure: Global illustration of the Hopf fibration
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Example 2: The 3-sphere with one singular fibre.
For any integer n ≥ 2 we define on the sphere S3

⊂ C2 an S1-action by,

∀z ∈ S1,∀(z1,z2) ∈ S2, z · (z1,z2) = (zz1,znz2)

For this S1-action on S3 the orbit O = S1
· (0,1) = {0}×S1 is a unique singular

orbit with isotropy group Zn.
And, for any z1 , 0 the orbit S1

· (z1,z2) is a regular orbit which is homologous
to : nmeridian + longitude regarding to the singular orbit {0}×S1.
Consequently, the 3-sphere S3 is a fibred Seifert manifold with one singular
orbit. The orbit space is a 2-sphere admitting one singular point called : the
water drop (see the figure).
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Figure: The regular fibre wraps around the singular fibre
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Figure: The orbit space : water drop
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Example 3 : The 3-sphere with two singular fibre.
Let (α,β) = 1 be co-prime integers. On the sphere S3

⊂ C2 consider the
S1-action defined by,

∀z ∈ S1,∀(z1,z2) ∈ S3, z · (z1,z2) = (zαz1,zβz2)

For this S1-action on S3 we have only two singular orbits
• O1 = S1

×{0}with isotropy group Zα,
• O2 = {0}×S1 with isotropy group Zβ.

Note that, as in the case of the Hopf fibration, a regular S1-orbit is a closed
toric knot homologous to : α meridian +β longitude regarding to the
singular orbit S1

×{0} (see figure).
Consequently, the 3-sphere S3 is a fibred Seifert manifold with tow singular
orbits. The orbit space is a 2-sphere admitting two singular points (see the
figure).
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Figure: Tubular neighborhood of a singular fibre
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singular sphere

Figure: Sphere with two singular points
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III.2 Topological characterization of Seifert 3-manifolds
Local structure of a fibred Seifert manifold (Slice theorem)

1. Each regular orbit Lx admits a saturated open neighborhood
Vx 'D2

×S1 endowed by the natural action z · (z1,z2) = (zz1,zz2). In this
case the orbit space Vx/S1 is a smooth disc D2.

2. For each singular orbit Lx there is a S1-saturated open neighborhood

Vx 'D2
×Zβ S1

'D2
×S1

and a co-prime integers (α,β) = 1 called coefficients of Lx, and such that
the restriction of the S1-action on Vx is given by the last example. In this,
case the orbit space Vx/S1 is a topological disc with a conical at his center.

3. The local analytical expression of the canonical projection,
M3
→ B := M3/S1, is given by the function

f (rexp(iθ),exp(iφ)) = rexp(i[αθ+βφ])

where r ∈ [0,1] and θ,φ ∈ [0,2π]. Then, for every real r ∈]0,1] the regular
fibre :

f−1(rexp(iθ)) = {(rexp(i
θ
α

) ·exp(iβφ),exp(−iαφ));φ ∈ [0,2π]} ' S1
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The figure shows us the topological model of a S1-saturated tubular
neighborhood around a singular orbit :

Figure: Tubular neighborhood of a singular fibre
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Proposition
1) Let M3 be a compact oriented Seifert fibred 3-manifold. Then, M3 has only
a finite set of singular fibres S1

i with coefficients (αi,βi). Moreover, if the
boundary ∂M3 , ∅ then it is homeomorphic to a union of S1-saturated tori
Ti = S1

×S1.
2) We denote by Ni(S1

i ; (αi,βi)) the S1-saturated tubular neighborhood of S1
i .

Then, the open manifold M3
0 = M3

\
⋃i=n

i=1 Ni(S1
i ; (αi,βi)) is :

1. endowed by the structure of S1-principal fibre ;

2. every connected component of the boundary ∂M3
0 has n ≥ 1 is fibred by

torus knots ;

3. the orbit space M3
0/S

1 = Σ2
g,n is a smooth surface of genus g ≥ 0 with non

empty boundary ;

4. the open manifiold M3
0 is in fact S1-homeomorphic to the trivial

S1-bundle Σ2
g,n×S1.
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The proofs of the claims 1, 2 and 3 are evident.
For the proof of forth claim, there is two methods.
The first method utilise the Euler cohomology class,

eu ∈H2(Σ2
g,n,Z)

which is knowing as an obstruction to find a global section for the S1-fibration

M3
0

p
−→Σ2

g,n. Thus, since the boundary of the base Σ2
g,n is non empty, then we

obtain H2(Σ2
g,n,Z) = {0}. Consequently, the total space M2

0 ' Σ2
g,n×S1.
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The fibre bundle, S1 ↪→M3
0→ Σ2

g,n, is trivial

The second method utilise the cutting and pasting principle as explained in
the figure :

Figure: Trivializing the total space M3
0
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III. 3 Topological construction of Seifert fibred manifolds

At the moment, we know that the fibration S1 ↪→M3
0→ Σ2

g,n is trivial.
Moreover, the Seifert manifold M3 results from a Dehn surgery by pasting the
tubular neighborhoods of singular fibers (S1

i , (αi,βi)) to the open manifold
M3

0 ' S1
×Σ2

g,n. Then, by Van-Kampen theorem’s we conclude that the
fundamental group of M3 is given by the following presentation :

π1(M3) =< ai,bi,h,qj;q1 · · ·qn

i=g∏
i=1

[ai,bi] = 1,qαi
i hβi = 1, [h,ai] = [h,bi] = [h,qj] = 1 >

Thus, we see that the first homology group H1(M3,Z) is isomorphic to :

H1(M3,Z) 'Z2g
⊕ <Qi,H;αiQi +βiH = 0;Q1 + · · ·+ Qn = 0 >=Z2g

⊕Tor

Where the torsion subgroup Tor is a finite group having as cardinal :

| Tor |= α1 · · ·αn |

i=n∑
i=1

βi

αi
|
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Hence, by the above discussion we conclude the following :

Theorem
For any Seifert manifold M3 the following claims are equivalent,

1. M3 is an Q-homology 3-sphere ;

2. the genus g = 0 ;

3. the orbit space of M3 is a topological sphere S2
'M3/S1.

Corollary
A Seifert manifold M3 is an integer homology sphere if and only, if the list
{β1, · · · ,βn} is co-prime.
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IV. 5 Classification Seifert manifolds.

In the precedent parts, to any Seifert M3 we associated a liste of co-prime
pairs (αi,βi) ; here we study the two questions :
1) the modification of the list of pairs co-primes (αi,βi) without modifying the
topology of M3 ;

2) we introduce the rational Euler number eu(M) = −

i=n∑
i=1

βi

αi
∈Qwhich will

allow us to decide if two Seifert manifolds are homeomeorphic or no.
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V. 4 Other constructions and operations

plumbing and graph manifolds
Breiskorn manifolds as Seifert manifolds.
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