I. Homology Spheres : definition and first properties 000000

I Classical constructions of homology spheres

▲□▶▲□▶▲□▶▲□▶ □ のQで

Homology spheres which are Seifert 3-manifolds : construction and classification

BOUARICH Abdesselam (University Sultan Moulay Slimane)

Internet Seminar: Algebra, Geometry, Topology & Applications (AGT & A)

Beni Melal, 17 October 2020

I Classical constructions of homology spheres

III. Seifert fibred 3-manifolds

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

1. Homology spheres : definition and characterization.

- 2. Classical constructions of homology spheres.
- 3. Seifert fibered 3-manifolds :
 - Definition, constructions.
 - Invariants.
 - Classification by homeomorphisms and recognition.

III. Seifert fibred 3-manifolds

I.1 Preliminaries on algebraic topology

Note 1. In dimension three the categories Top, Diff and PL (piecewise linear) are equivalent. Then according to our needs, we can consider every smooth 3-manifold as a polyhedral manifold (ie. a PL manifold).

Note 2. For any manifold the spaces of homology singular, simplitial and cellular are equivalent.

Then to each manifold M^3 which is connected, compact, oriented and without boundary we associate a list of commutative homology groups :

 $H_k(M^3, \mathbb{Z}) = \{0\}, \forall k \ge 4$ (geometric dimension)

In fact, since $H_k(M^3, \mathbb{Z})$ is an abelian group, it can be decomposed as follows :

$$H_k(M^3, \mathbb{Z}) = \mathbb{Z}^{b_k(M^3)} \oplus \text{Tor}(H_k(M^3, \mathbb{Z}))$$

= free abelian group \oplus torsion group

III. Seifert fibred 3-manifolds

I.1 Preliminaries on algebraic topology

Note 1. In dimension three the categories Top, Diff and PL (piecewise linear) are equivalent. Then according to our needs, we can consider every smooth 3-manifold as a polyhedral manifold (ie. a PL manifold).

Note 2. For any manifold the spaces of homology singular, simplifial and cellular are equivalent.

Then to each manifold M^3 which is connected, compact, oriented and without boundary we associate a list of commutative homology groups :

 $H_k(M^3, \mathbb{Z}) = \{0\}, \forall k \ge 4$ (geometric dimension)

In fact, since $H_k(M^3, \mathbb{Z})$ is an abelian group, it can be decomposed as follows :

$$H_k(M^3, \mathbb{Z}) = \mathbb{Z}^{b_k(M^3)} \oplus \text{Tor}(H_k(M^3, \mathbb{Z}))$$

= free abelian group \oplus torsion group

III. Seifert fibred 3-manifolds

I.1 Preliminaries on algebraic topology

Note 1. In dimension three the categories Top, Diff and PL (piecewise linear) are equivalent. Then according to our needs, we can consider every smooth 3-manifold as a polyhedral manifold (ie. a PL manifold).

Note 2. For any manifold the spaces of homology singular, simplifial and cellular are equivalent.

Then to each manifold M^3 which is connected, compact, oriented and without boundary we associate a list of commutative homology groups :

 $H_k(M^3, \mathbb{Z}) = \{0\}, \forall k \ge 4$ (geometric dimension)

In fact, since $H_k(M^3, \mathbb{Z})$ is an abelian group, it can be decomposed as follows :

$$H_k(M^3, \mathbb{Z}) = \mathbb{Z}^{b_k(M^3)} \oplus \text{Tor}(H_k(M^3, \mathbb{Z}))$$

= free abelian group \oplus torsion group

III. Seifert fibred 3-manifolds

I.1 Preliminaries on algebraic topology

Note 1. In dimension three the categories Top, Diff and PL (piecewise linear) are equivalent. Then according to our needs, we can consider every smooth 3-manifold as a polyhedral manifold (ie. a PL manifold).

Note 2. For any manifold the spaces of homology singular, simplifial and cellular are equivalent.

Then to each manifold M^3 which is connected, compact, oriented and without boundary we associate a list of commutative homology groups :

 $H_k(M^3, \mathbb{Z}) = \{0\}, \forall k \ge 4$ (geometric dimension)

In fact, since $H_k(M^3, \mathbb{Z})$ is an abelian group, it can be decomposed as follows :

$$\begin{aligned} H_k(M^3,\mathbb{Z}) &= \mathbb{Z}^{b_k(M^3)} & \oplus & \operatorname{Tor}(H_k(M^3,\mathbb{Z})) \\ &= & \text{free abelian group} & \oplus & & \text{torsion group} \end{aligned}$$

II Classical constructions of homology spheres

III. Seifert fibred 3-manifolds

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

• by connectedness we have $H_0(M^3, \mathbb{Z}) = \mathbb{Z}^{b_0(M^3)} = \mathbb{Z}$.

• by orientability, compactness and Poincaré duality we show that :

$$H_3(M^3,\mathbb{Z})=\mathbb{Z}^{b_3(M^3)}=\mathbb{Z}$$

• Since *M*³ is arcwise connected then its first simgular homology group

$$H_1(M^3, \mathbb{Z}) \simeq \frac{\pi_1(M^3)}{[\pi_1(M^3), \pi_1(M^3)]} \simeq \mathbb{Z}^{b_1(M)} \oplus \operatorname{Tor}(H_1(M, \mathbb{Z}))$$

I Classical constructions of homology spheres

III. Seifert fibred 3-manifolds

- by connectedness we have $H_0(M^3, \mathbb{Z}) = \mathbb{Z}^{b_0(M^3)} = \mathbb{Z}$.
- by orientability, compactness and Poincaré duality we show that :

$$H_3(M^3,\mathbb{Z})=\mathbb{Z}^{b_3(M^3)}=\mathbb{Z}$$

Since M³ is arcwise connected then its first simgular homology group

$$H_1(M^3, \mathbb{Z}) \simeq \frac{\pi_1(M^3)}{[\pi_1(M^3), \pi_1(M^3)]} \simeq \mathbb{Z}^{b_1(M)} \oplus \operatorname{Tor}(H_1(M, \mathbb{Z}))$$

I Classical constructions of homology spheres

III. Seifert fibred 3-manifolds

- by connectedness we have $H_0(M^3, \mathbb{Z}) = \mathbb{Z}^{b_0(M^3)} = \mathbb{Z}$.
- by orientability, compactness and Poincaré duality we show that :

$$H_3(M^3,\mathbb{Z})=\mathbb{Z}^{b_3(M^3)}=\mathbb{Z}$$

• Since *M*³ is arcwise connected then its first simgular homology group

$$H_1(M^3, \mathbb{Z}) \simeq \frac{\pi_1(M^3)}{[\pi_1(M^3), \pi_1(M^3)]} \simeq \mathbb{Z}^{b_1(M)} \oplus \operatorname{Tor}(H_1(M, \mathbb{Z}))$$

I Classical constructions of homology spheres

- by connectedness we have $H_0(M^3, \mathbb{Z}) = \mathbb{Z}^{b_0(M^3)} = \mathbb{Z}$.
- by orientability, compactness and Poincaré duality we show that :

$$H_3(M^3,\mathbb{Z})=\mathbb{Z}^{b_3(M^3)}=\mathbb{Z}$$

• Since *M*³ is arcwise connected then its first simgular homology group

$$H_1(M^3, \mathbb{Z}) \simeq \frac{\pi_1(M^3)}{[\pi_1(M^3), \pi_1(M^3)]} \simeq \mathbb{Z}^{b_1(M)} \oplus \operatorname{Tor}(H_1(M, \mathbb{Z}))$$

III. Seifert fibred 3-manifolds

I.2 Homology spheres : definition and topological properties

Definition

Let M^3 be a compact, without boundary and oriented 3-manifold (closed). We say that M^3 is an integer (resp. rational) homology sphere if in the singular (or simplicial) we have

$$H_*(M^3,\mathbb{Z}) \simeq H_*(S^3,\mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{if } *=0 \text{ or } 3\\ 0 & \text{if } *=1 \text{ or } 2 \end{cases}$$

resp.

$$H_*(M^3, \mathbb{Q}) = H_*(M^3, \mathbb{Z}) \otimes \mathbb{Q} \simeq H_*(S^3, \mathbb{Q}) = \begin{cases} \mathbb{Q} & \text{if } * = 0 \text{ or } 3\\ 0 & \text{if } * = 1 \text{ or } 2 \end{cases}$$

イロト 不得 とうほう イヨン

Proposition 1. M^3 is an integer homology sphere if and only, if $\pi_1(M^3) = [\pi_1(M^3), \pi_1(M^3)]$.

1) If M^3 is an integer holomogy sphere the

$$H_1(M^3,\mathbb{Z}) = 0 \Longrightarrow \pi_1(M^3) = [\pi_1(M^3), \pi_1(M^3)]$$

2) Conversely, if we suppose that $\pi_1(M^3) = [\pi_1(M^3), \pi_1(M^3)]$ we see that $H_1(M^3, \mathbb{Z}) = 0$. Thus, as the abelian group $H_2(M^3, \mathbb{Z})$ is free, then by Poincaré duality we obtain :

$$H_2(M^3,\mathbb{Z})\simeq H_1(M^3,\mathbb{Z})=0$$

Consequently, the manifold M^3 is an integer homology sphere.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆○◆

Proposition 1.

 M^3 is an integer homology sphere if and only, if $\pi_1(M^3) = [\pi_1(M^3), \pi_1(M^3)]$.

Proof

1) If M^3 is an integer holomogy sphere then

$$H_1(M^3,\mathbb{Z})=0 \Longrightarrow \pi_1(M^3)=[\pi_1(M^3),\pi_1(M^3)]$$

2) Conversely, if we suppose that $\pi_1(M^3) = [\pi_1(M^3), \pi_1(M^3)]$ we see that $H_1(M^3, \mathbb{Z}) = 0$. Thus, as the abelian group $H_2(M^3, \mathbb{Z})$ is free, then by Poincaré duality we obtain :

 $H_2(M^3,\mathbb{Z}) \simeq H_1(M^3,\mathbb{Z}) = 0$

Consequently, the manifold M^3 is an integer homology sphere.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆○◆

Proposition 1.

 M^3 is an integer homology sphere if and only, if $\pi_1(M^3) = [\pi_1(M^3), \pi_1(M^3)]$.

Proof

1) If M^3 is an integer holomogy sphere then

$$H_1(M^3,\mathbb{Z})=0 \Longrightarrow \pi_1(M^3)=[\pi_1(M^3),\pi_1(M^3)]$$

2) Conversely, if we suppose that $\pi_1(M^3) = [\pi_1(M^3), \pi_1(M^3)]$ we see that $H_1(M^3, \mathbb{Z}) = 0$. Thus, as the abelian group $H_2(M^3, \mathbb{Z})$ is free, then by Poincaré duality we obtain :

$$H_2(M^3,\mathbb{Z}) \simeq H_1(M^3,\mathbb{Z}) = 0$$

Consequently, the manifold M^3 is an integer homology sphere.

Proposition 2.

M^3 is a rational homology sphere if and only, if $\frac{\pi_1(M^3)}{[\pi_1(M^3), \pi_1(M^3)]}$ is finite.

Proof

1) $H_1(M^3, \mathbb{Q}) = 0 \Longrightarrow H_1(M^3, \mathbb{Z})$ is finite : evident. 2) Conversely, if $H_1(M, \mathbb{Z})$ is a finite torsion abelian group, then its first Bet number $b_1(M^3) = 0$ (rank). Thus, by Poincaré duality $b_2(M^3) = b_{3-2}(M^3) = 0$ Consequently, as $H_2(M^3, \mathbb{Z}) = 0$ (is free abelian) then M^3 is a rational homology sphere.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Proposition 2.

 M^3 is a rational homology sphere if and only, if $\frac{\pi_1(M^3)}{[\pi_1(M^3), \pi_1(M^3)]}$ is finite.

Proof 1) $H_1(M^3, \mathbb{Q}) = 0 \Longrightarrow H_1(M^3, \mathbb{Z})$ is finite : evident.

2) Conversely, if $H_1(M, \mathbb{Z})$ is a finite torsion abelian group, then its first Betti number $b_1(M^3) = 0$ (rank). Thus, by Poincaré duality $b_2(M^3) = b_{3-2}(M^3) = 0$. Consequently, as $H_2(M^3, \mathbb{Z}) = 0$ (is free abelian) then M^3 is a rational homology sphere.

Proposition 2.

 M^3 is a rational homology sphere if and only, if $\frac{\pi_1(M^3)}{[\pi_1(M^3), \pi_1(M^3)]}$ is finite.

Proof

1) $H_1(M^3, \mathbb{Q}) = 0 \Longrightarrow H_1(M^3, \mathbb{Z})$ is finite : evident. 2) Conversely, if $H_1(M, \mathbb{Z})$ is a finite torsion abelian group, then its first Betti number $b_1(M^3) = 0$ (rank). Thus, by Poincaré duality $b_2(M^3) = b_{3-2}(M^3) = 0$. Consequently, as $H_2(M^3, \mathbb{Z}) = 0$ (is free abelian) then M^3 is a rational homology sphere.

In the rest of this part, we apply three deferent method to construct 3-homology spheres manifods :

Method 1 : group action

We consider a discrete group *G* who verify the properties :

- **1.** *G* acts freely and properly on a simply connected, without boundary and oriented 3-manifolds \widetilde{M}^3 .
- **2.** *G*/[*G*,*G*] is finite.
- 3. $M^3 = \widetilde{M}^3/G$ is a rational homology sphere.

Method 2 : Heegaard splitting. Method 3 : Dhen surgery on knots and links.

In the rest of this part, we apply three deferent method to construct 3-homology spheres manifods :

Method 1 : group action

We consider a discrete group *G* who verify the properties :

- **1.** *G* acts freely and properly on a simply connected, without boundary and oriented 3-manifolds \widetilde{M}^3 .
- **2.** *G*/[*G*,*G*] is finite.
- 3. $M^3 = \widetilde{M}^3/G$ is a rational homology sphere.

Method 2 : Heegaard splitting.

Method 3 : Dhen surgery on knots and links.

In the rest of this part, we apply three deferent method to construct 3-homology spheres manifods :

Method 1 : group action

We consider a discrete group *G* who verify the properties :

- **1.** *G* acts freely and properly on a simply connected, without boundary and oriented 3-manifolds \widetilde{M}^3 .
- **2.** *G*/[*G*,*G*] is finite.
- 3. $M^3 = \widetilde{M}^3/G$ is a rational homology sphere.

Method 2 : Heegaard splitting.

Method 3 : Dhen surgery on knots and links.

III. Seifert fibred 3-manifolds

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆○◆

II.1 Poincaré homology sphere *S*³/*G***.**

- **1**. A_5 is non abelian simple group, then its derived group $[A_5, A_5] = A_5$.
- **2.** A_5 can be realized as a subgroup of the Lie group *SO*(3).
- **3.** *A*₅ is the rotational symmetry group of the regular dodecahedron (see figure).

III. Seifert fibred 3-manifolds

II.1 Poincaré homology sphere *S*³/*G***.**

- **1.** A_5 is non abelian simple group, then its derived group $[A_5, A_5] = A_5$.
- **2.** A_5 can be realized as a subgroup of the Lie group SO(3).
- **3.** *A*₅ is the rotational symmetry group of the regular dodecahedron (see figure).

III. Seifert fibred 3-manifolds

II.1 Poincaré homology sphere *S*³/*G***.**

- **1.** A_5 is non abelian simple group, then its derived group $[A_5, A_5] = A_5$.
- **2.** A_5 can be realized as a subgroup of the Lie group SO(3).
- 3. *A*₅ is the rotational symmetry group of the regular dodecahedron (see figure).

III. Seifert fibred 3-manifolds

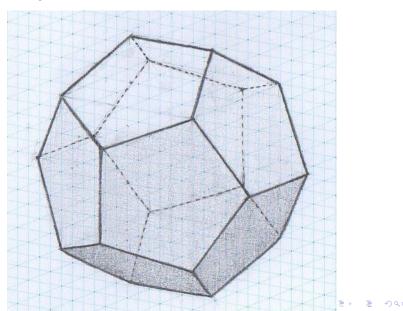
II.1 Poincaré homology sphere *S*³/*G*.

- **1.** A_5 is non abelian simple group, then its derived group $[A_5, A_5] = A_5$.
- **2.** A_5 can be realized as a subgroup of the Lie group SO(3).
- **3.** *A*₅ is the rotational symmetry group of the regular dodecahedron (see figure).

II Classical constructions of homology spheres

III. Seifert fibred 3-manifolds

Figure: Dodecahedron in the closed unite euclidian boule $\overline{\mathbb{B}^3}$



To construct a finite group which acts on the 3-sphere S^3 , then we consider the simply connected covering Spin(3) $\simeq US(2) \simeq S^3$ of the Lie group SO(3):

$$0 \to \mathbb{Z}_2 \longrightarrow \operatorname{Spin}(3) \stackrel{p}{\longrightarrow} SO(3) \to 1$$

And, by the pullback via the projection p we obtain a subgroup, $G \subset$ Spin(3), knowing by binary isocahedron group of order 120 :

$$0 \to \mathbb{Z}_2 \longrightarrow G \xrightarrow{p} A_5 \to 1$$

The binary isocahedron group *G* admits the following algebraic and geometric properties :

- **1.** finite presentation $G = \langle a, b | a^3 = b^5 = (ab)^2 \rangle$.
- **2.** the derived group [G,G] = G.
- **3.** *G* acts freely on the 3-sphere *S*³, and whose fundamental domain coincides with the dodecahedron.
- 4. In fact, the 3-sphere is an union of 120 dodecahedron.

Theorem (H. Poincaré 1904)

To construct a finite group which acts on the 3-sphere S^3 , then we consider the simply connected covering Spin(3) $\simeq US(2) \simeq S^3$ of the Lie group SO(3):

$$0 \to \mathbb{Z}_2 \longrightarrow \operatorname{Spin}(3) \stackrel{p}{\longrightarrow} SO(3) \to 1$$

And, by the pullback via the projection p we obtain a subgroup, $G \subset$ Spin(3), knowing by binary isocahedron group of order 120 :

$$0 \to \mathbb{Z}_2 \longrightarrow G \xrightarrow{p} A_5 \to 1$$

The binary isocahedron group *G* admits the following algebraic and geometric properties :

- **1.** finite presentation $G = \langle a, b | a^3 = b^5 = (ab)^2 \rangle$.
- **2.** the derived group [G,G] = G.
- **3.** *G* acts freely on the 3-sphere *S*³, and whose fundamental domain coincides with the dodecahedron.
- 4. In fact, the 3-sphere is an union of 120 dodecahedron.

Theorem (H. Poincaré 1904)

To construct a finite group which acts on the 3-sphere S^3 , then we consider the simply connected covering Spin(3) $\simeq US(2) \simeq S^3$ of the Lie group SO(3):

$$0 \to \mathbb{Z}_2 \longrightarrow \operatorname{Spin}(3) \stackrel{p}{\longrightarrow} SO(3) \to 1$$

And, by the pullback via the projection p we obtain a subgroup, $G \subset$ Spin(3), knowing by binary isocahedron group of order 120 :

$$0 \to \mathbb{Z}_2 \longrightarrow G \xrightarrow{p} A_5 \to 1$$

The binary isocahedron group *G* admits the following algebraic and geometric properties :

- **1.** finite presentation $G = \langle a, b | a^3 = b^5 = (ab)^2 \rangle$.
- **2.** the derived group [G,G] = G.
- **3.** *G* acts freely on the 3-sphere *S*³, and whose fundamental domain coincides with the dodecahedron.
- 4. In fact, the 3-sphere is an union of 120 dodecahedron.

Theorem (H. Poincaré 1904)

To construct a finite group which acts on the 3-sphere S^3 , then we consider the simply connected covering Spin(3) $\simeq US(2) \simeq S^3$ of the Lie group SO(3):

$$0 \to \mathbb{Z}_2 \longrightarrow \operatorname{Spin}(3) \stackrel{p}{\longrightarrow} SO(3) \to 1$$

And, by the pullback via the projection p we obtain a subgroup, $G \subset$ Spin(3), knowing by binary isocahedron group of order 120 :

$$0 \to \mathbb{Z}_2 \longrightarrow G \xrightarrow{p} A_5 \to 1$$

The binary isocahedron group *G* admits the following algebraic and geometric properties :

- **1.** finite presentation $G = \langle a, b | a^3 = b^5 = (ab)^2 \rangle$.
- **2.** the derived group [G,G] = G.
- **3.** *G* acts freely on the 3-sphere *S*³, and whose fundamental domain coincides with the dodecahedron.
- **4.** In fact, the 3-sphere is an union of 120 dodecahedron.

Theorem (H. Poincaré 1904)

To construct a finite group which acts on the 3-sphere S^3 , then we consider the simply connected covering Spin(3) $\simeq US(2) \simeq S^3$ of the Lie group SO(3):

$$0 \to \mathbb{Z}_2 \longrightarrow \operatorname{Spin}(3) \stackrel{p}{\longrightarrow} SO(3) \to 1$$

And, by the pullback via the projection p we obtain a subgroup, $G \subset$ Spin(3), knowing by binary isocahedron group of order 120 :

$$0 \to \mathbb{Z}_2 \longrightarrow G \xrightarrow{p} A_5 \to 1$$

The binary isocahedron group *G* admits the following algebraic and geometric properties :

- **1.** finite presentation $G = \langle a, b | a^3 = b^5 = (ab)^2 \rangle$.
- **2.** the derived group [G,G] = G.
- **3.** *G* acts freely on the 3-sphere *S*³, and whose fundamental domain coincides with the dodecahedron.
- 4. In fact, the 3-sphere is an union of 120 dodecahedron.

Theorem (H. Poincaré 1904)

To construct a finite group which acts on the 3-sphere S^3 , then we consider the simply connected covering Spin(3) $\simeq US(2) \simeq S^3$ of the Lie group SO(3):

$$0 \to \mathbb{Z}_2 \longrightarrow \operatorname{Spin}(3) \stackrel{p}{\longrightarrow} SO(3) \to 1$$

And, by the pullback via the projection p we obtain a subgroup, $G \subset$ Spin(3), knowing by binary isocahedron group of order 120 :

$$0 \to \mathbb{Z}_2 \longrightarrow G \xrightarrow{p} A_5 \to 1$$

The binary isocahedron group *G* admits the following algebraic and geometric properties :

- **1.** finite presentation $G = \langle a, b | a^3 = b^5 = (ab)^2 \rangle$.
- **2.** the derived group [G,G] = G.
- **3.** *G* acts freely on the 3-sphere *S*³, and whose fundamental domain coincides with the dodecahedron.
- 4. In fact, the 3-sphere is an union of 120 dodecahedron.

Theorem (H. Poincaré 1904)

III. Seifert fibred 3-manifolds

II.2 Weber-Seifert homology spheres \mathbb{H}^3/G **.**

The euclidian open boule $\mathbb{B}^3 = \{(x, y, z) \in \mathbb{R}^3; x^2 + y^2 + z^2 < 1\}$ will be endowed by the riemannian metric

$$ds^{2} = 4\frac{dx^{2} + dy^{2} + dz^{2}}{(1 - x^{2} - y^{2} - z^{2})^{2}}$$

- The geodesics of (\mathbb{B}^3, hyp) are the diameters of \mathbb{B}^3 and half-circles which are orthogonal to the boundary $\partial \mathbb{B}^3 = S^2$.
- The isometry group of (𝔅³, *hyp*) is isomorphic to Lie group *PSL*(2, 𝔅) := *SL*(2, 𝔅)/{−*I*, *I*} (noncompact).
- The sectional curvature of $(\mathbb{B}^3, hyp), K = -1$.

Then, in the hyperbolic (\mathbb{B}^3, ds^2) we consider the hyperbolic dodecahedron P_h whose faces are totaly geodesic in \mathbb{B}_3 (see the figure) :

III. Seifert fibred 3-manifolds

II.2 Weber-Seifert homology spheres \mathbb{H}^3/G **.**

The euclidian open boule $\mathbb{B}^3 = \{(x, y, z) \in \mathbb{R}^3; x^2 + y^2 + z^2 < 1\}$ will be endowed by the riemannian metric

$$ds^{2} = 4\frac{dx^{2} + dy^{2} + dz^{2}}{(1 - x^{2} - y^{2} - z^{2})^{2}}$$

- The geodesics of (\mathbb{B}^3, hyp) are the diameters of \mathbb{B}^3 and half-circles which are orthogonal to the boundary $\partial \mathbb{B}^3 = S^2$.
- The isometry group of (\mathbb{B}^3, hyp) is isomorphic to Lie group $PSL(2, \mathbb{C}) := SL(2, \mathbb{C})/\{-I, I\}$ (noncompact).
- The sectional curvature of $(\mathbb{B}^3, hyp), K = -1$.

Then, in the hyperbolic (\mathbb{B}^3 , ds^2) we consider the hyperbolic dodecahedron P_h whose faces are totaly geodesic in \mathbb{B}_3 (see the figure) :

III. Seifert fibred 3-manifolds

II.2 Weber-Seifert homology spheres \mathbb{H}^3/G **.**

The euclidian open boule $\mathbb{B}^3 = \{(x, y, z) \in \mathbb{R}^3; x^2 + y^2 + z^2 < 1\}$ will be endowed by the riemannian metric

$$ds^{2} = 4\frac{dx^{2} + dy^{2} + dz^{2}}{(1 - x^{2} - y^{2} - z^{2})^{2}}$$

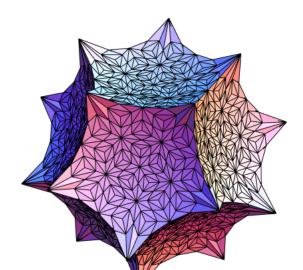
- The geodesics of (\mathbb{B}^3, hyp) are the diameters of \mathbb{B}^3 and half-circles which are orthogonal to the boundary $\partial \mathbb{B}^3 = S^2$.
- The isometry group of (\mathbb{B}^3, hyp) is isomorphic to Lie group $PSL(2, \mathbb{C}) := SL(2, \mathbb{C})/\{-I, I\}$ (noncompact).
- The sectional curvature of (\mathbb{B}^3, hyp) , K = -1.

Then, in the hyperbolic (\mathbb{B}^3, ds^2) we consider the hyperbolic dodecahedron P_h whose faces are totaly geodesic in \mathbb{B}_3 (see the figure) :

II Classical constructions of homology spheres

III. Seifert fibred 3-manifolds

Figure: Hyperbolic dodecahedron in the hyperbolic boule (\mathbb{B}^3 , *hyp*)



 $\mathcal{O} \land \mathcal{O}$

Now, the hyperbolic polyhedron P_h can be see as a fundamental domain of the discrete group $G \subset PSL(2, \mathbb{C})$ generated by hyperbolic inversions along the faces of P_h . It is showed that :

1. the group $G \subset PSL(2, \mathbb{C})$ is infinite.

2.
$$G = \langle x_1, x_2, x_3, x_4, x_5, y | x_1 x_2 x_3 x_4 x_5 = 1, x_i^{-1} x_{i+1} x_{i+3} x_{i+4}^{-1} = y; i \mod 5 \rangle$$

3. the quotient $G/[G,G] \simeq (\mathbb{Z}/5\mathbb{Z})^3$.

Theorem (Weber-Seifert 1933)

 $M^3 = \mathbb{B}^3/G$ is an rational homology sphere which can be obtained by identification of opposite faces of the hyperbolic dodecahedron after a rotation of $3\pi/5$.

I. Homology Spheres : definition and first properties $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

II Classical constructions of homology spheres

III. Seifert fibred 3-manifolds

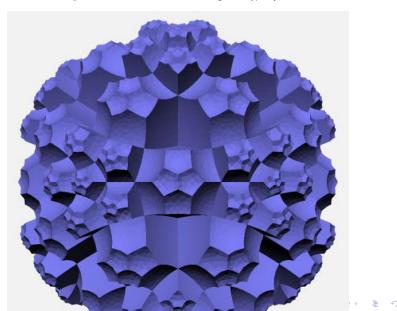
Figure: First iteration of tilling (\mathbb{B}^3 , *hyp*) by P_h

I. Homology Spheres : definition and first properties $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

II Classical constructions of homology spheres

III. Seifert fibred 3-manifolds

Figure: Seconde iteration of tilling (\mathbb{B}^3 , *hyp*) by P_h



I. Homology Spheres : definition and first properties

II Classical constructions of homology spheres

III. Seifert fibred 3-manifolds

II.3 Heegaard splitting.

Definition : handlebodie

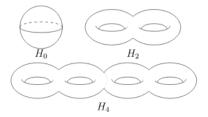
We call handlebodie of genus $g \ge 0$ any 3-manifold, $H_{g'}^3$, which is homeomorphic to the tubular neighbored of a wedge of *g*-circles :

$$\underbrace{S^1 \vee \cdots \vee S^1}_{g-times} \quad \text{when} \quad g = 0, \quad \underbrace{S^1 \vee \cdots \vee S^1}_{0-times} = \emptyset$$

Note that the boundary $\partial H_g^3 = \Sigma_g^2$ is a closed surface of genus *g*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Figure: Examples de handelbodies



▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

Definition : gluing two handlebodies

Let *U* and *V* are two handlebodies of same genus $g \ge 0$, and let $f : \partial V \rightarrow \partial U$ be a homeomorphism which reverse the orientation. Then,

$$M_f^3 = \frac{U \bigsqcup V}{x \in \partial V, x \sim f(x) \in \partial U}$$

is a closed 3-manifolds, which called obtained by gluing two handlebodies of same genus *g*.

III. Seifert fibred 3-manifolds

Note that the closed 3-manifold M_f^3 contains two open 3-manifolds homeomorphic to handlebodies $U' \simeq H_g^3$ and $V' \simeq H_g^3$, and such that $U' \cap V' \simeq \Sigma_g^2 \times]-1,1[$. Consequently, by Mayer-Vietoris we can calculate the homology of M_f^3 :

Theorem (Mayer-Vietoris)

Let *U* and *V* be handlebodies of genus $g \ge 0$ and let $f : \partial V \rightarrow \partial U$ be a homeomorphism which reverse orientation. Then the following sequence is exact :

$$0 \longrightarrow H_2(M_f) \xrightarrow{\delta} H_1(\partial V) \xrightarrow{\Delta_f} H_1(V) \oplus H_1(U) \xrightarrow{j_*} H_1(M_f) \longrightarrow 0$$

where $\Delta_f(z) = (in_V(z), in_U(f_*(z)))$ and $j_*(a, b) = In_V^M(a) - In_U^M(b)$.

Corollary

- **1.** $H_2(M_f) = \text{Ker}(\Delta_f)$ and $H_1(M_f) = \text{coker}(\Delta_f)$.
- **2.** M_f is a rational homology sphere if and only if Δ_f is injective.
- **3.** M_f is an integer homology sphere if and only if Δ_f is bijective.

Note that the closed 3-manifold M_f^3 contains two open 3-manifolds homeomorphic to handlebodies $U' \simeq H_g^3$ and $V' \simeq H_g^3$, and such that $U' \cap V' \simeq \Sigma_g^2 \times]-1,1[$. Consequently, by Mayer-Vietoris we can calculate the homology of M_f^3 :

Theorem (Mayer-Vietoris)

Let *U* and *V* be handlebodies of genus $g \ge 0$ and let $f : \partial V \to \partial U$ be a homeomorphism which reverse orientation. Then the following sequence is exact :

$$0 \longrightarrow H_2(M_f) \xrightarrow{\delta} H_1(\partial V) \xrightarrow{\Delta_f} H_1(V) \oplus H_1(U) \xrightarrow{j_*} H_1(M_f) \longrightarrow 0$$

where $\Delta_f(z) = (in_V(z), in_U(f_*(z)))$ and $j_*(a, b) = In_V^M(a) - In_U^M(b)$.

Corollary

- **1.** $H_2(M_f) = \text{Ker}(\Delta_f)$ and $H_1(M_f) = \text{coker}(\Delta_f)$.
- **2.** M_f is a rational homology sphere if and only if Δ_f is injective.
- **3.** M_f is an integer homology sphere if and only if Δ_f is bijective.

Note that the closed 3-manifold M_f^3 contains two open 3-manifolds homeomorphic to handlebodies $U' \simeq H_g^3$ and $V' \simeq H_g^3$, and such that $U' \cap V' \simeq \Sigma_g^2 \times]-1,1[$. Consequently, by Mayer-Vietoris we can calculate the homology of M_f^3 :

Theorem (Mayer-Vietoris)

Let *U* and *V* be handlebodies of genus $g \ge 0$ and let $f : \partial V \to \partial U$ be a homeomorphism which reverse orientation. Then the following sequence is exact :

$$0 \longrightarrow H_2(M_f) \xrightarrow{\delta} H_1(\partial V) \xrightarrow{\Delta_f} H_1(V) \oplus H_1(U) \xrightarrow{j_*} H_1(M_f) \longrightarrow 0$$

where $\Delta_f(z) = (in_V(z), in_U(f_*(z)))$ and $j_*(a, b) = In_V^M(a) - In_U^M(b)$.

Corollary

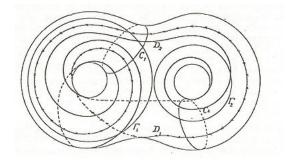
- **1.** $H_2(M_f) = \text{Ker}(\Delta_f)$ and $H_1(M_f) = \text{coker}(\Delta_f)$.
- **2.** M_f is a rational homology sphere if and only if Δ_f is injective.
- **3.** M_f is an integer homology sphere if and only if Δ_f is bijective.

I. Homology Spheres : definition and first properties

II Classical constructions of homology spheres

The following diagram give us the attaching system of curves α and $\beta \subset \Sigma_2^2 = \partial U \simeq \partial H_2^3$ considered by Poincaré for to construct his dodecahedral 3-homology integer sphere. The two curves α and $\beta \subset \Sigma_2^2 = \partial U \simeq \partial H_2^3$ are obtained by the attached map $f : \partial V \to \partial U$ from two meridional curves considered on the handlebody ∂V .

Figure: Identification scheme of Dehn and Heegaard (1907)

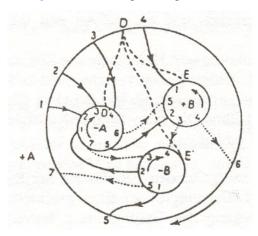


I. Homology Spheres : definition and first properties $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

II Classical constructions of homology spheres

This planar diagram is obtained from the precedent figure by cutting the surface $\Sigma_2^2 = \partial U$ it along the meridional curves C_1 and C_2 .

Figure: Poincaré-Heegaard diagram (1904)



III. Seifert fibred 3-manifolds

II.4 Dehn surgery on links

Let M^3 be a homology sphere. A Dehn's surgery along a knot $K \subset M^3$ is any operation that remove a tubular neighbored $N(K) \subset M^3$ and sew it by the mean of a torus homeomorphism

 $f: \partial(E(K) = M^3 \setminus \operatorname{Int}(N(K))) \longrightarrow \partial(D^2 \times S^1)$

Concretely, on the boundary $\partial E(K) = \mathbb{T}^2$ we choose two simple closed curves :

1. longitude : λ is parallel to *K* defined from a Seifert surface in *M* ;

2. meridain : μ is definied by the linking number $lk(\mu, K) = +1$. Now, the pair (λ, μ) realize a base in the group $H_1(\partial E(K)) = [\mu]\mathbb{Z} \oplus [\lambda]\mathbb{Z}$. Consequently, any reducible rational number $\frac{m}{l} \in \mathbb{Q} \cup \{\frac{1}{0}\}$ such that (m, l) = 1allow us to define a unique closed curve $\alpha \sim m\mu + l\lambda$ on the boundary $\partial E(K)$ that we sew to the meridian of a standard solid torus $D^2 \times S^1$.

III. Seifert fibred 3-manifolds

II.4 Dehn surgery on links

Let M^3 be a homology sphere. A Dehn's surgery along a knot $K \subset M^3$ is any operation that remove a tubular neighbored $N(K) \subset M^3$ and sew it by the mean of a torus homeomorphism

 $f: \partial(E(K) = M^3 \setminus \operatorname{Int}(N(K))) \longrightarrow \partial(D^2 \times S^1)$

Concretely, on the boundary $\partial E(K) = \mathbb{T}^2$ we choose two simple closed curves :

1. longitude : λ is parallel to *K* defined from a Seifert surface in *M* ;

2. meridain : μ is definied by the linking number $lk(\mu, K) = +1$.

Now, the pair (λ, μ) realize a base in the group $H_1(\partial E(K)) = [\mu]\mathbb{Z} \oplus [\lambda]\mathbb{Z}$. Consequently, any reducible rational number $\frac{m}{l} \in \mathbb{Q} \cup \{\frac{1}{0}\}$ such that (m, l) = 1allow us to define a unique closed curve $\alpha \sim m\mu + l\lambda$ on the boundary $\partial E(K)$ that we sew to the meridian of a standard solid torus $D^2 \times S^1$.

II.4 Dehn surgery on links

Let M^3 be a homology sphere. A Dehn's surgery along a knot $K \subset M^3$ is any operation that remove a tubular neighbored $N(K) \subset M^3$ and sew it by the mean of a torus homeomorphism

$$f: \partial(E(K) = M^3 \setminus \operatorname{Int}(N(K))) \longrightarrow \partial(D^2 \times S^1)$$

Concretely, on the boundary $\partial E(K) = \mathbb{T}^2$ we choose two simple closed curves :

1. longitude : λ is parallel to *K* defined from a Seifert surface in *M* ;

2. meridain : μ is defined by the linking number $lk(\mu, K) = +1$. Now, the pair (λ, μ) realize a base in the group $H_1(\partial E(K)) = [\mu]\mathbb{Z} \oplus [\lambda]\mathbb{Z}$. Consequently, any reducible rational number $\frac{m}{l} \in \mathbb{Q} \cup \{\frac{1}{0}\}$ such that (m, l) = 1 allow us to define a unique closed curve $\alpha \sim m\mu + l\lambda$ on the boundary $\partial E(K)$ that we sew to the meridian of a standard solid torus $D^2 \times S^1$.

Definition

The resulting 3-manifold is closed and denoted by,

$$M^{3}(K; \frac{m}{l}) := M^{3} \setminus \operatorname{Int}(N(K)) \bigcup_{f} D^{2} \times S^{1}$$

where $f : \partial(M^3 \setminus \text{Int}(N(K))) \to \partial(D^2 \times S^1)$ generated (in isotopy) by the closed curve $\alpha \sim m\mu + l\lambda$.

Actually, by Van-Kampen we are able to calculate the fundamental group of $M^3(K; \frac{m}{r})$. And, by Mayer-Vietoris theorem we calculate its homolgy :

Proposition (Mayer-Vietoris)

$$H_1(M^3(K; \frac{m}{l})) = \mathbb{Z}_{|m|}$$
 and $H_2(M(K; \frac{m}{l})) = \{0\}.$

Consequently, $M^3(K; \frac{m}{L})$ is an integer homology sphere if and only if |m| = 1.

Theorem (Dehn 1910)

The 3-manifold $S^3(K, 1)$ which is obtained by surgery along the hand-right trefoil knot $K_{2,3} \subset S^3$ (see the figure) is homeomorphic to the Poincaré homology sphere.

Definition

The resulting 3-manifold is closed and denoted by,

$$M^{3}(K; \frac{m}{l}) := M^{3} \setminus \operatorname{Int}(N(K)) \bigcup_{f} D^{2} \times S^{1}$$

where $f : \partial(M^3 \setminus \text{Int}(N(K))) \to \partial(D^2 \times S^1)$ generated (in isotopy) by the closed curve $\alpha \sim m\mu + l\lambda$.

Actually, by Van-Kampen we are able to calculate the fundamental group of $M^3(K; \frac{m}{l})$. And, by Mayer-Vietoris theorem we calculate its homolgy :

Proposition (Mayer-Vietoris) $H_1(M^3(K; \frac{m}{l})) = \mathbb{Z}_{|m|}$ and $H_2(M(K; \frac{m}{l})) = \{0\}$. Consequently, $M^3(K; \frac{m}{l})$ is an integer homology sphere if and only if |m| = 1.

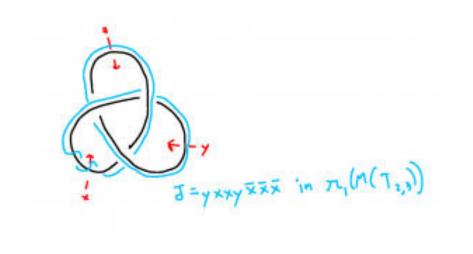
Theorem (Dehn 1910)

The 3-manifold $S^3(K,1)$ which is obtained by surgery along the hand-right trefoil knot $K_{2,3} \subset S^3$ (see the figure) is homeomorphic to the Poincaré homology sphere.

II Classical constructions of homology spheres ○○○○○○○○○○○○○●

III. Seifert fibred 3-manifolds

Figure: Dehn surgery on the hand-right trefoil knot (1910)



◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへの

III.1 Definition and examples

Definition

Let M^3 be an oriented 3-manifold. We say that M^3 is a Seifert manifold if it supports a locally free action of the circle S^1 (as Lie group). In this cas, the canonical map $M^3 \rightarrow B^2 := M^3/S^1$ will be called a **Generalized Seifert Fibration**.

In a Seifert 3-manifold the orbit of each point $x \in M^3$ is homeomorphic to a circle $L_x := S^1/S_x^1$ where $S_x^1 = \mathbb{Z}_p \subset S^1$ is a finite isotropy subgroup. Then we have two type of orbits :

- **1.** If $S_x^1 = \{1\}$ (is trivial) we say that the orbit L_x is a regular fiber.
- **2.** If $S_x^1 = \mathbb{Z}_p \neq \{1\}$, (is nontrivial) we say that the orbit L_x is a singular or an exceptional fiber.
- 3. The orbit space $B^2 := M^3 / \mathbb{S}^1$ is homeomorphic to a topological 2-surface.

Note that every 3-manifold which is a **S**¹-principal fibre is an example of generalized Seifert fibration.

III.1 Definition and examples

Definition

Let M^3 be an oriented 3-manifold. We say that M^3 is a Seifert manifold if it supports a locally free action of the circle S^1 (as Lie group). In this cas, the canonical map $M^3 \rightarrow B^2 := M^3/S^1$ will be called a **Generalized Seifert Fibration**.

In a Seifert 3-manifold the orbit of each point $x \in M^3$ is homeomorphic to a circle $L_x := \$^1/\1_x where $\$^1_x = \mathbb{Z}_p \subset \1 is a finite isotropy subgroup. Then we have two type of orbits :

- **1.** If $S_x^1 = \{1\}$ (is trivial) we say that the orbit L_x is a regular fiber.
- **2.** If $S_x^1 = \mathbb{Z}_p \neq \{1\}$, (is nontrivial) we say that the orbit L_x is a singular or an exceptional fiber.
- 3. The orbit space $B^2 := M^3 / \mathbb{S}^1$ is homeomorphic to a topological 2-surface.

Note that every 3-manifold which is a S¹-principal fibre is an example of generalized Seifert fibration.

III.1 Definition and examples

Definition

Let M^3 be an oriented 3-manifold. We say that M^3 is a Seifert manifold if it supports a locally free action of the circle S^1 (as Lie group). In this cas, the canonical map $M^3 \rightarrow B^2 := M^3/S^1$ will be called a **Generalized Seifert Fibration**.

In a Seifert 3-manifold the orbit of each point $x \in M^3$ is homeomorphic to a circle $L_x := \$^1/\1_x where $\$^1_x = \mathbb{Z}_p \subset \1 is a finite isotropy subgroup. Then we have two type of orbits :

- **1.** If $S_x^1 = \{1\}$ (is trivial) we say that the orbit L_x is a regular fiber.
- 2. If $S_x^1 = \mathbb{Z}_p \neq \{1\}$, (is nontrivial) we say that the orbit L_x is a singular or an exceptional fiber.
- **3.** The orbit space $B^2 := M^3 / \mathbb{S}^1$ is homeomorphic to a topological 2-surface.

Note that every 3-manifold which is a **\$**¹-principal fibre is an example of generalized Seifert fibration.

III.1 Definition and examples

Definition

Let M^3 be an oriented 3-manifold. We say that M^3 is a Seifert manifold if it supports a locally free action of the circle S^1 (as Lie group). In this cas, the canonical map $M^3 \rightarrow B^2 := M^3/S^1$ will be called a **Generalized Seifert Fibration**.

In a Seifert 3-manifold the orbit of each point $x \in M^3$ is homeomorphic to a circle $L_x := \$^1/\1_x where $\$^1_x = \mathbb{Z}_p \subset \1 is a finite isotropy subgroup. Then we have two type of orbits :

- **1.** If $\mathbb{S}^1_x = \{1\}$ (is trivial) we say that the orbit L_x is a regular fiber.
- 2. If $S_x^1 = \mathbb{Z}_p \neq \{1\}$, (is nontrivial) we say that the orbit L_x is a singular or an exceptional fiber.
- 3. The orbit space $B^2 := M^3 / \mathbb{S}^1$ is homeomorphic to a topological 2-surface.

Note that every 3-manifold which is a \$¹-principal fibre is an example of generalized Seifert fibration.

Example 1 : Hopf fibration

Let $\mathbb{S}^3 = \{(z_1, z_2) \in \mathbb{C}^2; |z_1|^2 + |z_2|^2 = 1\}$ be the 3-sphere, it is a Lie subgroup of the multiplicative Lie group $\mathbb{C}^2 \setminus \{(0, 0)\}$. The natural action of the circle $\mathbb{S}^1 = \{z \in \mathbb{C}; |z| = 1\}$ on $\mathbb{C}^2 \setminus \{(0, 0)\}$ give us a free action on \mathbb{S}^3 defined by :

$$\begin{array}{rcl} \theta & : & S^1 \times \mathbb{S}^3 & \to & \mathbb{S}^3 \\ & & & (z,(z_1,z_2)) & \mapsto & (zz_1,zz_2) \end{array}$$

Note that in the 3-sphere, $S^3 = \{(z_1, z_2) \in \mathbb{C}^2; |z_1|^2 + |z_2|^2 = 1\}$, the two circles $S^1 \times \{0\}$ and $\{0\} \times S^1$ are S^1 -orbits of (1,0) and (0,1) respectively. And, for any $z_1 \neq 0$ and $z_2 \neq 0$ the S^1 -orbit

$$\mathbb{S}^1 \cdot (z_1, z_2) = \{(zz_1, zz_2); z \in S^1\}$$

is a trivial knot which can be viewed as a closed curve on the torus (level surface)

$$\mathbb{I}^{2}_{(|z_{1}|,|z_{2}|)} = \{(u,v) \in S^{3}; |u| = |z_{1}| \text{ and } |v| = |z_{2}|\}$$

homologous to : **meridian** + **longetude** (see figure).

Consequently, the 3-sphere $S^3 = \{(z_1, z_2) \in \mathbb{C}^2; |z_1|^2 + |z_2|^2 = 1\}$ is a Seifert 3-manifolds without singular fibers, then its canonical projection $p: S^3 \rightarrow S^3/\mathbb{S}^1 = S^2$ is a locally trivial \mathbb{S}^1 -bundle.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Example 1 : Hopf fibration

Let $\mathbb{S}^3 = \{(z_1, z_2) \in \mathbb{C}^2; |z_1|^2 + |z_2|^2 = 1\}$ be the 3-sphere, it is a Lie subgroup of the multiplicative Lie group $\mathbb{C}^2 \setminus \{(0, 0)\}$. The natural action of the circle $\mathbb{S}^1 = \{z \in \mathbb{C}; |z| = 1\}$ on $\mathbb{C}^2 \setminus \{(0, 0)\}$ give us a free action on \mathbb{S}^3 defined by :

$$\begin{array}{rcl} \theta & : & S^1 \times \mathbb{S}^3 & \to & \mathbb{S}^3 \\ & & & (z,(z_1,z_2)) & \mapsto & (zz_1,zz_2) \end{array}$$

Note that in the 3-sphere, $S^3 = \{(z_1, z_2) \in \mathbb{C}^2; |z_1|^2 + |z_2|^2 = 1\}$, the two circles $S^1 \times \{0\}$ and $\{0\} \times S^1$ are S^1 -orbits of (1,0) and (0,1) respectively. And, for any $z_1 \neq 0$ and $z_2 \neq 0$ the S^1 -orbit

$$\mathbb{S}^1 \cdot (z_1, z_2) = \{(zz_1, zz_2); z \in S^1\}$$

is a trivial knot which can be viewed as a closed curve on the torus (level surface)

$$\mathbb{T}^2_{(|z_1|,|z_2|)} = \{(u,v) \in S^3; |u| = |z_1| \text{ and } |v| = |z_2|\}$$

homologous to : meridian + longetude (see figure).

Consequently, the 3-sphere $S^3 = \{(z_1, z_2) \in \mathbb{C}^2; |z_1|^2 + |z_2|^2 = 1\}$ is a Seifert 3-manifolds without singular fibers, then its canonical projection $p: S^3 \rightarrow S^3/\mathbb{S}^1 = S^2$ is a locally trivial \mathbb{S}^1 -bundle.

Example 1 : Hopf fibration

Let $\mathbb{S}^3 = \{(z_1, z_2) \in \mathbb{C}^2; |z_1|^2 + |z_2|^2 = 1\}$ be the 3-sphere, it is a Lie subgroup of the multiplicative Lie group $\mathbb{C}^2 \setminus \{(0, 0)\}$. The natural action of the circle $\mathbb{S}^1 = \{z \in \mathbb{C}; |z| = 1\}$ on $\mathbb{C}^2 \setminus \{(0, 0)\}$ give us a free action on \mathbb{S}^3 defined by :

$$\begin{array}{rcl} \theta & : & S^1 \times \mathbb{S}^3 & \to & \mathbb{S}^3 \\ & & & (z,(z_1,z_2)) & \mapsto & (zz_1,zz_2) \end{array}$$

Note that in the 3-sphere, $S^3 = \{(z_1, z_2) \in \mathbb{C}^2; |z_1|^2 + |z_2|^2 = 1\}$, the two circles $S^1 \times \{0\}$ and $\{0\} \times S^1$ are S^1 -orbits of (1, 0) and (0, 1) respectively. And, for any $z_1 \neq 0$ and $z_2 \neq 0$ the S^1 -orbit

$$\mathbb{S}^1 \cdot (z_1, z_2) = \{(zz_1, zz_2); z \in S^1\}$$

is a trivial knot which can be viewed as a closed curve on the torus (level surface)

$$\mathbb{T}^{2}_{(|z_{1}|,|z_{2}|)} = \{(u,v) \in S^{3}; |u| = |z_{1}| \text{ and } |v| = |z_{2}|\}$$

homologous to : meridian + longetude (see figure).

Consequently, the 3-sphere $S^3 = \{(z_1, z_2) \in \mathbb{C}^2; |z_1|^2 + |z_2|^2 = 1\}$ is a Seifert 3-manifolds without singular fibers, then its canonical projection $p: S^3 \to S^3/\mathbb{S}^1 = S^2$ is a locally trivial \mathbb{S}^1 -bundle.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

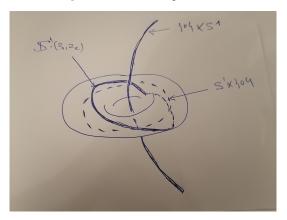
I. Homology Spheres : definition and first properties $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

II Classical constructions of homology spheres

III. Seifert fibred 3-manifolds

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Figure: Fibers of the Hopf fibration



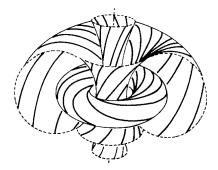
I. Homology Spheres : definition and first properties $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

II Classical constructions of homology spheres

III. Seifert fibred 3-manifolds

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Figure: Global illustration of the Hopf fibration



▲□▶▲□▶▲□▶▲□▶ □ ● ●

Example 2: The 3-sphere with one singular fibre.

For any integer $n \ge 2$ we define on the sphere $S^3 \subset \mathbb{C}^2$ an \mathbb{S}^1 -action by,

 $\forall z \in \mathbb{S}^1, \forall (z_1, z_2) \in S^2, \qquad z \cdot (z_1, z_2) = (zz_1, z^n z_2)$

For this S^1 -action on S^3 the orbit $O = S^1 \cdot (0, 1) = \{0\} \times S^1$ is a unique singular orbit with isotropy group \mathbb{Z}_n .

And, for any $z_1 \neq 0$ the orbit $S^1 \cdot (z_1, z_2)$ is a regular orbit which is homologous to : *n***meridian** + **longitude** regarding to the singular orbit {0} × S^1 . Consequently, the 3-sphere S^3 is a fibred Seifert manifold with one singular orbit. The orbit space is a 2-sphere admitting one singular point called : the water drop (see the figure)

◆□▶ ◆□▶ ◆□▶ ◆□▶ →□ ◆○ ◆○

Example 2: The 3-sphere with one singular fibre.

For any integer $n \ge 2$ we define on the sphere $S^3 \subset \mathbb{C}^2$ an \mathbb{S}^1 -action by,

$$\forall z \in \mathbb{S}^1, \forall (z_1, z_2) \in S^2, \qquad z \cdot (z_1, z_2) = (zz_1, z^n z_2)$$

For this S^1 -action on S^3 the orbit $O = S^1 \cdot (0, 1) = \{0\} \times S^1$ is a unique singular orbit with isotropy group \mathbb{Z}_n .

And, for any $z_1 \neq 0$ the orbit $\mathbb{S}^1 \cdot (z_1, z_2)$ is a regular orbit which is homologous to : *m*eridian + longitude regarding to the singular orbit {0} × S^1 . Consequently, the 3-sphere S^3 is a fibred Seifert manifold with one singular orbit. The orbit space is a 2-sphere admitting one singular point called : the water drop (see the figure).

◆□▶ ◆□▶ ◆□▶ ◆□▶ →□ ◆○ ◆○

Example 2: The 3-sphere with one singular fibre.

For any integer $n \ge 2$ we define on the sphere $S^3 \subset \mathbb{C}^2$ an \mathbb{S}^1 -action by,

$$\forall z \in \mathbb{S}^1, \forall (z_1, z_2) \in S^2, \qquad z \cdot (z_1, z_2) = (zz_1, z^n z_2)$$

For this S^1 -action on S^3 the orbit $O = S^1 \cdot (0, 1) = \{0\} \times S^1$ is a unique singular orbit with isotropy group \mathbb{Z}_n .

And, for any $z_1 \neq 0$ the orbit $\$^1 \cdot (z_1, z_2)$ is a regular orbit which is homologous to : *n***meridian** + **longitude** regarding to the singular orbit $\{0\} \times S^1$.

Consequently, the 3-sphere S^3 is a fibred Seifert manifold with one singular orbit. The orbit space is a 2-sphere admitting one singular point called : the water drop (see the figure).

Example 2: The 3-sphere with one singular fibre.

For any integer $n \ge 2$ we define on the sphere $S^3 \subset \mathbb{C}^2$ an \mathbb{S}^1 -action by,

$$\forall z \in \mathbb{S}^1, \forall (z_1, z_2) \in S^2, \qquad z \cdot (z_1, z_2) = (zz_1, z^n z_2)$$

For this S^1 -action on S^3 the orbit $O = S^1 \cdot (0, 1) = \{0\} \times S^1$ is a unique singular orbit with isotropy group \mathbb{Z}_n .

And, for any $z_1 \neq 0$ the orbit $S^1 \cdot (z_1, z_2)$ is a regular orbit which is homologous to : *n***meridian** + **longitude** regarding to the singular orbit $\{0\} \times S^1$.

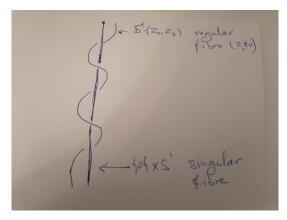
Consequently, the 3-sphere S^3 is a fibred Seifert manifold with one singular orbit. The orbit space is a 2-sphere admitting one singular point called : the water drop (see the figure).

I. Homology Spheres : definition and first properties $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

I Classical constructions of homology spheres

III. Seifert fibred 3-manifolds

Figure: The regular fibre wraps around the singular fibre

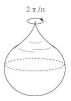


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

III. Seifert fibred 3-manifolds

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Figure: The orbit space : water drop



I. Homology Spheres : definition and first properties

II Classical constructions of homology spheres

III. Seifert fibred 3-manifolds

◆□▶ ◆□▶ ◆□▶ ◆□▶ →□ ◆○ ◆○

Example 3 : The 3-sphere with two singular fibre.

Let $(\alpha, \beta) = 1$ be co-prime integers. On the sphere $S^3 \subset \mathbb{C}^2$ consider the S^1 -action defined by,

$$\forall z \in \mathbb{S}^1, \forall (z_1, z_2) \in S^3, \qquad z \cdot (z_1, z_2) = (z^\alpha z_1, z^\beta z_2)$$

For this S^1 -action on S^3 we have only two singular orbits

- $O_1 = S^1 \times \{0\}$ with isotropy group \mathbb{Z}_{α}
- $O_2 = \{0\} \times S^1$ with isotropy group \mathbb{Z}_{β} .

Note that, as in the case of the Hopf fibration, a regular S^1 -orbit is a closed toric knot homologous to : α meridian + β longitude regarding to the singular orbit $S^1 \times \{0\}$ (see figure).

Consequently, the 3-sphere S^3 is a fibred Seifert manifold with tow singular orbits. The orbit space is a 2-sphere admitting two singular points (see the figure).

Example 3 : The 3-sphere with two singular fibre.

Let $(\alpha, \beta) = 1$ be co-prime integers. On the sphere $S^3 \subset \mathbb{C}^2$ consider the S^1 -action defined by,

$$\forall z \in \mathbb{S}^1, \forall (z_1, z_2) \in S^3, \qquad z \cdot (z_1, z_2) = (z^{\alpha} z_1, z^{\beta} z_2)$$

For this S^1 -action on S^3 we have only two singular orbits

- $O_1 = S^1 \times \{0\}$ with isotropy group \mathbb{Z}_{α} ,
- $O_2 = \{0\} \times S^1$ with isotropy group \mathbb{Z}_{β} .

Note that, as in the case of the Hopf fibration, a regular S^1 -orbit is a closed toric knot homologous to : α **meridian** + β **longitude** regarding to the singular orbit $S^1 \times \{0\}$ (see figure).

Consequently, the 3-sphere S^3 is a fibred Seifert manifold with tow singular orbits. The orbit space is a 2-sphere admitting two singular points (see the figure).

Example 3 : The 3-sphere with two singular fibre.

Let $(\alpha, \beta) = 1$ be co-prime integers. On the sphere $S^3 \subset \mathbb{C}^2$ consider the S^1 -action defined by,

$$\forall z \in \mathbb{S}^1, \forall (z_1, z_2) \in S^3, \qquad z \cdot (z_1, z_2) = (z^{\alpha} z_1, z^{\beta} z_2)$$

For this S^1 -action on S^3 we have only two singular orbits

- $O_1 = S^1 \times \{0\}$ with isotropy group \mathbb{Z}_{α} ,
- $O_2 = \{0\} \times S^1$ with isotropy group \mathbb{Z}_{β} .

Note that, as in the case of the Hopf fibration, a regular S^1 -orbit is a closed toric knot homologous to : α **meridian** + β **longitude** regarding to the singular orbit $S^1 \times \{0\}$ (see figure).

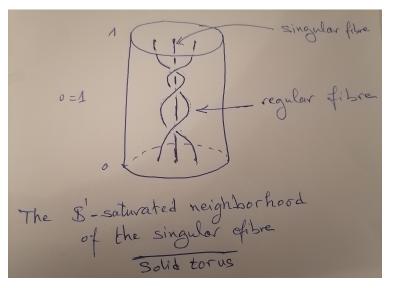
Consequently, the 3-sphere S^3 is a fibred Seifert manifold with tow singular orbits. The orbit space is a 2-sphere admitting two singular points (see the figure).

I. Homology Spheres : definition and first properties 000000

II Classical constructions of homology spheres

III. Seifert fibred 3-manifolds

Figure: Tubular neighborhood of a singular fibre



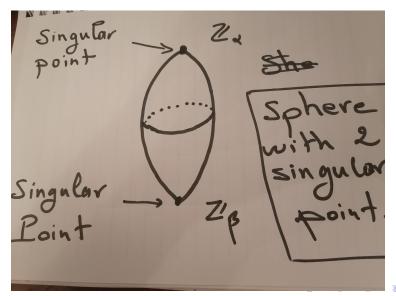
I. Homology Spheres : definition and first properties

II Classical constructions of homology spheres

III. Seifert fibred 3-manifolds

singular sphere

Figure: Sphere with two singular points



900

III.2 Topological characterization of Seifert 3-manifolds

Local structure of a fibred Seifert manifold (Slice theorem)

- 1. Each regular orbit L_x admits a saturated open neighborhood $V_x \simeq D^2 \times S^1$ endowed by the natural action $z \cdot (z_1, z_2) = (zz_1, zz_2)$. In this case the orbit space V_x/\mathbb{S}^1 is a smooth disc D^2 .
- **2.** For each singular orbit L_x there is a S^1 -saturated open neighborhood

$$V_x \simeq D^2 \times_{\mathbb{Z}_\beta} S^1 \simeq D^2 \times S^1$$

and a co-prime integers $(\alpha, \beta) = 1$ called coefficients of L_x , and such that the restriction of the \mathbb{S}^1 -action on V_x is given by the last example. In this, case the orbit space V_x/\mathbb{S}^1 is a topological disc with a conical at his center.

3. The local analytical expression of the canonical projection, $M^3 \rightarrow B := M^3/\mathbb{S}^1$, is given by the function

 $f(r\exp(i\theta), \exp(i\phi)) = r\exp(i[\alpha\theta + \beta\phi])$

where $r \in [0,1]$ and $\theta, \phi \in [0,2\pi]$. Then, for every real $r \in]0,1]$ the regular fibre :

$$f^{-1}(r\exp(i\theta)) = \{(r\exp(i\frac{\theta}{\alpha}) \cdot \exp(i\beta\phi), \exp(-i\alpha\phi)); \phi \in [0, 2\pi]\} \simeq S^1$$

III.2 Topological characterization of Seifert 3-manifolds

Local structure of a fibred Seifert manifold (Slice theorem)

- 1. Each regular orbit L_x admits a saturated open neighborhood $V_x \simeq D^2 \times S^1$ endowed by the natural action $z \cdot (z_1, z_2) = (zz_1, zz_2)$. In this case the orbit space V_x/\mathbb{S}^1 is a smooth disc D^2 .
- 2. For each singular orbit L_x there is a S^1 -saturated open neighborhood

$$V_x \simeq D^2 \times_{\mathbb{Z}_\beta} S^1 \simeq D^2 \times S^1$$

and a co-prime integers $(\alpha, \beta) = 1$ called coefficients of L_x , and such that the restriction of the \mathbb{S}^1 -action on V_x is given by the last example. In this, case the orbit space V_x/\mathbb{S}^1 is a topological disc with a conical at his center.

3. The local analytical expression of the canonical projection, $M^3 \rightarrow B := M^3/S^1$, is given by the function

 $f(r\exp(i\theta), \exp(i\phi)) = r\exp(i[\alpha\theta + \beta\phi])$

where $r \in [0,1]$ and $\theta, \phi \in [0,2\pi]$. Then, for every real $r \in]0,1]$ the regular fibre :

$$f^{-1}(r\exp(i\theta)) = \{(r\exp(i\frac{\theta}{\alpha}) \cdot \exp(i\beta\phi), \exp(-i\alpha\phi)); \phi \in [0, 2\pi]\} \simeq S^1$$

III.2 Topological characterization of Seifert 3-manifolds

Local structure of a fibred Seifert manifold (Slice theorem)

- 1. Each regular orbit L_x admits a saturated open neighborhood $V_x \simeq D^2 \times S^1$ endowed by the natural action $z \cdot (z_1, z_2) = (zz_1, zz_2)$. In this case the orbit space V_x/\mathbb{S}^1 is a smooth disc D^2 .
- 2. For each singular orbit L_x there is a S^1 -saturated open neighborhood

$$V_x \simeq D^2 \times_{\mathbb{Z}_\beta} S^1 \simeq D^2 \times S^1$$

and a co-prime integers $(\alpha, \beta) = 1$ called coefficients of L_x , and such that the restriction of the S¹-action on V_x is given by the last example. In this, case the orbit space V_x/S^1 is a topological disc with a conical at his center.

3. The local analytical expression of the canonical projection, $M^3 \rightarrow B := M^3/S^1$, is given by the function

$$f(r\exp(i\theta), \exp(i\phi)) = r\exp(i[\alpha\theta + \beta\phi])$$

where $r \in [0,1]$ and $\theta, \phi \in [0,2\pi]$. Then, for every real $r \in]0,1]$ the regular fibre :

$$f^{-1}(r\exp(i\theta)) = \{(r\exp(i\frac{\theta}{\alpha}) \cdot \exp(i\beta\phi), \exp(-i\alpha\phi)); \phi \in [0, 2\pi]\} \simeq S^1$$

I. Homology Spheres : definition and first properties

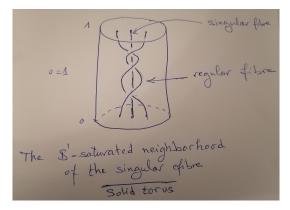
II Classical constructions of homology spheres

III. Seifert fibred 3-manifolds

▲□▶▲□▶▲□▶▲□▶ □ のQで

The figure shows us the topological model of a S¹-saturated tubular neighborhood around a singular orbit :

Figure: Tubular neighborhood of a singular fibre



Proposition

1) Let M^3 be a compact oriented Seifert fibred 3-manifold. Then, M^3 has only a finite set of singular fibres S_i^1 with coefficients (α_i, β_i). Moreover, if the

boundary $\partial M^3 \neq \emptyset$ then it is homeomorphic to a union of S^1 -saturated tori $T_i = S^1 \times S^1$.

2) We denote by $N_i(S_i^1; (\alpha_i, \beta_i))$ the \mathbb{S}^1 -saturated tubular neighborhood of S_i^1 . Then, the open manifold $M_0^3 = M^3 \setminus \bigcup_{i=1}^{i=n} N_i(S_i^1; (\alpha_i, \beta_i))$ is :

- 1. endowed by the structure of S^1 -principal fibre ;
- 2. every connected component of the boundary ∂M_0^3 has $n \ge 1$ is fibred by torus knots ;
- 3. the orbit space $M_0^3/\mathbb{S}^1 = \Sigma_{g,n}^2$ is a smooth surface of genus $g \ge 0$ with non empty boundary ;
- 4. the open manifold M_0^3 is in fact **S**¹-homeomorphic to the trivial S^1 -bundle $\Sigma_{g,n}^2 \times S^1$.

(日)

Proposition

1) Let M^3 be a compact oriented Seifert fibred 3-manifold. Then, M^3 has only a finite set of singular fibres S_i^1 with coefficients (α_i, β_i) . Moreover, if the boundary $\partial M^3 \neq \emptyset$ then it is homeomorphic to a union of S^1 -saturated tori $T_i = S^1 \times S^1$.

2) We denote by $N_i(S_i^1; (\alpha_i, \beta_i))$ the \mathbb{S}^1 -saturated tubular neighborhood of S_i^1 . Then, the open manifold $M_0^3 = M^3 \setminus \bigcup_{i=1}^{i=n} N_i(S_i^1; (\alpha_i, \beta_i))$ is :

- 1. endowed by the structure of S^1 -principal fibre ;
- 2. every connected component of the boundary ∂M_0^3 has $n \ge 1$ is fibred by torus knots ;
- 3. the orbit space $M_0^3/\mathbb{S}^1 = \Sigma_{g,n}^2$ is a smooth surface of genus $g \ge 0$ with non empty boundary ;
- 4. the open manifold M_0^3 is in fact **S**¹-homeomorphic to the trivial S^1 -bundle $\Sigma_{g,n}^2 \times S^1$.

Proposition

Let M³ be a compact oriented Seifert fibred 3-manifold. Then, M³ has only a finite set of singular fibres S¹_i with coefficients (α_i, β_i). Moreover, if the boundary ∂M³ ≠ Ø then it is homeomorphic to a union of S¹-saturated tori T_i = S¹×S¹.
We denote by N_i(S¹_i;(α_i, β_i)) the S¹-saturated tubular neighborhood of S¹_i.

Then, the open manifold $M_0^3 = M^3 \setminus \bigcup_{i=1}^{i=n} N_i(S_i^1; (\alpha_i, \beta_i))$ is :

- **1.** endowed by the structure of S^1 -principal fibre ;
- **2.** every connected component of the boundary ∂M_0^3 has $n \ge 1$ is fibred by torus knots ;
- 3. the orbit space $M_0^3/\mathbb{S}^1 = \Sigma_{g,n}^2$ is a smooth surface of genus $g \ge 0$ with non empty boundary ;
- 4. the open manifold M_0^3 is in fact **S**¹-homeomorphic to the trivial S^1 -bundle $\Sigma_{g,n}^2 \times S^1$.

Proposition

Let M³ be a compact oriented Seifert fibred 3-manifold. Then, M³ has only a finite set of singular fibres S¹_i with coefficients (α_i, β_i). Moreover, if the boundary ∂M³ ≠ Ø then it is homeomorphic to a union of S¹-saturated tori T_i = S¹×S¹.
We denote by N_i(S¹_i;(α_i, β_i)) the S¹-saturated tubular neighborhood of S¹_i. Then, the open manifold M³₀ = M³ \ Uⁱ⁼ⁿ_{i=1}N_i(S¹_i;(α_i, β_i)) is :

1. endowed by the structure of S^1 -principal fibre ;

- **2.** every connected component of the boundary ∂M_0^3 has $n \ge 1$ is fibred by torus knots ;
- 3. the orbit space $M_0^3/\mathbb{S}^1 = \Sigma_{g,n}^2$ is a smooth surface of genus $g \ge 0$ with non empty boundary ;
- 4. the open manifold M_0^3 is in fact **S**¹-homeomorphic to the trivial S^1 -bundle $\Sigma_{g,n}^2 \times S^1$.

Proposition

Let M³ be a compact oriented Seifert fibred 3-manifold. Then, M³ has only a finite set of singular fibres S¹_i with coefficients (α_i, β_i). Moreover, if the boundary ∂M³ ≠ Ø then it is homeomorphic to a union of S¹-saturated tori T_i = S¹×S¹.
We denote by N_i(S¹_i;(α_i, β_i)) the S¹-saturated tubular neighborhood of S¹_i. Then, the open manifold M³₀ = M³ \ Uⁱ⁼ⁿ_{i=1}N_i(S¹_i;(α_i, β_i)) is :

- 1. endowed by the structure of S¹-principal fibre ;
- 2. every connected component of the boundary ∂M_0^3 has $n \ge 1$ is fibred by torus knots ;
- 3. the orbit space $M_0^3/S^1 = \Sigma_{g,n}^2$ is a smooth surface of genus $g \ge 0$ with non empty boundary ;
- 4. the open manifold M_0^3 is in fact \mathbb{S}^1 -homeomorphic to the trivial S^1 -bundle $\Sigma^2_{g,n} \times S^1$.

Proposition

Let M³ be a compact oriented Seifert fibred 3-manifold. Then, M³ has only a finite set of singular fibres S¹_i with coefficients (α_i, β_i). Moreover, if the boundary ∂M³ ≠ Ø then it is homeomorphic to a union of S¹-saturated tori T_i = S¹×S¹.
We denote by N_i(S¹_i;(α_i, β_i)) the S¹-saturated tubular neighborhood of S¹_i. Then, the open manifold M³₀ = M³ \ Uⁱ⁼ⁿ_{i=1} N_i(S¹_i;(α_i, β_i)) is :

- **1.** endowed by the structure of \mathbb{S}^1 -principal fibre ;
- **2.** every connected component of the boundary ∂M_0^3 has $n \ge 1$ is fibred by torus knots ;
- 3. the orbit space $M_0^3/S^1 = \Sigma_{g,n}^2$ is a smooth surface of genus $g \ge 0$ with non empty boundary ;
- **4.** the open manifold M_0^3 is in fact **S**¹-homeomorphic to the trivial S^1 -bundle $\Sigma_{g,n}^2 \times S^1$.

Proposition

Let M³ be a compact oriented Seifert fibred 3-manifold. Then, M³ has only a finite set of singular fibres S¹_i with coefficients (α_i, β_i). Moreover, if the boundary ∂M³ ≠ Ø then it is homeomorphic to a union of S¹-saturated tori T_i = S¹×S¹.
We denote by N_i(S¹_i;(α_i, β_i)) the S¹-saturated tubular neighborhood of S¹_i. Then, the open manifold M³₀ = M³ \ Uⁱ⁼ⁿ_{i=1}N_i(S¹_i;(α_i, β_i)) is :

- **1.** endowed by the structure of **S**¹-principal fibre ;
- **2.** every connected component of the boundary ∂M_0^3 has $n \ge 1$ is fibred by torus knots ;
- 3. the orbit space $M_0^3/\mathbb{S}^1 = \Sigma_{g,n}^2$ is a smooth surface of genus $g \ge 0$ with non empty boundary ;
- 4. the open manifold M_0^3 is in fact \mathbb{S}^1 -homeomorphic to the trivial S^1 -bundle $\Sigma_{g,n}^2 \times S^1$.

The proofs of the claims 1, 2 and 3 are evident.

For the proof of forth claim, there is two methods. The first method utilise the Euler cohomology class,

 $eu\in H^2(\Sigma^2_{g,n},\mathbb{Z})$

which is knowing as an obstruction to find a global section for the \mathbb{S}^1 -fibration $M_0^3 \xrightarrow{p} \Sigma_{g,n}^2$. Thus, since the boundary of the base $\Sigma_{g,n}^2$ is non empty, then we obtain $H^2(\Sigma_{g,n}^2,\mathbb{Z}) = \{0\}$. Consequently, the total space $M_0^2 \simeq \Sigma_{g,n}^2 \times S^1$.

The proofs of the claims 1, 2 and 3 are evident. For the proof of forth claim, there is two methods.

The first method utilise the Euler cohomology class,

 $eu \in H^2(\Sigma^2_{g,n}, \mathbb{Z})$

which is knowing as an obstruction to find a global section for the $\1 -fibration $M_0^3 \xrightarrow{p} \Sigma_{g,n}^2$. Thus, since the boundary of the base $\Sigma_{g,n}^2$ is non empty, then we obtain $H^2(\Sigma_{g,n}^2,\mathbb{Z}) = \{0\}$. Consequently, the total space $M_0^2 \simeq \Sigma_{g,n}^2 \times S^1$.

The proofs of the claims 1, 2 and 3 are evident. For the proof of forth claim, there is two methods. The first method utilise the Euler cohomology class,

$$eu\in H^2(\Sigma^2_{g,n},\mathbb{Z})$$

which is knowing as an obstruction to find a global section for the \mathbb{S}^1 -fibration $M_0^3 \xrightarrow{p} \Sigma_{g,n}^2$. Thus, since the boundary of the base $\Sigma_{g,n}^2$ is non empty, then we obtain $H^2(\Sigma_{g,n}^2,\mathbb{Z}) = \{0\}$. Consequently, the total space $M_0^2 \simeq \Sigma_{g,n}^2 \times S^1$.

III. Seifert fibred 3-manifolds

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

The fibre bundle, $\mathbb{S}^1 \hookrightarrow M_0^3 \to \Sigma^2_{g,n}$, is trivial

The second method utilise the **cutting and pasting principle** as explained in the figure :

paste M322Zas x× Solla

Figure: Trivializing the total space M_0^3

III. 3 Topological construction of Seifert fibred manifolds

At the moment, we know that the fibration $\mathbb{S}^1 \hookrightarrow M_0^3 \to \Sigma_{g,n}^2$ is trivial.

Moreover, the Seifert manifold M^3 results from a Dehn surgery by pasting the tubular neighborhoods of singular fibers $(S_i^1, (\alpha_i, \beta_i))$ to the open manifold $M_0^3 \simeq S^1 \times \Sigma_{g,n}^2$. Then, by Van-Kampen theorem's we conclude that the fundamental group of M^3 is given by the following presentation :

$$\pi_1(M^3) = \langle a_i, b_i, h, q_j; q_1 \cdots q_n \prod_{i=1}^{i=g} [a_i, b_i] = 1, q_i^{\alpha_i} h^{\beta_i} = 1, [h, a_i] = [h, b_i] = [h, q_j] = 1 > 0$$

Thus, we see that the first homology group $H_1(M^3, \mathbb{Z})$ is isomorphic to :

$$H_1(M^3,\mathbb{Z}) \simeq \mathbb{Z}^{2g} \oplus \langle Q_i, H; \alpha_i Q_i + \beta_i H = 0; Q_1 + \dots + Q_n = 0 \rangle = \mathbb{Z}^{2g} \oplus \text{Tor}$$

Where the torsion subgroup Tor is a finite group having as cardinal :

$$|\operatorname{Tor}| = \alpha_1 \cdots \alpha_n | \sum_{i=1}^{i=n} \frac{\beta_i}{\alpha_i} |$$

III. 3 Topological construction of Seifert fibred manifolds

At the moment, we know that the fibration $\mathbb{S}^1 \hookrightarrow M_0^3 \to \Sigma_{g,n}^2$ is trivial. Moreover, the Seifert manifold M^3 results from a Dehn surgery by pasting the tubular neighborhoods of singular fibers $(S_i^1, (\alpha_i, \beta_i))$ to the open manifold $M_0^3 \simeq S^1 \times \Sigma_{g,n}^2$. Then, by Van-Kampen theorem's we conclude that the fundamental group of M^3 is given by the following presentation :

$$\pi_1(M^3) = \langle a_i, b_i, h, q_j; q_1 \cdots q_n \prod_{i=1}^{i=g} [a_i, b_i] = 1, q_i^{\alpha_i} h^{\beta_i} = 1, [h, a_i] = [h, b_i] = [h, q_j] = 1 > 0$$

Thus, we see that the first homology group $H_1(M^3, \mathbb{Z})$ is isomorphic to :

 $H_1(M^3,\mathbb{Z}) \simeq \mathbb{Z}^{2g} \oplus \langle Q_i, H; \alpha_i Q_i + \beta_i H = 0; Q_1 + \dots + Q_n = 0 \rangle = \mathbb{Z}^{2g} \oplus \text{Tor}$

Where the torsion subgroup Tor is a finite group having as cardinal :

$$|\operatorname{Tor}| = \alpha_1 \cdots \alpha_n | \sum_{i=1}^{i=n} \frac{\beta_i}{\alpha_i} |$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

III. 3 Topological construction of Seifert fibred manifolds

At the moment, we know that the fibration $\mathbb{S}^1 \hookrightarrow M_0^3 \to \Sigma_{g,n}^2$ is trivial. Moreover, the Seifert manifold M^3 results from a Dehn surgery by pasting the tubular neighborhoods of singular fibers $(S_i^1, (\alpha_i, \beta_i))$ to the open manifold $M_0^3 \simeq S^1 \times \Sigma_{g,n}^2$. Then, by Van-Kampen theorem's we conclude that the fundamental group of M^3 is given by the following presentation :

$$\pi_1(M^3) = < a_i, b_i, h, q_j; q_1 \cdots q_n \prod_{i=1}^{i=g} [a_i, b_i] = 1, q_i^{\alpha_i} h^{\beta_i} = 1, [h, a_i] = [h, b_i] = [h, q_j] = 1 > 0$$

Thus, we see that the first homology group $H_1(M^3, \mathbb{Z})$ is isomorphic to :

 $H_1(M^3,\mathbb{Z}) \simeq \mathbb{Z}^{2g} \oplus \langle Q_i, H; \alpha_i Q_i + \beta_i H = 0; Q_1 + \dots + Q_n = 0 \rangle = \mathbb{Z}^{2g} \oplus \text{Tor}$

Where the torsion subgroup Tor is a finite group having as cardinal :

$$|\operatorname{Tor}| = \alpha_1 \cdots \alpha_n | \sum_{i=1}^{i=n} \frac{\beta_i}{\alpha_i} |$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

III. 3 Topological construction of Seifert fibred manifolds

At the moment, we know that the fibration $\mathbb{S}^1 \hookrightarrow M_0^3 \to \Sigma_{g,n}^2$ is trivial. Moreover, the Seifert manifold M^3 results from a Dehn surgery by pasting the tubular neighborhoods of singular fibers $(S_i^1, (\alpha_i, \beta_i))$ to the open manifold $M_0^3 \simeq S^1 \times \Sigma_{g,n}^2$. Then, by Van-Kampen theorem's we conclude that the fundamental group of M^3 is given by the following presentation :

$$\pi_1(M^3) = < a_i, b_i, h, q_j; q_1 \cdots q_n \prod_{i=1}^{i=g} [a_i, b_i] = 1, q_i^{\alpha_i} h^{\beta_i} = 1, [h, a_i] = [h, b_i] = [h, q_j] = 1 > 0$$

Thus, we see that the first homology group $H_1(M^3, \mathbb{Z})$ is isomorphic to :

$$H_1(M^3, \mathbb{Z}) \simeq \mathbb{Z}^{2g} \oplus \langle Q_i, H; \alpha_i Q_i + \beta_i H = 0; Q_1 + \dots + Q_n = 0 \rangle = \mathbb{Z}^{2g} \oplus \text{Tor}$$

Where the torsion subgroup Tor is a finite group having as cardinal :

$$|\operatorname{Tor}| = \alpha_1 \cdots \alpha_n | \sum_{i=1}^{i=n} \frac{\beta_i}{\alpha_i} |$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

III. 3 Topological construction of Seifert fibred manifolds

At the moment, we know that the fibration $\mathbb{S}^1 \hookrightarrow M_0^3 \to \Sigma_{g,n}^2$ is trivial. Moreover, the Seifert manifold M^3 results from a Dehn surgery by pasting the tubular neighborhoods of singular fibers $(S_i^1, (\alpha_i, \beta_i))$ to the open manifold $M_0^3 \simeq S^1 \times \Sigma_{g,n}^2$. Then, by Van-Kampen theorem's we conclude that the fundamental group of M^3 is given by the following presentation :

$$\pi_1(M^3) = < a_i, b_i, h, q_j; q_1 \cdots q_n \prod_{i=1}^{i=g} [a_i, b_i] = 1, q_i^{\alpha_i} h^{\beta_i} = 1, [h, a_i] = [h, b_i] = [h, q_j] = 1 > 0$$

Thus, we see that the first homology group $H_1(M^3, \mathbb{Z})$ is isomorphic to :

$$H_1(M^3,\mathbb{Z}) \simeq \mathbb{Z}^{2g} \oplus \langle Q_i, H; \alpha_i Q_i + \beta_i H = 0; Q_1 + \dots + Q_n = 0 \rangle = \mathbb{Z}^{2g} \oplus \text{Tor}$$

Where the torsion subgroup Tor is a finite group having as cardinal :

$$|\operatorname{Tor}| = \alpha_1 \cdots \alpha_n | \sum_{i=1}^{i=n} \frac{\beta_i}{\alpha_i} |$$

Hence, by the above discussion we conclude the following :

Theorem

For any Seifert manifold M^3 the following claims are equivalent,

- **1.** M^3 is an Q-homology 3-sphere ;
- **2.** the genus g = 0;
- **3.** the orbit space of M^3 is a topological sphere $S^2 \simeq M^3/S^1$.

Corollary

A Seifert manifold M^3 is an integer homology sphere if and only, if the list $\{\beta_1, \dots, \beta_n\}$ is co-prime.

Hence, by the above discussion we conclude the following :

Theorem

For any Seifert manifold M^3 the following claims are equivalent,

- **1.** M^3 is an Q-homology 3-sphere ;
- **2.** the genus g = 0;
- **3.** the orbit space of M^3 is a topological sphere $S^2 \simeq M^3/S^1$.

Corollary

A Seifert manifold M^3 is an integer homology sphere if and only, if the list $\{\beta_1, \dots, \beta_n\}$ is co-prime.

IV. 5 Classification Seifert manifolds.

In the precedent parts, to any Seifert *M*3 we associated a liste of co-prime pairs (α_i , β_i); here we study the two questions : 1) the modification of the list of pairs co-primes (α_i , β_i) without modifying the topology of M^3 ;

2) we introduce the rational Euler number $eu(M) = -\sum_{i=1}^{i=n} \frac{\beta_i}{\alpha_i} \in \mathbb{Q}$ which will

allow us to decide if two Seifert manifolds are homeomeorphic or no.

III. Seifert fibred 3-manifolds

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

V. 4 Other constructions and operations

plumbing and graph manifolds Breiskorn manifolds as Seifert manifolds.