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Orthogonal Lie groups

An orthogonal Lie group is a connected Lie group G
endowed with a bi-invariant pseudo-Riemannian metric k.

In this case, the value of k at identity induces on the Lie
algebra g of G an adjoint invariant nondegenerate bilinear
symmetric form 〈 , 〉, i.e.,

〈aduv, w〉+ 〈v, aduw〉 = 0,

for any u, v, w ∈ g.
Such a Lie algebra is called an orthogonal (or quadratic) Lie
algebra.
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A connected Lie group G carries a Riemannian bi-invariant
metric iff G is a product of a compact Lie group and a
commutative Lie group.

Any semi-simple Lie group is an orthogonal Lie group.

The determination of orthogonal Lie groups is an open
problem even tough there is many results on the problem.
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Poisson-Lie groups and Yang-Baxter equations

Recall that a Poisson tensor on a manifold M is bivector
field π ∈ Γ(∧2TM) such that the bracket on C∞(M) given
by

{f, g} = π(df, dg)

satisfies the Jacobi identity :

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

This is equivalent to

[π, π] = 0,

where [ , ] is the Schouten-Nujenhuis bracket.
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Let G be a Lie group and g its Lie algebra. A Poisson
tensor π on G is called multiplicative if, for any a, b ∈ G,

π(ab) = (La)∗π(b) + (Rb)∗π(a).

Consider the map πl : G −→ g ∧ g given by

πl(g) = (Lg−1)∗π(g).

Let
ξ := deπl : g −→ g ∧ g

be the derivative of πl at e.
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It is well-known that (g, [ , ], ξ) is a Lie bialgebra, i.e.,

1 ξ is a 1-cocycle with respect to the adjoint action, i.e.,

ξ([u, v]) = aduξ(v)− advξ(u), (1)

2 the bracket [ , ]∗ on the dual g∗ given by

[α, β]∗(u) = ξ(u)(α, β), u ∈ g, α, β ∈ g∗ (2)

satisfies the Jacobi identity.
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Conversely, if G is connected and simply connected, given
any ξ : g −→ g ∧ g such that (g, [ , ], ξ) is a Lie bialgebra
then there exists a unique Poisson-Lie tensor π on G such
that ξ = deπl.

{Connected and simply-conneceted Poisson Lie groups}
' {Lie bialgebras} .

Let (G, π) be a Poisson-Lie group. The connected and the
simply connected Lie group, say G∗, associated to (g∗, [ , ]∗)
is called dual Lie group of (G, π).
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ξ : g −→ g∧ g is called a coboundary if there exists r ∈ ∧2g
such that, for any u ∈ g, α, β ∈ g∗,

ξ(u)(α, β) = adur(α, β) := r(ad∗uα, β) + r(α, ad∗uβ).

In this case, the condition (1) is automatically satisfied
and (2) holds if and only if r satisfies the generalized
classical Yang-Baxter equation :

adu[r, r] = 0, ∀u ∈ g, (3)

where [r, r] ∈ ∧3g is the Schouten bracket. A solution of
the classical Yang-Baxter equation is a bivector r ∈ ∧2g
satisfying

[r, r] = 0. (4)
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Some results on solutions of Yang-Baxter equation and
bialgebra structures :

1 Bellavin and Drinfeld [2] gave the solutions of GYBE
on simple complex Lie algebras :

r = r0+
√
−λ

∑
α∈∆+

E−α ∧ Eα + 2
∑

α∈Γ+,β>α

E−β ∧ Eα

 ,

where r0 ∈ ∧2η satisfying some equation.
2 In [6], Delorme classified Lie bialgebras structures on

reductive complex Lie algebras.
3 In [29], Szymczak I. and Zakrzemski S. classified

Poisson-Lie structures on Heisenberg groups.
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The following result was proved by Bellavin and Drinfeld :

Theorem.
If g is a complex simple Lie algebra and r a solution if
GYBE then (g∗, [ , ]r) is solvable.
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Yang-Baxter equations on orthogonal Lie
groups

Let (G, k) be an orthogonal Lie group and r a solution of
the GYBE on its Lie algebra (g, 〈 , 〉). Then r defines on g∗

a Lie bracket by

[α, β]r = ad∗r#(β)α− ad∗r#(α)β. (5)

Consider the bilinear form 〈 , 〉∗ on g∗ given by 〈 , 〉. Let
us denote by G∗r a Lie group with Lie algebra (g∗, [ , ]r), by
k∗ the left invariant pseudo-Riemannian metric whose value
at the identity is 〈 , 〉∗ and by ∇∗ its Levi-Civita connexion.
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With the notations above, we have the following result.

Theorem.
M. Boucetta & A. Medina
Let (G, k) be an orthogonal Lie group and r a solution of
GYBE on g. Then :

1 (G∗r, k
∗) is a locally symmetric pseudo-Riemannian

manifold, i.e.,
∇∗R = 0,

where R is the curvature of k∗. In particular, R
vanishes identically when r is a solution of the CYBE.

2 If k∗ is flat then it is complete if and only if G∗r is
unimodular and in this case G∗r is solvable.
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Example

Let g = sl(2,R) and let B = {e1, e2, e3} the basis of g where

e1 =

(
1 0
0 −1

)
, e2 =

(
0 1
0 0

)
and e3 =

(
0 0
−1 0

)
.

We have

[e1, e2] = 2e2, [e1, e3] = −2e3 and [e2, e3] = −e1.

The symmetric 2-form

k(a, b) = tr(ab)

is an orthogonal structure on g.
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Let r : g∗ −→ g be a linear endomorphism which is

skew-symmetric. Denote by

 0 a b
−a 0 c
−b −c 0

 the matrix of

r in the basis B∗ and B.

The endomorphism r is a solution
of CYBE iff

4ab+ c2 = 0. (6)

Let r be a solution of (6). It induces on g∗ a Lie bracket
given by (5). A direct computation gives

[e∗1, e
∗
2]r = −2ae∗1−ce∗2, [e∗1, e

∗
3]r = 2be∗1−ce∗3, [e∗2, e

∗
3]r = 2be∗2+2ae∗3.

According to Theorem 2, the connected and simply
connected Lorentzian Lie group associated to (g∗, [ , ]r, k

∗)
is flat and non complete.
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Oscillator Lie groups as orthogonal Lorentzian
Lie groups

An oscillator group is a real simply connected Lie group
which contains a Heisenberg group as a normal closed
subgroup of codimension 1. The four dimensional oscillator
group has its origin in the study of the harmonic oscillator
which is one of the most simple non-relativist systems
where the Schrodinger equation can be solved completely.
In [28], Streater described the representations of this group.
Oscillator groups of dimension great than four have
interesting features from the viewpoints of both Differential
Geometry and Physics (see for instance
[14, 16, 17, 24, 25, 26]).
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In [20] Medina proved the following result :

Theorem.
Oscillator groups are the only non commutative simply
connected solvable Lie groups which have a bi-invariant
Lorentzian metric.
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For n ∈ N∗ and λ = (λ1, . . . , λn) ∈ Rn with
0 < λ1 ≤ . . . ≤ λn, the λ-oscillator group, denoted by Gλ, is
R2n+2 = R× R× Cn endowed with the product

(t, s, z).(t′, s′, z′) =

t+ t′, s+ s′ +
1

2

n∑
j=1

Imz̄j exp(itλj)z
′
j ,

. . . , zj + exp(itλj)z
′
j , . . .

)
.

The Lie algebra of Gλ, denoted by gλ, admits a basis
B = {e−1, e0, ei, ěi, }i=1,...,n where the brackets are given by

[e−1, ej] = λj ěj, [e−1, ěj] = −λjej, [ej, ěj] = e0.

(7)

The unspecified brackets are either zero or given by
antisymmetry.
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Oscillator Lie algebras are orthogonal. Indeed, for x ∈ gλ,
let

x = x−1e−1 + x0e0 +
n∑
i=1

(xiei + x̌iěi) .

The nondegenerate quadratic form

kλ(x, x) := 2x−1x0 +
n∑
i=1

1

λi
(x2

i + x̌2
i ) (8)

defines a Lorentzian bi-invariant metric on Gλ.
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Main results : Poisson-Lie structures and
solutions of Yang-Baxter on oscillator Lie groups

Put
S = span{ei, ěi}i=1,...,n

and denote by ω the 2-form on gλ given by

ie−1ω = ie0ω = 0, ω(ei, ej) = ω(ěi, ěj) = 0 and ω(ei, ěj) = δij.

The restriction of ω to S is a symplectic 2-form and, for
any u, v ∈ S,

[u, v] = ω(u, v)e0. (9)
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Let J ∈ End(gλ) such that J(e−1) = J(e0) = 0. J is a
derivation of gλ iff J(S) ⊂ S and

ω(Ju, v) + ω(u, Jv) = 0 u, v ∈ S. (10)

We denote by so(S, ω) the space of such derivations. We
have ade−1 ∈ so(S, ω).

We denote (improperly) by ∧2S the space of r ∈ ∧2gλ
satisfying ie∗−1

r = ie∗0r = 0.
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For any r1, r2 ∈ ∧2gλ, let ωr1,r2 be the element of ∧2gλ
defined by

ωr1,r2(α, β) =
1

2
(ω(r1#(α), r2#(β)) + ω(r2#(α), r1#(β)) ,

where ri# : g∗λ −→ gλ is the endomorphism given by
β(ri#(α)) = ri(α, β). Note that

r1, r2 ∈ ∧2S =⇒ ωr1,r2 ∈ ∧2S.

Finally, for any J ∈ End(gλ), we denote by J† the
endomorphism of ∧2gλ, given by

J†r(α, β) = r(J∗α, β) + r(α, J∗β),

where J∗ : g∗λ −→ g∗λ is the dual of J .
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Theorem.

Let gλ be an oscillator Lie algebra. Then ξ : gλ −→ ∧2gλ defines
a Lie bialgebra structure on gλ iff there exists r ∈ ∧2S, u0 ∈ S
and J ∈ so(S, ω) commuting with ade−1 such that, for any
u ∈ gλ,

ξ(u) = ad†ur + 2e0 ∧ ((J + adu0)(u)),

and

ωr,ad†e−1r
− (J† ◦ ad†e−1)r = 0. (11)

Moreover, in this case, the dual Lie bracket on g∗λ is given by{
[e∗0, α]∗ = 2J∗α− 2(ad∗e−1

α)(u0)e∗−1 + ir#(α)ω,

[α, β]∗ = ad†e−1
r(α, β)e∗−1,

(12)

where α, β ∈ S∗ and e∗−1 is a central element.
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Corollary.

Let gλ be an oscillator Lie algebra and

ξ(u) = ad†ur + 2e0 ∧ ((J + adu0)(u))

a non trivial Lie bialgebra structure on gλ. Then (g∗λ, [ , ]∗)
is solvable non nilpotent and (g∗λ, [ , ]∗) is unimodular iff
n∑
i=1

r(ei, ěi) = 0.
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Theorem.

Let gλ be an oscillator Lie algebra. Then :

1 r ∈ ∧2gλ is a solution of the GYBE iff there exists
u0 ∈ S, r0 ∈ ∧2S and α ∈ R such that
r = 2αe0 ∧ e−1 + e0 ∧ u0 + r0 and

ωr0,ad†e−1r0
+ α(ad†e−1 ◦ ad†e−1)r0 = 0. (13)

2 r ∈ ∧2gλ is a solution of the CYBE iff there exists
u0 ∈ S, r0 ∈ ∧2S and α ∈ R such that
r = αe0 ∧ e−1 + e0 ∧ u0 + r0 and

ωr0,r0 + αad†e−1r0 = 0. (14)

48



There are some comments on Theorems 4-6 :

1 Theorems 4-6 reduce the problem of finding Lie
bialgebras structures or solutions of Yang-Baxter
equations on an oscillator Lie algebra to solving (11),
(13) and (14). Or these equations involve only the
symplectic space (S, ω) and the restrictions of the
derivations J and ade−1 to S.

2 we gave the solutions of (11), (13) and (14) when
dim gλ ≤ 6. To solve those equations in the general
case is very difficult, however we can give a large class
of solutions.
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of solutions.
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Proposition.

Let λ ∈ R and let gλ be the associated 4-dimensional
oscillator Lie algebra. Then :

1 ξ : gλ −→ ∧2gλ defines a Lie bialgebra structure on gλ
iff there exists a, α ∈ R and u0 ∈ S such that

ξ(u) = αad†u(e1 ∧ ě1) + e0 ∧ (Ja + adu0)(u).

2 r ∈ ∧2gλ is a solution of the GYBE iff
r = e0 ∧ u+ αe1 ∧ ě1, where α ∈ R and u ∈ gλ.

3 r ∈ ∧2gλ is a solution of the CYBE iff r = e0 ∧ u,
where α ∈ R and u ∈ gλ.
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By using Theorem 2, we will build an example of
6-dimensional Lie groups endowed with a complete left
invariant flat Lorentzian metric.
The bivector

r = e0 ∧ e1 + e1 ∧ ě2 + ě1 ∧ e2 + e1 ∧ ě1 − e2 ∧ ě2

is a solution of CYBE on gλ (λ = (λ1, λ2)). The bracket
[ , ]r on g∗λ associated to r is given by

[e∗0, e
∗
1]r = −e∗1 − e∗2, [e∗0, e

∗
2]r = e∗1 + e∗2, [e∗0, ě

∗
1]r = λ1e

∗
−1 − ě∗1 + ě∗2,

[e∗0, ě
∗
2]r = −ě1 + ě2, [e∗2, ě

∗
2]r = [e∗1, ě

∗
1]r = [e∗1, ě

∗
2]r = [e∗2, ě

∗
1]r = 0,

[e∗1, e
∗
2]r = −[ě∗1, ě

∗
2]r = −(λ1 + λ2)e∗−1.

The symmetric bilinear form k∗λ associated to k is entirely
determined by the relations

k∗λ(e
∗
0, e
∗
−1) = 1, k∗λ(e

∗
i , e
∗
i ) = k∗λ(ě

∗
i , ě
∗
i ) = λi, i = 1, 2

and induces, according to Theorem 2, a complete flat left
invariant Lorentzian metric on the connected and simply
connected Lie group G∗λ.
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