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Orthogonal Lie groups

An orthogonal Lie group is a connected Lie group G
endowed with a bi-invariant pseudo-Riemannian metric k.
In this case, the value of k at identity induces on the Lie
algebra g of G an adjoint invariant nondegenerate bilinear
symmetric form (, ), i.e.,

(ad,v, w) + (v, ad,w) = 0,
for any u,v,w € g.

Such a Lie algebra is called an orthogonal (or quadratic) Lie
algebra.
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A connected Lie group G carries a Riemannian bi-invariant
metric iff G is a product of a compact Lie group and a
commutative Lie group.

Any semi-simple Lie group is an orthogonal Lie group.

The determination of orthogonal Lie groups is an open
problem even tough there is many results on the problem.



Poisson-Lie groups and Yang-Baxter equations

Recall that a Poisson tensor on a manifold M is bivector
field m € T'(A*T'M) such that the bracket on C*(M) given
by

{f,9} = n(df,dg)

satisfies the Jacobi identity :

{f {9, 1Y+ {g, {h, F}} + {h, {f,g}} = 0.



Poisson-Lie groups and Yang-Baxter equations

Recall that a Poisson tensor on a manifold M is bivector
field 7 € T'(A*T'M) such that the bracket on C°°(M) given
by

{f,9} = n(df,dg)

satisfies the Jacobi identity :

{f {9, 1Y+ {g, {h, F}} + {h, {f,g}} = 0.

This is equivalent to
(7, 7] =0,

where [, ] is the Schouten-Nujenhuis bracket.
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Let G be a Lie group and g its Lie algebra. A Poisson
tensor m on G is called multiplicative if, for any a,b € G,

m(ab) = (La)«m(b) + (Rp)«7(a).
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Let G be a Lie group and g its Lie algebra. A Poisson
tensor m on G is called multiplicative if, for any a,b € G,

m(ab) = (La)«m(b) + (Rp)s7(a).
Consider the map m : G — g A g given by

mi(g) = (Lg-1)«7(g)-

Let
53:deﬁl5g—>9/\9

be the derivative of m; at e.
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It is well-known that (g, [, ], &) is a Lie bialgebra, i.e.,
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It is well-known that (g, [, ], &) is a Lie bialgebra, i.e.,

Q ¢ is a 1-cocycle with respect to the adjoint action, i.e.,

f([u, U]) - adug(v) - ad,,)ﬁ(u), (1)
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It is well-known that (g, [, ], &) is a Lie bialgebra, i.e.,

Q ¢ is a 1-cocycle with respect to the adjoint action, i.e.,

f([uv U]) - adug(v) - ad,,)ﬁ(u), (1)

© the bracket [, |* on the dual g* given by

[, B]" () = &(u)(a, B), u€gapcg (2)

satisfies the Jacobi identity.
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Conversely, if GG is connected and simply connected, given
any £ : g — g A g such that (g,[, |,§) is a Lie bialgebra
then there exists a unique Poisson-Lie tensor m on G such
that & = d.m.
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Conversely, if GG is connected and simply connected, given
any £ : g — g A g such that (g,[, |,§) is a Lie bialgebra
then there exists a unique Poisson-Lie tensor m on G such
that & = d.m.

Connected and simply-conneceted Poisson Lie groups
Y g
~ {Lie bialgebras} .
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Conversely, if GG is connected and simply connected, given
any £ : g — g A g such that (g,[, |,§) is a Lie bialgebra
then there exists a unique Poisson-Lie tensor m on G such
that & = d.m.

{Connected and simply-conneceted Poisson Lie groups}
~ {Lie bialgebras} .

Let (G, m) be a Poisson-Lie group. The connected and the
simply connected Lie group, say G*, associated to (g*, [, |*)
is called dual Lie group of (G, ).

19



£:9 — gAgis called a coboundary if there exists r € A%g
such that, for any u € g, o, 5 € g*,

E(u)(a, B) = adyr(a, ) :=r(ad’a, 8) + r(a,ad; ).
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£:9 — gAgis called a coboundary if there exists r € A%g
such that, for any u € g, o, 5 € g*,

E(u)(a, B) = adyr(a, ) :=r(ad’a, 8) + r(a,ad; ).

In this case, the condition (1) is automatically satisfied
and (2) holds if and only if r satisfies the generalized
classical Yang-Baxter equation :

ad,[r,7] =0, Yue€g, (3)

where [r,7] € A3g is the Schouten bracket. A solution of
the classical Yang-Baxter equation is a bivector r € Ag
satisfying

[r,r] = 0. (4)
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Some results on solutions of Yang-Baxter equation and
bialgebra structures :
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Some results on solutions of Yang-Baxter equation and
bialgebra structures :

@ Bellavin and Drinfeld [2] gave the solutions of GYBE
on simple complex Lie algebras :

r=rogtvV=A| Y E.AE.+2 > EgAE,
aceAt aclt B>a

where 79 € A1 satisfying some equation.
Ui ying

@ In [6], Delorme classified Lie bialgebras structures on
reductive complex Lie algebras.
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Some results on solutions of Yang-Baxter equation and
bialgebra structures :

@ Bellavin and Drinfeld [2] gave the solutions of GYBE
on simple complex Lie algebras :

T:TO+\/T/\ Z E—a/\Ea:+2 Z E—BAE(Y

aceAt ael't B>a

where 79 € A1 satisfying some equation.
Ui ying

@ In [6], Delorme classified Lie bialgebras structures on
reductive complex Lie algebras.

@ In [29], Szymczak 1. and Zakrzemski S. classified
Poisson-Lie structures on Heisenberg groups.
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The following result was proved by Bellavin and Drinfeld :
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Yang-Baxter equations on orthogonal Lie
groups

Let (G, k) be an orthogonal Lie group and r a solution of
the GYBE on its Lie algebra (g, (, )). Then r defines on g*
a Lie bracket by

o, 8], = ad;, (5 — ad; () 3. (5)

T (()(
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Yang-Baxter equations on orthogonal Lie
groups

Let (G, k) be an orthogonal Lie group and r a solution of
the GYBE on its Lie algebra (g, (, )). Then r defines on g*
a Lie bracket by

o, 8], = ad;, (5 — ad; () 3. (5)

T (()(
Consider the bilinear form (, )* on g* given by (, ). Let

us denote by G a Lie group with Lie algebra (g*,[, ],), by
k* the left invariant pseudo-Riemannian metric whose value
at the identity is (, )* and by V* its Levi-Civita connexion.

20)



With the notations above, we have the following result.




Example

Let g =sl(2,R) and let B = {e1, 3, €3} the basis of g where

_ (1 0 (01 wd e (00
€1 = 0 —1 y €2 = 00 a €3 = 1 0 .
We have

le1, €2] = 2€q, [e1,e3] = —2e3 and [eg, e3] = —ey.
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Example

Let g =sl(2,R) and let B = {e1, 3, €3} the basis of g where

(10 (01 d e (00
“=\Vo -1 )20 o and- =1 _1 0 )"
We have

le1, €2] = 2€q, [e1,e3] = —2e3 and [eg, e3] = —ey.

The symmetric 2-form
k(a,b) = tr(ab)
is an orthogonal structure on g.

292



Let r : g* — g be a linear endomorphism which is

0 a b
skew-symmetric. Denote by | —a 0 ¢ | the matrix of
—b —c 0

r in the basis B* and B.

RYN



Let r : g* — g be a linear endomorphism which is

0 a b
skew-symmetric. Denote by | —a 0 ¢ | the matrix of
—b —c 0

r in the basis B* and B. The endomorphism r is a solution
of CYBE iff

4ab + c* = 0. (6)

Let r be a solution of (6). It induces on g* a Lie bracket
given by (5). A direct computation gives

lel, €3], = —2ae]—ce, [e], €3], = 2be]—ces, [e3, €3], = 2bes+2aes.

According to Theorem 2, the connected and simply
connected Lorentzian Lie group associated to (g*, [, |-, k%)
is flat and non complete.



Oscillator Lie groups as orthogonal Lorentzian
Lie groups

An oscillator group is a real simply connected Lie group
which contains a Heisenberg group as a normal closed
subgroup of codimension 1. The four dimensional oscillator
group has its origin in the study of the harmonic oscillator
which is one of the most simple non-relativist systems
where the Schrodinger equation can be solved completely.
In [28], Streater described the representations of this group.
Oscillator groups of dimension great than four have
interesting features from the viewpoints of both Differential

Geometry and Physics (see for instance
[14, 16, 17, 24, 25, 26]).
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In [20] Medina proved the following result :
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For n € N* and A = (Aq,...,\,) € R" with
0< A <... <\, the M-oscillator group, denoted by G, is
R2"*2 = R x R x C" endowed with the product

1 n
(t,s,2).(t',s,2) = (t +t,s+5 + 5 Zl Im?z; exp(it;)z;,
j=

R s exp(it)\j)z;-, . ) .
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For n € N* and A = (Aq,...,\,) € R" with
0< A <... <\, the M-oscillator group, denoted by G, is
R2"*2 = R x R x C" endowed with the product

1 n
(t,s,2).(t',s,2) = (t +t s+5 + 5 Zl Imz; exp(it/\j)z‘;,
j:
R s exp(z’t)\j)z;-, . ) .

The Lie algebra of GG, denoted by g,, admits a basis
B = {e_1,€0,€i, 6, };_, ., where the brackets are given by

el =XNe el = =Xjej, 65,6 = eo.
(7)

The unspecified brackets are either zero or given by
antisymmetry.

20



Oscillator Lie algebras are orthogonal. Indeed, for x € g,,
let

n
T =x_16_1 + Tp€0 + E (xie; + T4€;) .

=1

The nondegenerate quadratic form
ky(z,x) :=2x_120 + i l(7{‘2 + @7) (8)
| e Z

defines a Lorentzian bi-invariant metric on G .
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Main results : Poisson-Lie structures and
solutions of Yang-Baxter on oscillator Lie groups

Put
S =span{e;, & }i1,..n

and denote by w the 2-form on g, given by

e w=1lew =0, w(e;,ej) =w(é;,é;) =0 and w(e;, &) = ;.

The restriction of w to S is a symplectic 2-form and, for
any u,v € S,

[u, v] = w(u,v)ey. (9)

A1



Let J € End(g,) such that J(e_;) = J(ep) =0. J is a
derivation of g, iff J(S) C S and

w(Ju,v) +w(u, Jv) =0 wu,v e S. (10)

We denote by so(S,w) the space of such derivations. We
have ad._, € so(S,w).
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Let J € End(g,) such that J(e_;) = J(ep) =0. J is a
derivation of g, iff J(S) C S and

w(Ju,v) + w(u, Jv) =0 u,v € S. (10)

We denote by so(S,w) the space of such derivations. We
have ad._, € so(S,w).

We denote (improperly) by A%S the space of r € A2gy
satisfying ie» 7= icsr = 0.
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For any 71,79 € A*gy, let w,, ,, be the element of A?gy
defined by

Wry o (@, B) = 5 (W(rig (@), rag(B)) + wlrag(a), rig(8))

DO | —

where 7,4 : g3 — g is the endomorphism given by
B(rig(a)) = ri(a, B). Note that

T, T € N2S = Wry gy € A2S.
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For any 71,79 € A*gy, let w,, ,, be the element of A?gy
defined by

(W<7'1#(a)7 7‘2#(5)) + W(T'Q#(Oé)7 7'1#(/5)) )

DO | —

W,y (@0, B) =

where 7,4 : g3 — g is the endomorphism given by
B(rig(a)) = ri(a, 5). Note that

T, T € N2S = Wry gy € A2S.

Finally, for any J € End(gy), we denote by J' the
endomorphism of A%gy, given by

Thr(a, B) = r(J*a, B) +r(a, J*B),
where J* : g5 — g3 is the dual of J.
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There are some comments on Theorems 4-6 :
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There are some comments on Theorems 4-6 :

@ Theorems 4-6 reduce the problem of finding Lie
bialgebras structures or solutions of Yang-Baxter
equations on an oscillator Lie algebra to solving (11),
(13) and (14). Or these equations involve only the
symplectic space (S,w) and the restrictions of the
derivations J and ad._, to S.



There are some comments on Theorems 4-6 :

@ Theorems 4-6 reduce the problem of finding Lie
bialgebras structures or solutions of Yang-Baxter
equations on an oscillator Lie algebra to solving (11),
(13) and (14). Or these equations involve only the
symplectic space (S,w) and the restrictions of the
derivations J and ad._, to S.

@ we gave the solutions of (11), (13) and (14) when
dim g, < 6. To solve those equations in the general
case is very difficult, however we can give a large class
of solutions.






By using Theorem 2, we will build an example of
6-dimensional Lie groups endowed with a complete left
invariant flat Lorentzian metric.

The bivector

7’260/\€1+61/\é2+é1/\€2+61/\é1—62/\é2

is a solution of CYBE on g, (A = (A1, A2)). The bracket
[, ]- on g} associated to r is given by

eg.eilr = —el—e3, [eg, €3]y = €] +e3, [eg, €1]r = Al — €] + €3,
€5, 3]y = —é1+¢éa, [e3, 63 = [e, 8], = [el, &3]r = [€3,6%], = O,
el ealr = —[e1, 6] = —(A1 + A2)el,.

The symmetric bilinear form kj associated to k is entirely
determined by the relations

ki(eg, e™y) =1, ki(ef,ef) =ki(é€f,¢7) =N, i =1,2

and induces, according to Theorem 2, a complete flat left
invariant Lorentzian metric on the connected and simply
connected Lie group G73.
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