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Covariant Derivative on a Vector Bundle

Recall that a covariant derivative on a vector bundle £ — M is a map
V:X(M)xT'(FE)—T(E),

such that for X € X(M) and s € T'(F) we have:

(a) Vxsis C°°(M)-linear with respect to X and R-linear with respect
to s;

(b) Leibniz rule: If f € C°°(M) is a smooth function on M, then

Vx(fs)=X(f)s+ fVxs.



Part |: Equivalent Definitions of
Connections on Vector Bundles



Horizontal Bundle

In what follows let E = M be a vector bundle. A horizontal bundle H
of E is a vector subbundle of the tangent bundle T'E such that

TE =H & V(E),

where V(E) := ker T'w is the vertical bundle of E. For z € E, we have a
canonical isomorphism J, : E .y — V.(E), given by:

d
J.(7) = i (z +t2).
t=0



Ehresmann Connection

Let ¢ € R, we denote by . : F — E the map z — cz.

Definition 1. A (Ehresmann) connection on E is a horizontal bundle

H of E such that
Tch(Hz) = ch>

forallceR and z € E.



Example: The Trivial Vector Bundle M x R” M

Let M x R™ 2% M be the trivial vector bundle. For each z € R” denote
by 2, : M < M x R" the canonical injection, then for (p,z) € M x R"
define

H

p.z) = Iptz (T, M),

and set

H .= |_| H(p,z)-
(p,z) € M x R"

Furthermore, given ¢ € R we have . 01, = 12.,. Hence we deduce that H
is a connection on M x R" — M.



An Exact Sequence of Bundle Homomorphisms

Recall that we have a bundle morphism (T'r, ) from T'E to T M such
that the following diagram commute

TE—1" _sTM

E—" M.

This gives rise to a bundle homomorphism

Tr : TE — ™(TM)
w +— (mp(w),Tr(w)).

Hence we have an exact sequence of bundle homomorphisms

0— V(E) <5 TE % o*(TM) — 0.



Horizontal Map

Definition 2. A bundle homomorphism W : 7*(T'M) — TE is called a
horizontal map if it satisfies

ﬁT o {Iv’ = IdTr*(T]V])'

Note that any horizontal bundle H of E naturally defines a horizontal
map of E as follows:

(T M) Q H < TE.

Conversely, any horizontal map T 7 (TM) — TFE gives rise to a
horizontal bundle H of E given by:

H:=ImWU.



Covariant Derivative determines Horizontal Map

Proposition 1. Let V be a covariant derivative on E. Then there exists
a unique horizontal map ¥V : 7*(T'M) — TE for E such that:

\T/v(sp,u) = Tps(u) — J,

S;,)(V’U,S)7

with p € M, u € T,M and s € I'(E).

Sketch of the proof. If (U, ®) is a local trivialization of £, we define a
map OV : 7*(T M), — TE, by:

o
Y (2, 1) = Tp-1()®(u,0) — J. (B(u,2)),

where B is the difference tensor between the trivial connection on E,
correspondingto ® and V. =



Covariant Derivative and Ehresmann Connection

Corollary 1. Any covariant derivative V on E gives rise to a unique
connection HY on E.

Sketch of the proof. For z € E, define
I‘IzV = {\TIV (Sﬂ.(z),u) HECAS P(E), Sp(z) = %, U € Tﬂ.(z)M} ,
and set

HY = | |HY. =
zeFR



Connection Map

Definition 3. A connection map on F is a bundle homomorphism

k : TE — E such that:
(a) Foreach z € E,
kyoJ, =1Idg

r(z)?

(b) Forall c e R,
KoT e = e o K.

Clearly if k : TE — E is a connection map on E, then H" :=kerk is a
connection on E.



Connection Map

Conversely, if H is a connection on E, then for each w € T'E the splitting
TE = H & V(FE) induces a decomposition

w=w"+w’e H®V(E).
Thus for any w € T, E, we define a map x’ : TE — E by:
ki (w) = T (w?).

Clearly for z € E, k' o J, = 1dg_ . Moreover, let w € V,(E) we have
wH (cw) = T Hew) = eI (w) = ex (w).

Thus " o Tpe = pie o k™. It follows that k¥ : TE — E is a connection
map on F.



Ehresmann Connection and Covariant Derivative

Theorem 1. Any connection H on E gives rise to a unique
covariant derivative V/ on E.

Sketch of the proof. Let H be a connection on E. We define a
covariant derivative V# on E as follows:

Vs =k oTso X,

for X € X(M) and s € T'(E), where k'l : TE — E is the connection
map associated to H. =



Part IlI: Connections on Manifolds



Connections on Manifolds

Definition 4. A (Koszul) connection on a smooth manifold M is a
connection on its tangent bundle T'M.

Let V be a connection on a smooth manifold M, we define the torsion of
V to be
T(X,Y):=VxY — VyX — [X,Y],

for X, Y € X(M). When T'= 0, V is called torsion-free.

If V is another connection on M, then we define the difference tensor
between V and V by:

B(X,Y):=VxY — VxY.



Connections on Manifolds

We denote by BS and B” the symmetric and skew-symmetric part of B
respectively. More precisely for X, Y € X(M), BS and B* are given by:

BS(X,Y) = %{B(X,Y)JrB(KX)},
BMX,Y) = %{B(X,Y)—B(Y,X)}.

Proposition 2. V and V have the same torsion if and only if BA = 0.

Proof. For X, Y € X(M), we have

T(X,Y)-T(X,Y)=VxY —VyX —VxY +VxY =2BA(X,Y). =



Two Connections and their Geodesics

Let V be a connection on M. A curve «y in M is called a geodesic of V
if the tangent vector field 4 in T'M is parallel along 7, i.e D% = 0.

Proposition 3. Let V and V be two connections on a smooth manifold
M, then the following properties are equivalent:

1. The connections V and V have the same geodesics;
2. B(X,X) =0 for all X € X(M);
3. BS=0.
Proof. (1. < 2.) Let X € X(M), p€ M and v:[0,1] = M a smooth

curve in M with (0) = p, 7(0) = X,,. Let Y € X(U) be a vector field in
a neighborhood U of p which equals 4 along the part of v in U. Then

(2. < 3.) Clear. =



Equality of Two Connections on a Manifold

Corollary 2. Two connections V and V on a smooth manifold M are
equal if and only if they have the same geodesics and the same torsion.

Proof. Since V and V have the same geodesics we get B = BA. Further
using that V and V have the same torsion we obtain V=V. =
Corollary 3. For every connection V on a smooth manifold M, there

exists a unique torsion-free connection ¥V on M with the same geodesics.

Sketch of the proof. For X,Y € X(M), define V to be the unique
connection given by:

VxY :=VxY — %T(X, Y) =m



Covariant Derivative of (k,[)-Tensor Fields

Theorem 2. Let V be a connection on a smooth n-manifold M.

Then V uniquely determines a connection in each (k,[)-tensor

bundle 7Y ), also denoted by V, such that the following four

conditions are satisfied.

(a) In TMO M = TM, V agrees with the given connection.

(b) In TOON = M x R, V is given by ordinary differentiation of
functions:

Vxf=X(f).

(c) V obeys the following product rule with respect to tensor
products:

Vx(F®G)=(VxF)® G+ F® (VxQ).
(d) V commutes with all contractions:

Vx(trF)=tr(VxF).



Covariant Derivative of (k,[)-Tensor Fields

This connection also satisfies the following additional properties:

(i) V obeys the following product rule with respect to the natural
pairing between a smooth 1-form w € A!(M) and a vector field
Y e X(M):

(Vxw)(Y) =X (w(Y)) —w(VxY).

(ii) For all F € T (T™®V1), smooth 1-forms w!,... w* € AY(M),
and smooth vector fields Y!,... Y! € X(M), one has:

(VxF)(w,...,wk, Y, .. YY) = vx<F(w1,...,wk;y‘,...,yl)>
k
-> F',...,Vxw',. .., wh Y LYY
i=1

l
=S R, wt Y VXYY,
1=1



Torsion-free Connection and Exterior Derivative

Corollary 4. Let V be a torsion-free connection on a smooth manifold
M. Then for w e AF(M) c TORM, and X°, ..., X* € X(M), one has:

k
do(X0,. ., XP) =) (1) (Vxw) (X0, X7 X,
=0



Part Ill: Left-invariant Connections on
Lie Groups



Left-invariant Connections on Lie Groups

Recall that a smooth map f: (M,V) — (N, V) is called affine if for
every two vector fields X, Y € X(M) f-related to the vector fields
X.,Y € X(N) the vector field VxY is f-related to the vector field VY.

Definition 5. Let V be a connection on a Lie group G. We call V a
left-invariant connection on G if for each g € G the left translation
Ly : G — G is an affine map.

Proposition 4. A connection V on a Lie group G is left-invariant if and
only if for any two left-invariant vector fields u”, v* € g* with u,v € g,
the vector field Vv’ is also left-invariant.



Example: Canonical Connection on a Lie Group

Let G be a Lie group and (eF); a global frame of G. For X,Y € X(G)
we define

%Y =X (Y')el,
where Y = YeF, for some smooth functions Y € C>(G). It is clear
that V¢ is a left-invariant connection on G and it is called the canonical
connection on G.



Characterization of Left-invariant Connections

Let V be a left-invariant connection on a Lie group G and (eF); a global
frame of G. Then for X, Y € X(G) such that X = X’eF and Y = Y'el
with X Y € C°°(G), we have

VxY =X (Y)ef + XYV, ref.

Hence V is completely determined by the matrix (A;)” with entries

1. L
4= (Vare})

where 14 is the identity element of G.



Characterization of Left-invariant Connections

Theorem 3. There is a one-to-one correspondence between
left-invariant connections on a Lie group G and RR-bilinear maps on
its Lie algebra g.

Proof. Given a left-invariant connection V on GG. We define a unique
RR-bilinear map v : g x g — g by:

a(u,v) == (V,vh) U,V € g.

g’
Conversely, if (e;); is any basis of g, then any bilinear map « on g is
determined by the matrix (a);; with o := a (e;, ¢;) € g. Thus we
define a unique left-invariant connection V on G by setting:

veiL@f = (oz;-)L. []



Torsion-free Left-invariant Connections

Proposition 5. A left-invariant connection V on a Lie group G associated
with a bilinear map « on g is torsion-free if and only if for u,v € g

ap(u,v) = é[u,v],

where s denote the skew-symmetric part of «.
Proof. In order for the connection V to be torsion-free we must have for

u,v € g, Vyrvt — Vorul = [u,v)*. Thatis for u,v € g

aa(u,v) = %{a(u, v) —a(v,u)} = %[u,v]. (]



Cartan Connections on Lie Groups

Definition 6. A left-invariant connection V on a Lie group G is called a
Cartan connection if it is satisfying the property that for every u € g the
curve t — expg(tu) is a geodesic of V.

Proposition 6. A left-invariant connection V on a Lie group G is a
Cartan connection if and only if its associated bilinear map a on g is
skew-symmetric.

Proof. Let u € g and v : R — G be the curve ¢t — expg(tu). Since

uf/(t) = 4(t), we have

D.A(t) = (VuLuL),y =a(u,u))y. =



Torsion-free Cartan Connection on a Lie Group

Proposition 7. Given any Lie group G, there is a unique torsion-free
Cartan connection VY on G. It is given by:

VOl i= Clu)t, wveg.

T2

Proof. It suffies to see that VY is the associated left-invariant connection

to the skew-symmetric R-bilinear map o : g x g — g, (u,v) — %[u,v]. n



Cartan Connections on Lie Groups

Recall that on any Lie group G we have a canonical connection V¢ given

by:
VZL’UL =0, wu,v€Eg.

Proposition 8. Let VY, V¢ be the torsion-free Cartan connection and the
canonical connection on a Lie group G respectively. Then for any two
vector fields X, Y € X(G) one has:

1
VY = V&Y — STOXY),

where T is the torsion of V°. In particular V¢ and V° have the same
geodesics.



Bi-invariant Connections on Lie Groups

A connection on a Lie group G is called bi-invariant if it is both left and
right-invariant.

Proposition 9. The canonical connection V¢ and the torsion-free Cartan
connection V° on a Lie group G are bi-invariant connections.

Sketch of the proof. A direct computation yield for u,v € g

1
VZRUR = —[u,v]® and VSRUR = —i[u, v]R. m

Theorem 4. Any Lie group G admits a bi-invariant connection.



Part IV: Affine Symmetric Spaces



Affine Symmetric Spaces

Definition 7. Let V be a connection on a connected smooth manifold
M. We call (M, V) an affine symmetric space if for each p € M, there
exists an affine map s : M — M such that:

for each geodesic v : (—¢,€) — M with v(0) = p. s is called an affine
symmetry (or geodesic symmetry) of (M, V) about p.

Clearly an affine symmetry s of (M, V) about p € M is an involution of
M, that is
s#1Idy and sos=1Idy.

In particular, s is a diffeomorphism of M and Tjs = —Idz, .



Definition 8. A symmetric pair is a couple (G, K) of Lie groups such
that:

(a) G is connected and K is a closed subgroup of G.

(b) There exists an involutive automorphism p of G such that:
0
G,C K CG),

where G, :={g € G| p(9) = g}.



Characterization of Affine Symmetric Spaces

Theorem 5. For a connected smooth manifold M the following
statements are equivalent:

1. M admits the structure of an affine symmetric space;

2. M is a homogeneous space G/K, where (G, K) is a symmetric
pair;

3. There exists a smooth map p: M x M — M such that:

w(p,p) = p,
1 (p p(p,q1)) = au,

w(p, (a1, q2)) = p(plp, @), (v g2))

for p,q1,q2 € M. Furthermore for each p € M there exists a
neighborhood U C M of p such that if ¢ € U and u(p, q) = q,
we have ¢ = p.



Examples of Affine Symmetric Spaces

Tangent Bundle of an Affine Symmetric Space: If (M, 1) is an affine
symmetric space, then the map

Tp:TM xTM — TM,
satisfies the same properties as p. Thus (T'M,Tu) is an affine symmetric
space.

Connected Lie Groups: Clearly that any connected Lie group GG can be
seen as a homogeneous space (G x G)/G. Now define an involutive
automorphism p of G x G by:

p(g,h) :== (h,g).

The fixed-point group (G x G), of pis G. Thus G admits a structure of
an affine symmetric space.



Examples of Affine Symmetric Spaces

Spheres: Let S™ be the unit sphere of the Euclidean space (R"*!, <, >).
Define p : S™ x S™ — S™, by setting:

w(p,q) == 2(p,q)p — q.

Hence (S™, ) is an affine symmetric space.

Grassmann Manifolds: For each n > 2 and any 1 < k <n — 1, the set
Gl of all linear k-dimensional subspaces of R" is called a Grassmann
manifold. Moreover, we can easily see G}, ,, as a homogeneous space

G =2 SO(n)/S (O(k) x O(n — k).



Examples of Affine Symmetric Spaces

Define an involutive automorphism p of SO(n) by:
p(A) == JAJy,

I 0

0 —Ink
easily identified with S (O(k) x O(n — k)). We therefore deduce that
G has a structure of an affine symmetric space. In particular if we take
k = 1, we get that the (n — 1)-dimensional real projective space RP"~!
has an affine symmetric space structure.

where Jj := > The fixed-point group SO(n), of p can be



