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Let f € C*°(R™) be a smooth function, a € R™ and v € T,R"™ = R".
The directional derivative of f at a in the direction v is defined to be
the real number D, f given by:

Dy, f :=lim flattv) - f(a).
t—0 t

Let M be a smooth manifold, f € C*°(M), p € M, and v € T, M. For
any smooth curve v : (—¢,€) — M such that v(0) = p and ¥(0) = v, we
define the directional derivative by:

D, f := lim M

t—0 t



Let X € X(M) and f € C*°(M). We define the directional derivative
of f in the direction X by the function Dx f : M — R such that for each
p € M we set:

(Dxf)(p) :==Dx,f

Using local coordinates we can easily check that Dy f € C°°(M). Thus
each vector field X € X(M) gives rise to an R-linear operator

Dx : C®(M) — C*(M),
such that Dx obeys a Leibniz rule:
Dx(fg) = g9Dxf+ fDxg,

for all f,g € C°°(M). Moreover, the assignment X — Dx has a very
interesting property that is C°°(M)-linear.



Covariant Derivative on a Vector Bundle

In what follows a vector bundle means a smooth real vector bundle.

Definition 1. Let E 5 M be a vector bundle. A covariant derivative
(or connection) on the vector bundle E is a map

V:X(M)xI(E) - T(E),

such that for X € X(M) and s € I'(F) we have:

(a) Vxsis C°°(M)-linear with respect to X and R-linear with respect
to s;

(b) Leibniz rule: If f € C°°(M) is a smooth function on M, then

Vx(fs) = X(f)s + fVxs.



Existence of a Covariant Derivative

Let M x R” 2% M be a trivial vector bundle and (s;); a global frame on
it. For s € I'(M x R") and X € X(M) we define V by:

XS - ZX fl Siy
where fi,..., fr € C°(M) such that s =3";_, fis;.

Question. Does every vector bundle admits a covariant derivative?

Theorem 1. Every vector bundle £ — M has a covariant derivative.



Covariant Derivative on the Tangent Bundle of S"

Let S™ be the unit sphere of the Euclidean space (R"*!, <,>). A vector
field X of S™ can be interpreted as a smooth map X : S® — R"*! such
that (X (p),p) =0 for all p € S™.

For each X, Y € X(S"), we define a map VxY : S" — R"*! by setting:
(VxY) (p) := DY (p) (X (p)) + (X (), Y (p))p,

where Y is a smooth extension of Y to a neighborhood W of p in R"t1.
We can easily check that VxY is will defined and it is clear that VxY is
smooth.



Covariant Derivative on the Tangent Bundle of S"

Moreover, using the fact that (Y, Idgn+1) = 0 on S™, then for each
p € S™ we get

(VxY) (p),p) = (DY (p) (X(p)) . 2) + (X(p), Y (p)) = 0.
Thus VxY is a vector field of S™.
Now if we consider the map V : X(S") x X(S™) — X(S") sending (X,Y)

to VxY, then we can easily see that V is a covariant derivative on the
tangent bundle of S™ and we call it the Levi-Civita connection of S™.



Covariant Derivative is a Local Operator

Proposition 1. Let V be a covariant derivative on a vector bundle
E— M, X ecX(M)and s eI'(E). For pe M one has
1. Vxs only depends on the values of s in an arbitrarily neighborhood
of p.
2. Vxs only depends on the values of X in p.
Proof. For the first one, suppose that s vanishes on a neighborhood of p.

Choose a bump function ¢ € C°°(M) with support in U such that
¥ (p) = 1. Thus for any X € X(M) the Leibniz-rule gives

0=Vx (¢¥s) = X(¥)s+9Vxs.

Evaluating the above equation at p shows that (Vxs), = 0. The second
one is similar it suffices to use that Vxs is C°°(M )-linear with respect to
X. =m



Connection Form

Let V be a covariant derivative on an r-vector bundle £ — M. Suppose
that we take a local frame (s;); of E on U C M. For any vector field X
on U and j € {1,...,7} we may write down

Vxsj = Zw;?(X)Sk.
k=1

We put w := (wf)x; and we call w the connection form of V on U.

If (X?); is a local frame of TM over U, then we define the Christoffel
symbols of V on U to be the smooth functions Ffj € C*(U) given by:

k. k(yi



Example: Connection Form of the Levi-Civita Connection of S?

Let U be the open subset of the unit sphere S? given by:
U:=8*\{(2,0,2) €S* z>0}.
Then U can be parametrized by ¢ : (0,7) x (0,27) — U, where:
o(u1,ug) := (sinu; cos ug, sin ug sin ug, cos uy ).
Thus the Levi-Civita connection on U is given by:
Il = —sinwu cosuy, I'%y=T% = cotu,

where the other symbols are zero.



Example: Connection Form of the Levi-Civita Connection of S?

If we denote by w the connection form of the Levi-Civita connection on U
relatively to the frame {0y, , Oy, } of TS|2U, then we get

wh = T}duy + T;dus.

Hence

0 —sin uq cos uy dus
w = .
cot ug duy cot ug duq



Connection Form (Transformation Rules)

Question. Given two open subsets U,, Ug of M such that
Uy NUg # (. What is the relation between w, and wg on U, N Ug?

Let (Un, Po), (Ug, ®3) be two local trivializations and g, the transition
function relative to these local trivializations. We denote by w, and wg
the connection forms of V respectively on U, and Ug relative to the local
frame induced by ®, and ®3. Then:

W8 = 9oid9ap + 903wadas-



Pull-Back Sections

Let E 55 M be a vector bundle and f : N — M a smooth map. By a
section of E along f we mean a smooth map sy : N — E such that
mosy = f. If we denote the set of all section of £ along f by I'f(F),
then we have the following canonical isomorphism

T/(B) — T(f'E)
Sf — (IdN./S/‘).



Pull-Back Connection

Proposition 2. Let V be a covariant derivative on . Then there is a
unique covariant derivative on f*FE called the pull-back connection and
denoted by f*V such that for all Y € X(N) and s € I'(E) we have

(f*V)y (f7s) = f* (Vyvs).

Sketch of the proof. If w is the connection form of V on U, then we
define a connection form on f~1(U) by

w:i=fw. =



Covariant Derivative of a Section along a Curve

Let E 5 M be a vector bundle endowed with a covariant derivative V
and 7 : [a,b] — M a smooth curve in M. The previous proposition gives
rise to a unique R-linear map

D'Y = (’y*v)at : F’Y(E) - F’Y(E>7

which satisfies the following two conditions:
(1) For any smooth function f : [a,b] — R,

Dy(fV) = fV + fD,V;

(2) If V is extendible, i.e V' = ~*s is the pull-back of a section
s € I'(E), then we have

D,YV(t) = Vﬁ(t)s.



Parallel Transport

We say that V' € I'(E) is a parallel section along v if D,V = 0.

Given any tg € [a,b] and z € E, ), then by the existence and uniqueness
theorem of solutions of linear ODEs there exists a unique parallel section
V along ~ called the parallel transport of z along ~ which satisfies
V(to) = z. Hence for t; € [a,b], we define a map 7}, : E 0y — Eyqy),
by setting:

T, (2) =V (t1).

T;(/)tl is called the parallel transport map along ~.



Properties of the Parallel Transport Map

Eye) Eye
y

ez f ) Ty, (2) E

ey
y
T
z toty Y
S o _-7 TfoH(Z)
" .

Figure: Parallel transport map along ~v



Example of the Trivial Bundle

Let VO be the trivial connection on the 2-trivial bundle M x R? — M.
Define a global frame {s1,s2} on M x R? by:

Sp = (p7 (170))7 and S2lp = (pa (07 1));

for all p € M. Consider a smooth curve 7y : [0,1] — M on M and set
p :=~(0), then a section V := (v, (V1,V?)), with V! V2 € C®(M) is
parallel along ~ if and only if

Vi) =V3it) =0

Thus for z := (p, (21, 2?)) € {p} x R?, the parallel transport map along
Vo Top : {p} X IR2 — {v(t)} x R? is given by:

Toe(2) = (1(1), (. 2)).



Example of the Unit Sphere S”

Let S™ be the unit sphere of the Euclidean space (R"*!, <,>), V its
Levi-Civita connection and « : [0, 1] — S™ a smooth curve starting at
peS".

Question. Calculate 7, : T,S" — T.,;)S"?

First of all note that a section along ~ can be considered as a smooth
map V : [0,1] — R™! such that (V,v) = 0. So V is parallel along = if
and only if

V —(V,y)y=0.

Which is equivalent to



Example of the Unit Sphere S”

Hence V is parallel along ~ if and only if

where B(t) := —y(t)%(t)T € gl(n + 1, R).

Fix z € T,S™, it is known that the above system has a unique solution
with the initial condition V' (0) = z. Thus there exists a unique matrix
A(t) € GL(n+ 1,R) such that

V(t) = A(t)z, with A(0) = L1

In fact A(t) € SO(n+ 1), to see it, just notice that (V, V) is constant
and ¢ — A(t) is continuous. It follows that 7y, is given by:

To.(2) = A(t)z.



Parallel Transport and Covariant Derivative

Proposition 3. Let £ — M be a vector bundle endowed with a covariant
derivative V, s € I'(E), p € M and u € T,,M. Given any smooth curve
v :[0,1] — M such that (0) = p and §(0) = u, one has

d o
w =g T (5500)

where 7, : E, — E.; is the parallel transport map along .
ot + &p y(t)



Parallel Transport and Parallel Section

Corollary 1. Let s be a section of a vector bundle £ — M and V a
covariant derivative on it. The following statements are equivalent:

1. s is a parallel section i.e Vs = 0.

2. For any smooth curve «y : [0,1] — M on M with parallel transport
o one has:

Tor (84(0)) = Sy(t)-



Holonomy Group

Now let E = M be a vector bundle and V a covariant derivative on it.
Fix p € M and define

Hol, (V) := {7‘7? 1 By =N E, |~ is a loop based at p}.

It is easy to see that Hol, (V) is a subgroup of GL(E,) called the
holonomy group of V based at p. When M is path-connected, it turns
out that the holonomy groups at different points are all isomorphic and
the isomorphism is given by:

., : Hol,(V) — Holy(V), written g+ 1) 0g07)

for g € M and v : [a,b] — M is any smooth curve joined p to g.



Restricted Holonomy Group

In the same way we can define the restricted holonomy group of V
based at p € M by setting:

Holg(V) = {TI’)Y B, = E, |y is a contractible loop based at p}.

One can easily check that Holg(V) is a normal subgroup of the holonomy
group Hol,(V).



Lie Group Structure of Holonomy Group

Theorem 2. Let E 55 M be a vector bundle and V a covariant
derivative on it. For any p € M, the holonomy group Hol,(V) is an
immersed Lie subgroup of GL(E,) whose identity component is the
restricted holonomy group Holg(V).

Sketch of the proof.
@ We show that Holg(V) is path-connected.

@ Using Yamabe's Theorem we deduce that Holg(V) is an immersed
Lie subgroup of GL(E),).

© We construct a surjective group homomorphism between 71 (M, p)
and Hol,(V)/ Hol) (V).

@ We conclude the result. =



Curvature of a Covariant Derivative

Definition 2. Let V be a covariant derivative on a vector bundle
E 5 M. The 3-linear map X(M) x X(M) x I'(E) — I'(E) given by:

R(X, Y)é = VvaS — VYVXS - v[X,Y}S7

is called the curvature of the covariant derivative V.



Curvature Form

Let V be a covariant derivative on an r-vector bundle £ — M and (s;);
a local frame of E over U C M. For j € {1,...,r} and X,Y € X(U) we
can write

R(X,Y)s; = ZQ’“XY

We set ) := (Qf)k] and we call 2 the curvature form of R (or V) on U.

Question. What is the relation between Q, and Q3 on U, N Ug?



Curvature Form (Transformation Rules)

Let (Ua, ®o), (Ug, @) be two local trivializations of E with U, NUg #
and €2, Qg the curvatures forms of R on U,, Ug respectively relative to
the local frame induced by ®, and ®3. Then:

where go5 : Uy NUg — GL(r,R) is the transition function.

Question. Does it exist any formula between the connection form
and the curvature form?



Structure Equation

Proposition 4. Let V be a covariant derivative on a vector bundle
E — M, w the connection form of it and 2 the curvature form of it.
Then the connection form w and the curvature form €2 are related by:

Q=dw+wAw.

Componentwise, this formula can be expressed as follows:

r
k __ k k l
=1



Bianchi’s Identity

Corollary 2. The connection form w of V and the curvature form § of it
satisfies the following formula:

d2=QANw—wAQ.

Componentwise, this is expressed as follows:

4 = 3 (9f nwh+of 1)
=1



Flat Covariant Derivative

Definition 3. A covariant derivative V on a vector bundle E =5 M is
said to be flat if it has a vanishing curvature.

Example: The trivial connection V° on the trivial vector bundle is flat.

Definition 4. A covariant derivative V on an r-vector bundle E = M is
called trivial if there exists a global frame (s;); for E such that

Vs;j=0 foreach j=1,...,r.

The covariant derivative is called locally trivial if every point in M has a
neighborhood over which V is trivial.



Flat Covariant Derivative

Lemma 1. Let E — M be a vector bundle endowed with a flat covariant
derivative V. For each p € M and z € E,, there exists a neighborhood U
of p and a unique section s € I'(E),,) such that

Vs=0 and s,=z.

Theorem 3. Let V be a covariant derivaitve on a vector bundle,
then V is flat if and only if it is locally trivial.



Curvature and Holonomy

Let £ — M be a vector bundle endowed with a covariant derivative V,
and v : [0,1] — M a loop on M based at p € M with parallel transport
T& cEp = By

Question. Does the parallel transport 7, satisfy 77, = Idg,?



Counterexample: Latitude Circles of the Unit Sphere S?

Consider the parametrization ¢ : (0,7) x R — S? defined by:
1%

w(u,v) = (sinucos v, sinusin v, cos u).

Then recall that we have a covariant derivative on TS‘2 o given by:
@
1 & X 2 _ 12
I'5y == —sinwucosu, I'7y=1%; :=cotu,

where the other symbols are zero.

Now fix ug € (0,7), and let v : [0,27] — S? be the loop on the unit
sphere S? based at p := 7(0) and defined by:

V(1) := p(uo, ).



Counterexample: Latitude Circles of the Unit Sphere S?

Question. Calculate 7) : 7,S* — T,5°?

Let V := V19,
if and only if

T+ VQ&JW be a section along . So V is parallel along ~

VA(E) + V() =0,

where a := cosug and b := sinug. Therefore, for the initial condition
V(0) := 218u|p + z28v|p, the above system has the unique solution

{ Vi(t) — abV2(t) = 0;

V1(t) = 2! cos(at) + z%bsin(at);
1
V2(t) = 2% cos(at) — % sin(at).



Counterexample: Latitude Circles of the Unit Sphere S?

Thus the matrix representing 7 : 7,S? — T,,S? with respect to the basis
Bo := {Oy|p, Oy|p} is given by:

cos(2ma)  bsin(27ma)
A=

1
=3 sin(2ma)  cos(2ma)

Moreover, if we take the orthonormal basis B; := {0,,, %av“,} of T,S?
and we denote by P the matrix sending By to By, we get

pAp-1 — cos(2ma)  sin(2ma)
~ \ —sin(2ra) cos(27a) /)

Hence 7, is a rotation of T,S* and 7} = Idy,s2 if and only if ug = 3.



ulp

(9

)

sin (27 cos ug




Curvature and Holonomy

Theorem 5. (Ambrose-Singer) Let E — M be a vector bundle (M
is connected) and V a covariant derivative on it with curvature R.
Fix p € M, then the Lie algebra holg(V) of the restricted holonomy
group Holg(V) is the Lie subalgebra of End(E,) spanned by:

v v
Tpg © Ry(u,v) o Togs

where ¢ € M, u,v € T,M, ~:[0,1] — M is a smooth curve joined p
to ¢ and 7, : E, — E, is the parallel transport map along ~.



Curvature and Holonomy

Corollary 3. A covariant derivative on a vector bundle is flat if and only if
its restricted holonomy group is trivial.

Corollary 4. Let V be a covariant derivative on a vector bundle F over a
simply connected manifold M. If V is flat then it is trivial, in particular
the vector bundle £ — M is also trivial.

Sketch of the proof. The parallel transport of any vector z € E,, to a
point ¢ is independent of the chosen curve, and therefore defines a parallel
section of E. =
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