Connections on Vector Bundles

Othmane Dani

Cadi Ayyad University Faculty of Sciences and Technologies, Marrakesh, Morocco

Seminar Inter-Universities of Geometry (SIG)

16th October 2021

・ロト ・日ト ・王ト ・王

- Motivation
- The Covariant Derivative on a Vector Bundle

- Parallel Transport and Holonomy Group
- Curvature of a Covariant Derivative

Motivation

Let $f \in C^{\infty}(\mathbb{R}^n)$ be a smooth function, $a \in \mathbb{R}^n$ and $v \in T_a \mathbb{R}^n \cong \mathbb{R}^n$. The **directional derivative** of f at a in the direction v is defined to be the real number $D_v f$ given by:

$$D_v f := \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t}.$$

Let M be a smooth manifold, $f \in C^{\infty}(M)$, $p \in M$, and $v \in T_pM$. For any smooth curve $\gamma : (-\epsilon, \epsilon) \to M$ such that $\gamma(0) = p$ and $\dot{\gamma}(0) = v$, we define the **directional derivative** by:

$$D_v f := \lim_{t \to 0} \frac{f(\gamma(t)) - f(p)}{t}$$

Motivation

Let $X \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M)$. We define the **directional derivative** of f in the direction X by the function $D_X f : M \to \mathbb{R}$ such that for each $p \in M$ we set:

$$(D_X f)(p) := D_{X_p} f.$$

Using local coordinates we can easily check that $D_X f \in C^{\infty}(M)$. Thus each vector field $X \in \mathfrak{X}(M)$ gives rise to an \mathbb{R} -linear operator

 $D_X: C^{\infty}(M) \to C^{\infty}(M),$

such that D_X obeys a Leibniz rule:

 $D_X(fg) = gD_Xf + fD_Xg,$

for all $f, g \in C^{\infty}(M)$. Moreover, the assignment $X \mapsto D_X$ has a very interesting property that is $C^{\infty}(M)$ -linear.

In what follows a vector bundle means a smooth real vector bundle.

Definition 1. Let $E \xrightarrow{\pi} M$ be a vector bundle. A covariant derivative (or connection) on the vector bundle E is a map

 $\nabla: \mathfrak{X}(M) \times \Gamma(E) \to \Gamma(E),$

such that for $X \in \mathfrak{X}(M)$ and $s \in \Gamma(E)$ we have:

- (a) $\nabla_X s$ is $C^{\infty}(M)$ -linear with respect to X and \mathbb{R} -linear with respect to s;
- (b) Leibniz rule: If $f\in C^\infty(M)$ is a smooth function on M, then

 $\nabla_X(fs) = X(f)s + f\nabla_X s.$

Let $M \times \mathbb{R}^r \xrightarrow{\text{pr}_1} M$ be a trivial vector bundle and $(s_i)_i$ a global frame on it. For $s \in \Gamma(M \times \mathbb{R}^r)$ and $X \in \mathfrak{X}(M)$ we define ∇^0 by:

$$\nabla^0_X s := \sum_{i=1}^r X(f_i) s_i,$$

where $f_1, \ldots, f_r \in C^{\infty}(M)$ such that $s = \sum_{i=1}^r f_i s_i$.

Question. Does every vector bundle admits a covariant derivative?

Theorem 1. Every vector bundle $E \rightarrow M$ has a covariant derivative.

Let \mathbb{S}^n be the unit sphere of the Euclidean space $(\mathbb{R}^{n+1}, <, >)$. A vector field X of \mathbb{S}^n can be interpreted as a smooth map $X : \mathbb{S}^n \to \mathbb{R}^{n+1}$ such that $\langle X(p), p \rangle = 0$ for all $p \in \mathbb{S}^n$.

For each $X, Y \in \mathfrak{X}(\mathbb{S}^n)$, we define a map $\nabla_X Y : \mathbb{S}^n \to \mathbb{R}^{n+1}$ by setting:

 $\left(\nabla_X Y\right)(p) := D\widetilde{Y}(p)\left(X(p)\right) + \langle X(p), Y(p)\rangle p,$

where \widetilde{Y} is a smooth extension of Y to a neighborhood W of p in \mathbb{R}^{n+1} . We can easily check that $\nabla_X Y$ is will defined and it is clear that $\nabla_X Y$ is smooth.

Moreover, using the fact that $\langle \widetilde{Y}, \mathrm{Id}_{\mathbb{R}^{n+1}}\rangle=0$ on \mathbb{S}^n , then for each $p\in\mathbb{S}^n$ we get

 $\langle (\nabla_X Y)(p), p \rangle = \langle D\widetilde{Y}(p)(X(p)), p \rangle + \langle X(p), Y(p) \rangle = 0.$

Thus $\nabla_X Y$ is a vector field of \mathbb{S}^n .

Now if we consider the map $\nabla : \mathfrak{X}(\mathbb{S}^n) \times \mathfrak{X}(\mathbb{S}^n) \to \mathfrak{X}(\mathbb{S}^n)$ sending (X, Y) to $\nabla_X Y$, then we can easily see that ∇ is a covariant derivative on the tangent bundle of \mathbb{S}^n and we call it the **Levi-Civita connection** of \mathbb{S}^n .

Proposition 1. Let ∇ be a covariant derivative on a vector bundle $E \to M$, $X \in \mathfrak{X}(M)$ and $s \in \Gamma(E)$. For $p \in M$ one has

- 1. ∇_{Xs} only depends on the values of s in an arbitrarily neighborhood of p.
- 2. $\nabla_X s$ only depends on the values of X in p.

Proof. For the first one, suppose that s vanishes on a neighborhood of p. Choose a bump function $\psi \in C^{\infty}(M)$ with support in U such that $\psi(p) = 1$. Thus for any $X \in \mathfrak{X}(M)$ the Leibniz-rule gives

$$0 = \nabla_X (\psi s) = X(\psi)s + \psi \nabla_X s.$$

Evaluating the above equation at p shows that $(\nabla_X s)_p = 0$. The second one is similar it suffices to use that $\nabla_X s$ is $C^{\infty}(M)$ -linear with respect to X.

Let ∇ be a covariant derivative on an *r*-vector bundle $E \to M$. Suppose that we take a local frame $(s_j)_j$ of E on $U \subseteq M$. For any vector field X on U and $j \in \{1, \ldots, r\}$ we may write down

$$\nabla_X s_j = \sum_{k=1}^r \omega_j^k(X) s_k.$$

We put $\omega := (\omega_j^k)_{k,j}$ and we call ω the connection form of ∇ on U. If $(X^i)_i$ is a local frame of TM over U, then we define the Christoffel symbols of ∇ on U to be the smooth functions $\Gamma_{ij}^k \in C^{\infty}(U)$ given by:

$$\Gamma_{ij}^k := \omega_j^k(X^i).$$

Let U be the open subset of the unit sphere \mathbb{S}^2 given by:

$$U:=\mathbb{S}^2\backslash\left\{(x,0,z)\in\mathbb{S}^2,\,x\geq 0\right\}.$$

Then U can be parametrized by $\varphi:(0\,,\pi)\times(0,2\pi)\to U,$ where:

 $\varphi(u_1, u_2) := (\sin u_1 \cos u_2, \sin u_1 \sin u_2, \cos u_1).$

Thus the Levi-Civita connection on U is given by:

$$\Gamma_{22}^1 = -\sin u_1 \cos u_1, \quad \Gamma_{12}^2 = \Gamma_{21}^2 = \cot u_1,$$

where the other symbols are zero.

If we denote by ω the connection form of the Levi-Civita connection on U relatively to the frame $\{\partial_{u_1}, \partial_{u_2}\}$ of $T\mathbb{S}^2_{|_U}$, then we get

 $\omega_j^k = \Gamma_{1j}^k du_1 + \Gamma_{2j}^k du_2.$

Hence

$$\omega = \begin{pmatrix} 0 & -\sin u_1 \cos u_1 \, du_2 \\ \cot u_1 \, du_2 & \cot u_1 \, du_1 \end{pmatrix}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Question. Given two open subsets U_{α}, U_{β} of M such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$. What is the relation between ω_{α} and ω_{β} on $U_{\alpha} \cap U_{\beta}$?

Let $(U_{\alpha}, \Phi_{\alpha}), (U_{\beta}, \Phi_{\beta})$ be two local trivializations and $g_{\alpha\beta}$ the transition function relative to these local trivializations. We denote by ω_{α} and ω_{β} the connection forms of ∇ respectively on U_{α} and U_{β} relative to the local frame induced by Φ_{α} and Φ_{β} . Then:

 $\omega_{\beta} = g_{\alpha\beta}^{-1} dg_{\alpha\beta} + g_{\alpha\beta}^{-1} \omega_{\alpha} g_{\alpha\beta}.$

Let $E \xrightarrow{\pi} M$ be a vector bundle and $f: N \to M$ a smooth map. By a section of E along f we mean a smooth map $s_f: N \to E$ such that $\pi \circ s_f = f$. If we denote the set of all section of E along f by $\Gamma_f(E)$, then we have the following canonical isomorphism

$$\begin{array}{rcl} \Gamma_f(E) & \stackrel{\cong}{\longrightarrow} & \Gamma(f^*E) \\ s_f & \longmapsto & (\mathrm{Id}_N, s_f) \end{array}$$

Proposition 2. Let ∇ be a covariant derivative on E. Then there is a unique covariant derivative on f^*E called the **pull-back connection** and denoted by $f^*\nabla$ such that for all $Y \in \mathfrak{X}(N)$ and $s \in \Gamma(E)$ we have

$$(f^*\nabla)_Y(f^*s) = f^*(\nabla_{f_*Y}s).$$

Sketch of the proof. If ω is the connection form of ∇ on U, then we define a connection form on $f^{-1}(U)$ by

$$\widetilde{\omega} := f^* \omega. \quad \blacksquare$$

Let $E \xrightarrow{\pi} M$ be a vector bundle endowed with a covariant derivative ∇ and $\gamma : [a, b] \to M$ a smooth curve in M. The previous proposition gives rise to a unique \mathbb{R} -linear map

$$D_{\gamma} := (\gamma^* \nabla)_{\partial_t} : \Gamma_{\gamma}(E) \to \Gamma_{\gamma}(E),$$

which satisfies the following two conditions:

 $(1)~~{\rm For}~{\rm any}~{\rm smooth}~{\rm function}~f:[a,b]\to {\mathbb R},$

$$D_{\gamma}(fV) = \dot{f}V + fD_{\gamma}V;$$

 $(2)~~{\rm If}~V~{\rm is}$ extendible, i.e $~V=\gamma^*s~~{\rm is}$ the pull-back of a section $~s\in \Gamma(E),$ then we have

$$D_{\gamma}V(t) = \nabla_{\dot{\gamma}(t)}s.$$

We say that $V \in \Gamma_{\gamma}(E)$ is a parallel section along γ if $D_{\gamma}V \equiv 0$.

Given any $t_0 \in [a, b]$ and $z \in E_{\gamma(t_0)}$, then by the existence and uniqueness theorem of solutions of linear ODEs there exists a unique parallel section V along γ called the **parallel transport of** z along γ which satisfies $V(t_0) = z$. Hence for $t_1 \in [a, b]$, we define a map $\tau_{t_0t_1}^{\gamma} : E_{\gamma(t_0)} \to E_{\gamma(t_1)}$, by setting:

 $\tau_{t_0t_1}^{\gamma}(z) := V(t_1).$

 $\tau_{t_0t_1}^{\gamma}$ is called the parallel transport map along γ .

Properties of the Parallel Transport Map

Figure: Parallel transport map along γ

Let ∇^0 be the trivial connection on the 2-trivial bundle $M \times \mathbb{R}^2 \to M$. Define a global frame $\{s_1, s_2\}$ on $M \times \mathbb{R}^2$ by:

 $s_{1|p} := (p, (1, 0)), \text{ and } s_{2|p} := (p, (0, 1)),$

for all $p \in M$. Consider a smooth curve $\gamma : [0,1] \to M$ on M and set $p := \gamma(0)$, then a section $V := (\gamma, (V^1, V^2))$, with $V^1, V^2 \in C^{\infty}(M)$ is parallel along γ if and only if

$$\dot{V}^1(t) = \dot{V}^2(t) = 0.$$

Thus for $z := (p, (z^1, z^2)) \in \{p\} \times \mathbb{R}^2$, the parallel transport map along γ , $\tau_{0t}^{\gamma} : \{p\} \times \mathbb{R}^2 \to \{\gamma(t)\} \times \mathbb{R}^2$ is given by:

 $\tau_{0t}^{\gamma}(z) = \left(\gamma(t), (z^1, z^2)\right).$

Let \mathbb{S}^n be the unit sphere of the Euclidean space $(\mathbb{R}^{n+1}, <, >)$, ∇ its Levi-Civita connection and $\gamma : [0,1] \to \mathbb{S}^n$ a smooth curve starting at $p \in \mathbb{S}^n$.

Question. Calculate $\tau_{0t}^{\gamma}: T_p \mathbb{S}^n \to T_{\gamma(t)} \mathbb{S}^n$?

First of all note that a section along γ can be considered as a smooth map $V: [0,1] \to \mathbb{R}^{n+1}$ such that $\langle V, \gamma \rangle = 0$. So V is parallel along γ if and only if

$$\dot{V} - \langle \dot{V}, \gamma \rangle \gamma = 0.$$

Which is equivalent to

 $\dot{V} = -\langle V, \dot{\gamma} \rangle \gamma.$

Hence V is parallel along γ if and only if

 $\dot{V}(t) = B(t)V(t),$

where $B(t) := -\gamma(t)\dot{\gamma}(t)^T \in \mathfrak{gl}(n+1,\mathbb{R}).$

Fix $z \in T_p \mathbb{S}^n$, it is known that the above system has a unique solution with the initial condition V(0) = z. Thus there exists a unique matrix $A(t) \in GL(n+1, \mathbb{R})$ such that

V(t) = A(t)z, with $A(0) = I_{n+1}$.

In fact $A(t) \in SO(n+1)$, to see it, just notice that $\langle V, V \rangle$ is constant and $t \mapsto A(t)$ is continuous. It follows that τ_{0t}^{γ} is given by:

 $\tau_{0t}^{\gamma}(z) = A(t)z.$

Proposition 3. Let $E \to M$ be a vector bundle endowed with a covariant derivative ∇ , $s \in \Gamma(E)$, $p \in M$ and $u \in T_pM$. Given any smooth curve $\gamma : [0,1] \to M$ such that $\gamma(0) = p$ and $\dot{\gamma}(0) = u$, one has

$$\nabla_{u}s = \frac{d}{dt}_{|_{t=0}}\tau_{0t}^{\gamma^{-}}\left(s_{\gamma(t)}\right),$$

where $\tau_{0t}^{\gamma}: E_p \to E_{\gamma(t)}$ is the parallel transport map along γ .

Corollary 1. Let s be a section of a vector bundle $E \to M$ and ∇ a covariant derivative on it. The following statements are equivalent:

- 1. s is a parallel section i.e $\nabla s \equiv 0$.
- 2. For any smooth curve $\gamma: [0,1] \to M$ on M with parallel transport τ_{0t}^{γ} , one has:

 $\tau_{0t}^{\gamma}\left(s_{\gamma(0)}\right) = s_{\gamma(t)}.$

Now let $E \xrightarrow{\pi} M$ be a vector bundle and ∇ a covariant derivative on it. Fix $p \in M$ and define

$$\operatorname{Hol}_p(\nabla) := \Big\{ \tau_p^{\gamma} : E_p \xrightarrow{\cong} E_p \,|\, \gamma \text{ is a loop based at } p \Big\}.$$

It is easy to see that $\operatorname{Hol}_p(\nabla)$ is a subgroup of $GL(E_p)$ called the **holonomy group** of ∇ based at p. When M is path-connected, it turns out that the holonomy groups at different points are all isomorphic and the isomorphism is given by:

 $\widehat{\Phi}_{\gamma}: \operatorname{Hol}_p(\nabla) \to \operatorname{Hol}_q(\nabla), \quad \text{written} \quad g \mapsto \tau_{pq}^{\gamma} \circ g \circ \tau_{pq}^{\gamma^-},$

for $q \in M$ and $\gamma : [a, b] \to M$ is any smooth curve joined p to q.

In the same way we can define the restricted holonomy group of ∇ based at $p\in M$ by setting:

$$\operatorname{Hol}_p^0(\nabla) := \Big\{ \tau_p^\gamma : E_p \xrightarrow{\cong} E_p \,|\, \gamma \text{ is a contractible loop based at } p \Big\}.$$

One can easily check that $\mathrm{Hol}_p^0(\nabla)$ is a normal subgroup of the holonomy group $\mathrm{Hol}_p(\nabla).$

Theorem 2. Let $E \xrightarrow{\pi} M$ be a vector bundle and ∇ a covariant derivative on it. For any $p \in M$, the holonomy group $\operatorname{Hol}_p(\nabla)$ is an immersed Lie subgroup of $GL(E_p)$ whose identity component is the restricted holonomy group $\operatorname{Hol}_p^0(\nabla)$.

Sketch of the proof.

- We show that $\operatorname{Hol}_p^0(\nabla)$ is path-connected.
- ❷ Using Yamabe's Theorem we deduce that $\operatorname{Hol}_p^0(\nabla)$ is an immersed Lie subgroup of $GL(E_p)$.
- We construct a surjective group homomorphism between $\pi_1(M, p)$ and $\operatorname{Hol}_p(\nabla)/\operatorname{Hol}_p^0(\nabla)$.

④ We conclude the result. ■

Definition 2. Let ∇ be a covariant derivative on a vector bundle $E \xrightarrow{\pi} M$. The 3-linear map $\mathfrak{X}(M) \times \mathfrak{X}(M) \times \Gamma(E) \to \Gamma(E)$ given by:

 $R(X,Y)s := \nabla_X \nabla_Y s - \nabla_Y \nabla_X s - \nabla_{[X,Y]} s,$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

is called the **curvature** of the covariant derivative ∇ .

Let ∇ be a covariant derivative on an *r*-vector bundle $E \to M$ and $(s_j)_j$ a local frame of E over $U \subseteq M$. For $j \in \{1, \ldots, r\}$ and $X, Y \in \mathfrak{X}(U)$ we can write

$$R(X,Y)s_j = \sum_{k=1}^{\prime} \Omega_j^k(X,Y)s_k.$$

We set $\Omega := (\Omega_j^k)_{k,j}$ and we call Ω the curvature form of R (or ∇) on U.

Question. What is the relation between Ω_{α} and Ω_{β} on $U_{\alpha} \cap U_{\beta}$?

Let $(U_{\alpha}, \Phi_{\alpha}), (U_{\beta}, \Phi_{\beta})$ be two local trivializations of E with $U_{\alpha} \cap U_{\beta} \neq \emptyset$ and $\Omega_{\alpha}, \Omega_{\beta}$ the curvatures forms of R on U_{α}, U_{β} respectively relative to the local frame induced by Φ_{α} and Φ_{β} . Then:

$$\Omega_{\beta} = g_{\alpha\beta}^{-1} \Omega_{\alpha} g_{\alpha\beta},$$

where $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to GL(r, \mathbb{R})$ is the transition function.

Question. Does it exist any formula between the connection form and the curvature form?

Proposition 4. Let ∇ be a covariant derivative on a vector bundle $E \rightarrow M$, ω the connection form of it and Ω the curvature form of it. Then the connection form ω and the curvature form Ω are related by:

 $\Omega = d\omega + \omega \wedge \omega.$

Componentwise, this formula can be expressed as follows:

$$\Omega_j^k = d\omega_j^k + \sum_{l=1}^r \omega_l^k \wedge \omega_j^l.$$

Corollary 2. The connection form ω of ∇ and the curvature form Ω of it satisfies the following formula:

 $d\Omega = \Omega \wedge \omega - \omega \wedge \Omega.$

Componentwise, this is expressed as follows:

$$d\Omega_j^k = \sum_{l=1}^r \left(\Omega_l^k \wedge \omega_j^l + \omega_l^k \wedge \Omega_j^l \right).$$

Definition 3. A covariant derivative ∇ on a vector bundle $E \xrightarrow{\pi} M$ is said to be **flat** if it has a vanishing curvature.

Example: The trivial connection ∇^0 on the trivial vector bundle is flat.

Definition 4. A covariant derivative ∇ on an *r*-vector bundle $E \xrightarrow{\pi} M$ is called **trivial** if there exists a global frame $(s_i)_i$ for E such that

 $\nabla s_j \equiv 0$ for each $j = 1, \ldots, r$.

The covariant derivative is called **locally trivial** if every point in M has a neighborhood over which ∇ is trivial.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Lemma 1. Let $E \to M$ be a vector bundle endowed with a flat covariant derivative ∇ . For each $p \in M$ and $z \in E_p$, there exists a neighborhood U of p and a unique section $s \in \Gamma(E_{|_U})$ such that

 $\nabla s \equiv 0$ and $s_p = z$.

Theorem 3. Let ∇ be a covariant derivative on a vector bundle, then ∇ is flat if and only if it is locally trivial.

Let $E \to M$ be a vector bundle endowed with a covariant derivative ∇ , and $\gamma : [0,1] \to M$ a loop on M based at $p \in M$ with parallel transport $\tau_{0t}^{\gamma} : E_p \to E_{\gamma(t)}$.

Question. Does the parallel transport τ_{0t}^{γ} satisfy $\tau_{01}^{\gamma} = \mathrm{Id}_{E_p}$?

Consider the parametrization $\varphi: \underbrace{(0,\pi) \times \mathbb{R}}_{V} \to \mathbb{S}^{2}$ defined by:

 $\varphi(u,v) = (\sin u \cos v, \sin u \sin v, \cos u).$

Then recall that we have a covariant derivative on $T\mathbb{S}^2_{|_{\varphi(V)}}$ given by:

$$\Gamma_{22}^1 := -\sin u \cos u, \quad \Gamma_{12}^2 = \Gamma_{21}^2 := \cot u,$$

where the other symbols are zero.

Now fix $u_0 \in (0, \pi)$, and let $\gamma : [0, 2\pi] \to \mathbb{S}^2$ be the loop on the unit sphere \mathbb{S}^2 based at $p := \gamma(0)$ and defined by:

 $\gamma(t) := \varphi(u_0, t).$

Question. Calculate $\tau_p^{\gamma} : T_p \mathbb{S}^2 \to T_p \mathbb{S}^2$?

Let $V:=V^1\partial_{u|\gamma}+V^2\partial_{v|\gamma}$ be a section along $\gamma.$ So V is parallel along γ if and only if

$$\begin{cases} \dot{V}^{1}(t) - abV^{2}(t) = 0; \\ \dot{V}^{2}(t) + \frac{a}{b}V^{1}(t) = 0, \end{cases}$$

where $a := \cos u_0$ and $b := \sin u_0$. Therefore, for the initial condition $V(0) := z^1 \partial_{u|p} + z^2 \partial_{v|p}$, the above system has the unique solution

$$\begin{cases} V^{1}(t) = z^{1}\cos(at) + z^{2}b\sin(at); \\ V^{2}(t) = z^{2}\cos(at) - \frac{z^{1}}{b}\sin(at). \end{cases}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Thus the matrix representing $\tau_p^{\gamma}: T_p \mathbb{S}^2 \to T_p \mathbb{S}^2$ with respect to the basis $\mathbb{B}_0 := \{\partial_{u|p}, \partial_{v|p}\}$ is given by:

$$A := \begin{pmatrix} \cos(2\pi a) & b\sin(2\pi a) \\ -\frac{1}{b}\sin(2\pi a) & \cos(2\pi a) \end{pmatrix}.$$

Moreover, if we take the orthonormal basis $\mathbb{B}_1 := \{\partial_{u|p}, \frac{1}{b}\partial_{v|p}\}$ of $T_p \mathbb{S}^2$ and we denote by P the matrix sending \mathbb{B}_1 to \mathbb{B}_0 , we get

$$PAP^{-1} = \begin{pmatrix} \cos(2\pi a) & \sin(2\pi a) \\ -\sin(2\pi a) & \cos(2\pi a) \end{pmatrix}$$

Hence τ_p^{γ} is a rotation of $T_p \mathbb{S}^2$ and $\tau_p^{\gamma} = \mathrm{Id}_{T_p \mathbb{S}^2}$ if and only if $u_0 = \frac{\pi}{2}$.

$$z_0 := \frac{1}{b} \partial_{v|p} \Rightarrow \tau_p^{\gamma}(z_0) = \sin(2\pi \cos u_0) \partial_{u|p} + \cos(2\pi \cos u_0) z_0$$

▲□▶ ▲舂▶ ▲差▶ ▲差▶ 差 めんの

Theorem 5. (Ambrose-Singer) Let $E \to M$ be a vector bundle (M is connected) and ∇ a covariant derivative on it with curvature R. Fix $p \in M$, then the Lie algebra $\mathfrak{hol}_p^0(\nabla)$ of the restricted holonomy group $\operatorname{Hol}_p^0(\nabla)$ is the Lie subalgebra of $\operatorname{End}(E_p)$ spanned by:

$$\tau_{pq}^{\gamma^-} \circ R_q(u,v) \circ \tau_{pq}^{\gamma},$$

where $q \in M$, $u, v \in T_qM$, $\gamma : [0,1] \to M$ is a smooth curve joined p to q and $\tau_{pq}^{\gamma} : E_p \to E_q$ is the parallel transport map along γ .

Corollary 3. A covariant derivative on a vector bundle is flat if and only if its restricted holonomy group is trivial.

Corollary 4. Let ∇ be a covariant derivative on a vector bundle E over a simply connected manifold M. If ∇ is flat then it is trivial, in particular the vector bundle $E \to M$ is also trivial.

Sketch of the proof. The parallel transport of any vector $z \in E_p$ to a point q is independent of the chosen curve, and therefore defines a parallel section of E.