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Preliminaries

Let M be an n-dimensional smooth manifold. For any x ∈ M, we call a
frame on M at x any linear isomorphism Rn '−→ TxM, the set of such
frames will be denoted L(M)x . Clearly, the general linear group GL(n,R)
acts naturally on L(M)x via the map :

L(M)x ×GL(n,R) −→ L(M)x , (z , g) 7→ z ◦ g ,

and it is not hard to see that this action is simply transitive. Now define

L(M) := qx∈ML(M)x

and consider the projection π : L(M) −→ M given by π(L(M)x ) := x .
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Preliminaries

Proposition 1.1

Let M be an n-dimensional manifold. Then L(M) π−→ M has a unique
structure of a smooth principal GL(n,R)-bundle over M called the frame
bundle of TM such that for any local frame {E1, . . . ,En} of TM defined
on an open subset U ⊂ M, the map :

σ : U −→ L(M), x 7→ {E1|x , . . . ,En|x}, (1)

is a local (smooth) section of L(M). Conversely, if σ : U −→ L(M) is any
smooth section, then there exists a local frame {E1, . . . ,En} of TM over
U such that σ is of the form (1).
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Preliminaries

In a similar way one defines on a Riemannian manifold (M, 〈 , 〉) the
bundle of orthonormal frames O(M) := qx∈MO(M)x where each O(M)x
consists of linear isometries

(Rn, 〈 , 〉0) '−→ (TxM, 〈 , 〉x ).

It is clear that O(M) ⊂ L(M), on the other hand the orthogonal group
O(n) acts simply transitively on O(M).
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Preliminaries

Proposition 1.2

Let (M, 〈 , 〉) be an n-dimensional Riemannian manifold. Then
O(M) π−→ M is a smooth principal O(n)-subbundle of L(M). Futhermore
if {E1, . . . ,En} is any local, orthonormal frame of TM defined on an open
subset U ⊂ M then the map :

σ : U −→ L(M), x 7→ {E1|x , . . . ,En|x}, (2)

is a local (smooth) section of O(M). Conversely, if σ : U −→ O(M) is
any smooth section, then there exists a local orthonormal frame
{E1, . . . ,En} of TM over U such that σ is of the form (2).
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Preliminaries

Any diffeomorphism f : M −→ M induces a principal bundle
automorphism f∗ : L(M) −→ L(M) such that the following diagram is
commutative :

L(M) L(M)

M M

f∗

π π

f

Explicitly, for any z ∈ L(M) we have f∗(z) := Tπ(z)f ◦ z .
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Preliminaries

Define on L(M) the Rn-valued 1-form θ ∈ Ω1(L(M),Rn) given by

θz (v) := z−1(Tzπ(v)),

we call it the canonical form of L(M). We have the following result :

Proposition 1.3

Let M be a smooth manifold and let θ denote the canonical form of the
frame bundle L(M). If f : M −→ M is any diffeomorphism of M then f∗
preserves θ. Conversely, if A : L(M) −→ L(M) is any fiber-preserving
transformation leaving θ invariant, then A = f∗ for some f ∈ Diff(M).
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Preliminaries

Proof.
The first point is a straightforward computation. Conversely, we first
notice that since A : L(M) −→ L(M) is fiber-preserving, the map :

f : M −→ M, f (x) = π(A(z)), z ∈ π−1(x),

is a well-defined diffeomorphism of M. Now :

(A∗θ)z (v) = θA(z)(TzA(v)) = A(z)−1 ◦ Tπ(z)f ◦ Tzπ(v),

so A will preserve θ if and only if A(z)−1 ◦ Tπ(z)f = z−1 for any z ∈ P
which is exactly what A = f∗ means.
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Preliminaries

Proposition 1.3 states that the morphism Diff(M) Ψ→ Aut(L(M)), f 7→ f∗
sends the group of diffeomorphisms of M isomorphically onto the
subgroup of automorphisms of L(M) preserving the canonical form θ.
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Preliminaries

Definition 1.1

Let G be a Lie group with Lie algebra g. A connection form on a
principal G-bundle P π−→ M is a 1-form ω ∈ Ω1(P, g) satisfying :
1- For any z ∈ P and any A ∈ g, ωz (Ãz ) = A where Ã is the

fundamental vector field on P corresponding to A, i.e

Ãz := d
dt t=0

z · exp(−tA).

2- For any g ∈ G and any z ∈ P, v ∈ Tz (p),

(R∗gω)z (v) = Adg−1 (ωz (v)),

with Rg : P −→ P being the map z 7→ z · g.
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The Affine Group as a Lie group

Let now ∇ be a linear connection on M. A diffeomorphism f : M −→ M
is called an affine transformation with respect to ∇ if it satisfies

f∗(∇XY ) = ∇f∗X f∗Y

for any X ,Y ∈ χ(M) where f∗X is the vector field on M given by :

(f∗X )f −1(x) := (Tx f )−1(Xx ).

The group of such transformations will be denoted Aff(M,∇). On the
other hand, we say that X ∈ χ(M) is an affine vector field if it generates
a local 1-parameter group of affine transformations.
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The Affine Group as a Lie group

Proposition 2.1

Let M be a smooth manifold and ∇ a linear connection on M. Then
there exists a unique connection form ω on L(M) such that for any local
section σ := {E1, . . . ,En} of L(M) defined on U, σ∗ω = Γ where
Γ ∈ Ω1(U, gl(n,R)) is given by :

∇Ei =
n∑

j=1
ΓijEj .

Conversely, any connection form ω on L(M) gives rise to a linear
connection ∇ on M by means of the previous expression.
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The Affine Group as a Lie group

Proposition 2.2

Let M be a smooth manifold, ∇ a linear connection on M and ω the
connection form on L(M) corresponding to ∇. Let f : M −→ M be a
diffeomorphism, then :
1- f ∈ Aff(M,∇) if and only if f∗ preserves the connection form ω.
2- Conversely, any fiber-preserving tranformation A : L(M) −→ L(M)

leaving both θ and ω invariant is of the form A = f∗ for some
f ∈ Aff(M,∇).
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The Affine Group as a Lie group

Proof.

Define on M the linear connection ∇̃ by the expression :

∇̃XY = (f∗)−1(∇f∗X f∗Y )

The idea is to prove that (f −1)∗ω is the (unique) connection form on
L(M) defining ∇̃. So f is an affine transformation i.e ∇̃ = ∇ if and only
if ω = f ∗ω.

15



The Affine Group as a Lie group

Theorem 1

Let M be an n-dimensional smooth manifold with a global trivialization
{X1, . . . ,Xn} of TM. Denote G the group of transformations preserving
this trivialization, i.e diffeomorphisms f : M −→ M satisfying
Tx f (Xi |x ) = Xi |f (x). Then G possesses a unique Lie group structure for
the compact-open topology such that dimG ≤ dimM. More precisely for
any p ∈ M, the map :

G −→ M, f 7→ f (p),

is an imbedding of G onto a closed submanifold of M, and the
submanifold structure on the image is what makes G a Lie
transformation group. Moreover the Lie algebra of G consists of complete
vector fields whose 1-parameter subgroups are in G.
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The Affine Group as a Lie group

Theorem 2

Let M be a smooth n-dimensional manifold and ∇ an affine connection
on M, then Aff(M,∇) is a Lie group for the compact-topology of
dimension ≤ n2 + n. More precisely for any z ∈ L(M) the map :

Aff(M,∇) −→ L(M), f 7→ f∗(z),

is injective and its image is a closed submanifold of L(M). The
submanifold structure on its image makes Aff(M,∇) a Lie transformation
group. Its Lie algebra consists of complete affine vector fields on M.
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Proof.

For any x ∈ M, Recall that since GL(n,R) acts simply transitively on
Px := π−1(x), the map GL(n,R) −→ Px , g 7→ z · g is a diffeomorphism
and its differential

gl(n,R) −→ TzPx , A 7→ d
dt t=0

z · exp(tA),

is an isomorphism. Thus for any v ∈ TzPx there is a unique A ∈ gl(n,R)
such that v = Ãz . On the other hand TzPx = ker(Tzπ).

Denote ω the connection form on P := L(M) corresponding to ∇. We
prove that the map

TP φ−→ P × (gl(n,R)× Rn), Z 7→ (p(Z ), ω(Z ), θ(Z )),

defines a trivialization of TP. First notice that φ is surjective given that
π : P −→ M is a submersion and A = ω(Ã) for any A ∈ gl(n,R).
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Let v ∈ TzP such that θz (v) = 0 and ωz (v) = 0, then :

0 = θz (v) = z−1(Tzπ(v)),

hence v ∈ ker(Tzπ) := TzPπ(z), on the other hand write v = Ãz for
some A in gl(n,R) then we get that

0 = ωz (v) = ωz (Ãz ) = A,

and so v = 0, i.e φ is injective. On the other hand if σ : U −→ P is any
local section one can define the map :

P|U × (gl(n,R)× Rn) ψ−→ P|U , Ãσ(π(z)) + (Tπ(z)σ)(σπ(z)(v)),

it is clear that ψ is a smooth map and φ ◦ ψ = Id, thus φ is a local
diffeomorphism and we conclude that it is a vector bundle isomorphism.
Finally, one checks that any fiber preserving transformation F : P −→ P
leaving θ and ω invariant leaves φ invariant. By Theorem 1 we get the
desired result.
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The Isometry Group as a Lie group

Assume now that (M, 〈 , 〉) is a Riemannian manifold and let ∇ be a
metric connection on M, i.e X 〈Y ,Z 〉 = 〈∇XY ,Z 〉+ 〈Y ,∇XZ 〉.
Let {E1, . . . ,En} be a local orthonormal frame of TM defined on an open
subset U ⊂ M and write

∇Ei =
n∑

j=1
ΓijEj .

Then we get that Γij = −Γji or in other terms Γ ∈ Ω1(U, so(n)).
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The Isometry Group as a Lie group

Thus if ω̃ is the connection form on L(M) corresponding to ∇ then its
restriction ω to the orthogonal frame bundle O(M) is so(n)-valued and
defines therefore a connection form on O(M) and it is in fact the only
connection form on O(M) representing ∇. Conversely any connection
form on O(M) admits a unique extension to L(M) and defines therefore
a metric connection ∇ on M.
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The Isometry Group as a Lie group

Proposition 3.1

Let (M, 〈 , 〉) be a Riemannian manifold, ∇ its Levi-Civita connection
and ω the connection form on O(M) representing ∇.
1- A diffeomorphism f : M −→ M is an isometry if and only if

f∗(O(M)) = O(M).
2- If A : O(M) −→ O(M) is a fiber-preserving transformation leaving

invariant the canonical form θ of O(M), then there exists a unique
isometry f : M −→ M such that A = f∗.

3- Any (principal) bundle automorphism O(M) −→ O(M) leaving θ
invariant, leaves ω invariant.
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The Isometry Group as a Lie group

Proof.
The first point is the definition of a Riemannian isometry, the argument
for the second point is the same as in Proposition 2.2. For the third
point, observe that since ∇ is torsion-free, then ω is torsion-free as well
i.e the 2-form T ∈ Ω2(O(M),Rn), called torsion form of ω, given by :

T := ω ∧ θ + dθ, (3)

vanishes. Let A : O(M) −→ O(M) be a bundle automorphism, then A∗ω
is a connection form on O(M). Since A preserves the canonical form θ,
we get from expression (3) that A∗ω is torsion-free as well, so by
uniqueness of the Levi-Civita connection we conclude that A∗ω = ω.
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The Isometry Group as a Lie group

Theorem 3

Let (M, 〈 , 〉) be a Riemannian manifold, then Isom(M, 〈 , 〉) with the
compact-open topology is a Lie group of dimension ≤ n(n+1)

2 . In fact for
any z ∈ O(M), the map :

Isom(M, 〈 , 〉) −→ O(M), f 7→ f∗(z),

is an imbedding and its image is a closed submanifold of O(M). If ∇ is
the Levi-Civita connection of 〈 , 〉 then Isom(M, 〈 , 〉) is a closed
subgroup of Aff(M,∇). Its Lie algebra consists of complete Killing vector
fields on M.
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The Isometry Group as a Lie group

Proposition 3.2

The natural action of Isom(M, 〈 , 〉) on M is proper. In particular if M is
compact then Isom(M, 〈 , 〉) is compact.
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Proof.
Choose a compact K ⊂ M and put GK = {f ∈ Isom(M), f (K )∩K 6= ∅}.
Let (fn)n be an arbitrary sequence of GK , then for any n ∈ N we can find
pn ∈ K such that fn(pn) ∈ K. Since K is compact, one can show that
there exists a subsequence (pϕ(n))n of (pn)n converging to some p ∈ K
such that (fϕ(n)(pϕ(n)))n is also convergent, denote q its limit.

Let d : M ×M −→ R+ be the geodesic distance, then :

d(fϕ(n)(p), q) ≤ d(fϕ(n)(p), fϕ(n)(pϕ(n))) + d(fϕ(n)(pϕ(n)), q)
≤ d(p, pϕ(n)) + d(fϕ(n)(pϕ(n)), q) −→

n→+∞
0.

Next put p = π(z) with z ∈ O(M) and C = {fϕ(n)(p), n ∈ N} ∪ {q},
since O(n) is compact we get that π−1(C) is a compact subset of O(M),
therefore ((fϕ(n))∗(z))n and so it has a convergent subsequence.
By Theorem 3, {f∗(z), f ∈ Isom(M)} is closed submanifold in O(M) so
((fψ(n))∗(z))n converges to f∗(z) for some isometry f and by the same
result we get that (fψ(n))n converges to f in Isom(M, 〈 , 〉). We conclude
that GK is compact and so Isom(M, 〈 , 〉) acts properly on M.
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Results on the dimension of the group of affine
transformations

Theorem 4
Let M be an n-dimensional manifold with a linear connection ∇. Then
dim(Aff(M,∇)) = n(n + 1) if and only if M is an ordinary affine space
with the natural flat affine connection.
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Parallel Transport and horizontal lift

Let M be an n-dimensional smooth manifold and ∇ a linear connection
on M. Let γ : [0, 1] −→ M be a smooth a curve, then ∇ provides a
unique linear operator denoted Dγ̇ : Γ(γ−1TM) −→ Γ(γ−1TM)
satisfying :

Dγ̇(fV ) = f ′V + fDγ̇V , f ∈ C∞([0, 1],R), V ∈ Γ(γ−1TM),

we call it the covariant derivation along γ, here Γ(γ−1TM) is the space
of vector fields along γ i.e smooth maps V : [0, 1] −→ TM such that
V (t) ∈ Tγ(t)M.

Finally V is said to be parallel along γ if Dγ̇V = 0.
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Parallel Transport and horizontal lift

Theorem 5
Let M be an n-dimensional manifold with a linear connection ∇ and
γ : [0, 1] −→ M a smooth curve. For any v ∈ Tγ(0)M, there exists a
unique parallel vector field V along γ satisfying V (0) = v. We call V the
parallel transport of v along γ.
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Parallel Transport and horizontal lift

Let ω be the connection form on L(M) representing ∇, for any basis
{e1, . . . , en} of Tγ(0)M one obtain a parallel frame {E1, . . . ,En} along γ
i.e Ei is the parallel vector field along γ satisfying Ei (0) = ei .

It is an easy matter to see that {E1(t), . . . ,En(t)} is a basis of Tγ(t)M,
thus one obtains a smooth curve γ̃ : [0, 1] −→ L(M) given by :

γ̃(t) = (E1(t), . . . ,En(t)),

this curve is called the horizontal lift of γ to L(M) through {e1, . . . , en}.
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Parallel Transport and horizontal lift

Proposition 1.1

Let M be an n-dimensional manifold with a linear connection ∇ and let
γ : [0, 1] −→ M and α : [0, 1] −→ L(M) be smooth curves. Then α is a
horizontal lift of γ if and only if π ◦ α = γ and ωα(t)(α̇(t)) = 0, where ω
is the connection form corresponding to ∇.
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Parallel Transport and horizontal lift

Recall that a vector field Z on L(M) is called horizontal if ω(Z ) = 0 and
standard if θ(Z ) is a constant function.

Proposition 1.2

Let M be an n-dimensional manifold with a linear connection ∇ and ω
the connection form of ∇ on L(M).

1 Let Z be a standard horizontal vector field on L(M). For any
z ∈ L(M), the curve defined by γ(t) := π(ϕZ

t (z)) is a geodesic on
M.

2 Conversely, given a geodesic γ : [−a, a] −→ M, there exists a local
standard horizontal vector field Z on L(M) and ε > 0 such that
γ(t) = ϕZ

t (z) for any −ε < t < ε.
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Parallel Transport and horizontal lift

Proof.
We only prove the first point. Let z ∈ L(M) then there exists ε > 0 such
that the curve α :]− ε, ε[−→ L(M) given by α(t) = ϕZ

t (z) is well-defined
and smooth. Let γ(t) = π(α(t)), since ωα(t)(α′(t)) = ωα(t)(Zα(t)) = 0
then Proposition 1.1 gives that α is a horizontal lift of γ on L(M),
therefore if we write :

α(t) = (V1(t), . . . ,Vn(t)), Vi ∈ Γ(γ−1TM),

we get that {V1, . . . ,Vn} is a parallel frame along γ. On the other hand
if we write θz (Zz ) = (a1, . . . , an) then we get that :

γ′(t) = Tα(t)π(Zα(t)) = α(t)(θα(t)(Zα(t))) = α(t)(θz (Zz )) =
n∑

i=1
aiVi (t),

which shows that γ′ is parallel along γ i.e γ is a geodesic.
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Parallel Transport and horizontal lift

Denote aff(M,∇) := Lie(Aff(M,∇)), any X ∈ aff(M,∇) defines a
smooth vector field X̂ of L(M) given by :

X̂z := d
dt t=0

exp(tX )∗(z).

It is clear that X̂ is a complete vector field on L(M).
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Parallel Transport and horizontal lift

Proposition 1.3

Let M be an n-dimensional manifold, ∇ a linear connection on M, and
let X ∈ aff(M,∇). Suppose that ωz (X̂z ) = 0 for some z ∈ L(M). Then
the curve γ : R −→ M, γ(t) = exp(tX ) · x with x = π(z) is a geodesic
and its horizontal lift at z is the curve γ̂(t) := exp(tX )∗(z), t ∈ R.
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Parallel Transport and horizontal lift

Proof.
Put γ̂(t) = exp(tX )∗(z), then clearly π(γ̂(t)) = γ(t), moreover from the
relation exp(tX )∗ω = ω we get that ωexp(tX)∗z (X̂exp(tX)∗z ) = 0 which
means that γ̂ is the horizontal lift of γ through z, in particular if
z = (e1, . . . , en) then :

γ̂(t) = (E1(t), . . . ,En(t)),

Ei being the parallel transport of ei along γ. Moreover exp(tX )∗θ = θ
gives that θexp(tX)∗z (X̂exp(tX)∗z ) = θz (X̂z ) so if θz (Xz ) = (a1, . . . , an) we
get that :

γ′(t) = Tγ̂(t)π(X̂γ̂(t)) = γ̂(t)(θγ̂(t)(X̂γ̂(t))) = γ̂(t)(θz (X̂z )) =
n∑

i=1
aiEi (t).

Hence γ′ is parallel along γ, i.e γ is a geodesic.
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Main Results

Theorem 6
Let M be an n-dimensional manifold with a linear connection ∇. Then
dim(Aff(M,∇)) = n(n + 1) if and only if M is an ordinary affine space
with the natural flat affine connection.
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Proof.

Denote G := Aff(M,∇) and for any x ∈ M denote Gx the isotropy at x
for the natural action of G on M. First note that the map :

Gx −→ GL(TxM), f 7→ Tx f (4)

is an injective Lie group homomorphism. Assume now that
dimG = n(n + 1), then let x ∈ M and z ∈ L(M) such that π(z) = x .
Since the map :

G Ψ−→ L(M), f 7→ f∗(z)

is an imbedding of G onto a closed submanifold of L(M) and
dimL(M) = n(n + 1), then either Ψ(G) = L(M) or Ψ(G) is a connected
component of L(M) and in any case we get that M = G · x ' G/Gx ,
therefore :

dimGx = dimG − dimM = n2.

This gives that G0
x = GL+(TxM) under the identification (4).
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Main Results

Now let t > 0 and consider the transformation At ∈ GL+(TxM) given by
At(u) = tu. From the previous remark there exists ft ∈ G0

x such that
Tx ft = At , hence for any u, v ,w ∈ TxM we get that :

At(R∇x (u, v)w) = R∇x (Atu,Atv)Atw , At(T∇x (u, v)) = T∇x (Atu,Atv),

therefore R∇x (u, v)w = t−2R∇x (u, v)w and T∇x (u, v) = t−1T∇x (u, v) for
all t > 0, and so we conclude that R∇ = 0 and T∇ = 0.
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Main Results
On the other hand, let Z be a standard horizontal vector field on L(M). If
g := Lie(G) then there exists a unique X ∈ g such that Zz = X̂z where :

X̂z̃ := d
dt t=0

exp(tX )∗z̃ , z̃ ∈ L(M).

From Proposition 1.3 we get that γ(t) = exp(tX ) · x is a geodesic with
horizontal lift at z the curve γ̂(t) = exp(tX )∗(z) defined for any t ∈ R.
Now γ : R −→ M is the geodesic with initial conditions γ(0) = x and
γ′(0) = Tzπ(Zz ) and therefore its horizontal lift at z is exactly

α :]− ε, ε[−→ L(M), t 7→ ϕZ
t (z),

which proves that α can be extended to all of R. Since z ∈ L(M) was
arbitrary we get that Z is complete, and since we know by Proposition
1.2 that geodesics of M are exactly the projections of integral curves of
standard horizontal vector fields, we conclude that M is (geodesically)
complete.
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Main Results

Consider now the universal cover M̃ of (M,∇) with its induced induced
linear connection, then there exists an affine transformation M̃ '−→ Rn.
Next M = M̃/Γ where Γ is a discrete subgroup of

Aff(M̃,∇) ' GL(n,R) oRn

hence commuting with Aff(M̃,∇)0 ' GL+(n,R) oRn. But one can
show that only the trivial element commutes with connected component
of GL(n,R) oRn, hence Γ is trivial and M is itself simply connected i.e
M̃ = M, this completes the proof.
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Main Results

Theorem 7
Let M be an n-dimensional manifold with an affine connection and
assume that dimAff(M,∇) > n2. Then ∇ is torsion-free.

This result is a consequence of the following algebraic Lemma :

Lemma 8
Let V ba an n-dimensional vector space and T : V × V −→ V a
non-trivial skew-symmetric bilinear map i.e T ∈ V ⊗ Λ2V ∗. Denote H
the subgroup of linear transformation preserving T , then dimH ≤ n2 − n.
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Main Results

Proof of the Theorem.
Denote G := Aff(M,∇) then let x ∈ M and denote Gx the isotropy at x
for the natural action of G on M, then from G/Gx ' G · x we get :

dim(Gx ) ≥ dim(G)− dim(M) > n2 − n (5)

On the other hand denote T∇ the torsion tensor of ∇, then for every
f ∈ Gx we get that :

T∇x (Tx f (u),Tx f (v)) = Tx f (T∇x (u, v)), u, v ∈ TxM.

Therefore the group {Tx f , f ∈ Gx} ' Gx preserves T∇x , but according to
the previous Lemma and (5) we conclude that T∇x = 0 for any x ∈ M, i.e
∇ is torsion-free.
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Main Results

Another result in the same spirit is the following Theorem due to Egorov
and can be proved by essentially the same procedure :

Theorem 9
Let M be an n-dimensional manifold and ∇ a linear connection on M
such that dimAff(M,∇) > n2. Then ∇ has neither torsion nor curvature
provided that n ≥ 4.
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The affine group of a Riemannian manifold

The goal of this part it to prove the following Result :

Yano’s Theorem
Let (M, 〈 , 〉) be a compact Riemannian manifold with Levi-Civita
connection ∇. Then Aff(M,∇)0 = Isom(M, 〈 , 〉)0.
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Holonomy

Let M be an n-dimensional manifold and ∇ a linear connection on M.
For any smooth curve γ : [a, b] −→ M one can define the linear map
τγa,b : Tγ(a)M −→ Tγ(b)M by the formula τγa,b(v) = V (b) where
V ∈ Γ(γ−1TM) is the parallel transport of v along γ (relative to ∇).
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Holonomy

Proposition 1.1

1 τγa,b does not depend on the orientation-preserving parametrization
of the curve γ.

2 Denote γ1 := γ|[a,t0] and γ2 := γ|[t0,b] i.e γ = γ1 ∗ γ2, then :

τγa,b = τγ2
t0,b ◦ τ

γ1
a,t0 .

3 For any smooth curve γ, τγa,b is an isomorphism and its inverse is
exactly the linear operator

τγ
−

a,b : Tγ(b)M −→ τγ(a)M

with γ−(t) = γ(a + b − t).
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Holonomy

These properties allows to extend the definition of τγa,b for piecewise
smooth curves γ : [a, b] −→ M by setting :

τγa,b := τγtk ,b ◦ τ
γ
tk−1,tk ◦ · · · ◦ τ

γ
t1,t2 ◦ τ

γ
a,t1 ,

where a = t0 < t1 < · · · < tk < tk+1 = b is any subdivision of [a, b] such
that the curve γ[ti ,ti+1] is smooth. The previous properties extend to this
situation as well :
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Holonomy

Proposition 1.2
Let M be a smooth manifold with a linear connection ∇. Then :

1 τγa,b does not depend on the orientation-preserving parametrization
of the piecewise smooth curve γ : [a, b] −→ M.

2 Given two piecewise smooth curves γ1 : [a, b] −→ M and
γ2 : [b, c] −→ M such that γ2(b) = γ1(b) then τγ1∗γ2

a,c = τγ2
b,c ◦ τ

γ1
a,b.

3 For any piecewise smooth curve γ : [a, b] −→ M, τγa,b is invertible
with inverse τγ

−

a,b .
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Holonomy

It is more convenient therefore to denote τγa,b by τγγ(a),γ(b) instead or just
τγγ(a) when γ is a loop. Fix x0 ∈ M and define :

Holx0 (M,∇) := {τγx0
: Tx0M

'−→ Tx0M, γ is a loop based at x0}.

Using the above observations, it is clear that Holx0 (M,∇) is a subgroup
of GL(Tx0M) called the holonomy group of (M,∇) at x0. We also define
the restricted holonomy of (M,∇) at x0 to be :

H̃olx0 (M,∇) := {τγx0
: Tx0M

'−→ Tx0M, γ is a contractible loop based at x0},

which is obviously a subgroup of the holonomy group since concatenation
and inverse of contractible loops remains contractible. It is also
straightforward to see that H̃olx0 (M,∇) is normal in Holx0 (M,∇).
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Holonomy

Theorem 10
Let M be a smooth manifold and ∇ a linear connection on M. The
holonomy group Holx0 (M,∇) possesses the structure of an (immersed)
Lie subgroup of GL(Tx0M) and H̃olx0 (M,∇) = Holx0 (M,∇)0.
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Holonomy

Proposition 1.3

Let M be a connected manifold with a linear connection ∇ and let
x , y ∈ M. Then for any piecewise smooth curve γ : [a, b] −→ M joining x
to y, the map :

Holx (M,∇) −→ Holy (M,∇), g 7→ τγx ,y ◦ g ◦ (τγx ,y )−1,

is an isomorphism.
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De Rham decomposition Theorem

Let (M, 〈 , 〉) be a connected Riemannian manifold with Levi-Civita
connection ∇. Then following that ∇〈 , 〉 = 0 we get that for any
smooth curve γ : [a, b] −→ M and any V ,W ∈ Γ(γ−1TM) :

d
dt 〈V (t),W (t)〉 = 〈Dγ̇V (t),W (t)〉+ 〈V (t),Dγ̇W (t)〉.

In particular if V and W are parallel along γ then t 7→ 〈V (t),W (t)〉 is a
constant map and therefore 〈τγa,b(v), τγa,b(w)〉 = 〈v ,w〉. This leads to the
following result :
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De Rham decomposition Theorem

Proposition 2.1
Let (M, 〈 , 〉) be a Riemannian manifold with Levi-Civita connection ∇.
Then Holx (M,∇) ⊂ O(TxM, 〈 , 〉) for any x ∈ M.
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De Rham decomposition Theorem

For any x ∈ M, we will say that TxM is irreducibe if it does not admit
any proper, non-trival subspace that is invariant by the action of the
holonomy group at x .

In view of Proposition 1.3 we see that if TxM is irreducible then TyM is
also irreducible for any y ∈ M. This suggests the following definition :
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De Rham decomposition Theorem

Definition 2.1
A Riemannian manifold (M, 〈 , 〉) is said to be irreducible if TxM is
irreducible for some (hence every) x ∈ M.
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De Rham decomposition Theorem

Theorem 11 (De Rham decomposition theorem)
A simply connected, complete Riemannian manifold (M, 〈 , 〉) is isometric
to the direct product M0 × . . . ,×Mk where M0 is a Euclidean space and
M1, . . . ,Mk are all simply connected, irreducible Riemannian manifolds.
Such a decomposition is a unique up to the order of the factors involved.
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The affine group of a Riemannian manifold

Corollary 3.1

Let (M, 〈 , 〉) be a simply connected, complete Riemannian manifold and
M = M0 × · · · ×Mk its de Rham decomposition. Let x = (x0, . . . , xk).

1 The identification

Holx1 (M1, 〈 , 〉)× · · · ×Holxk (Mk , 〈 , 〉) 7→ Holx (M, 〈 , 〉)

given by (τγ1
x1
, . . . , τγk

xk
) 7→ τα1

x ◦ · · · ◦ ταk
x is an isomorphism, where

αi is the loop given by αi (t) = (x1, . . . , γi (t), . . . , xk).
2 Under the previous identification, Holxi (Mi , 〈 , 〉) is a normal

subgroup of Holx (M, 〈 , 〉) acting trivially on TxjMj for j 6= i and
irreducibly on TxiMi .

3 For any f ∈ Aff(M,∇) and any i = 1, . . . , k,

Tx f (Tx0M0) = Tf (x)0M0, and Tx f (TxiMi ) = Tf (x)jMj ,

for some j = 1, . . . , k. If f ∈ Aff(M,∇)0, Tx f (TxiMi ) = Tf (x)iMi .60



Proof.
We only prove the third point. Let f ∈ Aff(M,∇) and choose a piecewise
smooth loop γ : [0, 1] −→ M based at f (x). Then for any v ∈ Tx0M0 :

τγf (x)(Tx f (v)) = Tx f (τ f −1◦γ
x (v)) = Tx f (v),

so Tx f (v) is invariant by Holf (x)(M,∇) thus Tx f (Tx0M0) = Tf (x)0M0.
On the other hand, if w ∈ TxiMi for i 6= 0 then :

τγf (x)(Tx f (w)) = Tx f (τ f −1◦γ
x (w)) ∈ Tx f (TxiMi ),

thus Tx f (TxiMi ) is invariant, furthermore if V ⊂ Tx f (TxiMi ) is any
invariant subspace then in the same way (Tx f )−1(V ) is an invariant
subspace of TxiMi thus it is either trivial or equal to TxiMi proving that
Tx f (TxiMi ) is irreducible, in particular one gets the decomposition of
Tf (x)M into the sum of irreducible subspaces :

Tf (x)M = Tx f (Tx0M0)⊕ · · · ⊕ Tx f (TxkMk),

and by uniqueness of such decomposition we conclude that
Tx f (TxiMi ) = Tf (x)jMj for some j = 1, . . . , k.
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The affine group of a Riemannian manifold

Proof. (Continued)
Next let X be a complete affine vector field on M i.e X ∈ aff(M,∇), and
consider the curve γ(t) = exp(tX ) · x . Let vi ∈ TxiMi , and consider
u : R −→ R given by :

u(t) = 〈Tx exp(tX )(vi ), τγ0,t(vi )〉γ(t).

Then u is a smooth function satisfying u(0) = 〈vi , vi〉x 6= 0 and therefore
u(t) 6= 0 for −δ < t < δ, which shows that Tx exp(tX )(vi ) ∈ Tγ(t)iMi for
all −δ < t < δ. In fact since TxiMi is finite-dimensional, one can choose
δ > 0 small enough so that

Tx exp(tX )(TxiMi ) ∈ Tγ(t)iMi ,

for any −δ < t < δ. The result follows from the fact that Aff(M,∇)0 is
generated by 1-parameter subgroups.
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The affine group of a Riemannian manifold

Theorem 12

Let M = M0 × · · · ×Mk be the de Rham decomposition of a complete,
simply connected Riemannian manifold (M, 〈 , 〉).Then :

Isom(M, 〈 , 〉)0 = Isom(M0, 〈 , 〉)0 × · · · × Isom(Mk , 〈 , 〉)0,

Aff(M,∇)0 = Aff(M0,∇)0 × · · · ×Aff(Mk ,∇)0,

where ∇ is the Levi-Civita connection of M.
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Proof.
Consider the homomorphism Ψ : Diff(M0)× · · · ×Diff(Mk) −→ Diff(M)
which corresponds to any k-tuple of diffeomorphisms (f0, . . . , fk) the
transformation f : M −→ M given by :

f (x0, . . . , xk) = (f0(x0), . . . , fk(xk)).
Clearly Ψ is continuous and injective. We claim that f = Ψ(f0, . . . , fk) is
an affine transformation if and only if fi is an affine transformation for
any 0 ≤ i ≤ k. Indeed let γ : [0, 1] −→ M be any piecewise smooth curve
and write γ := (γ0, . . . , γk) then choose v = v0 ⊕ · · · ⊕ vk ∈ Tγ(0)M with
vi ∈ Tγi (0)Mi , then :

Tγ(1)f ◦τγ0,1(v) =
k∑

i=1
Tyi fi (τ

γi
0,1(vi )), τ f ◦γ

0,1 (Tγ(0)f (v)) =
k∑

i=1
τ fi◦γi

0,1 (Txi fi (vi )),

which shows that f preserves parallel transports on M if and only if each
fi does so on Mi proving the claim. One can also prove in a similar way
that f is an isometry if and only if every fi is an isometry. In particular :

Ψ(Aff(M0)× · · · ×Aff(Mk)) ⊂ Aff(M)
, Ψ(Isom(M0)× · · · × Isom(Mk)) ⊂ Isom(M).
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Proof. (Continued)
Let f ∈ Aff(M,∇)0 and pri : M −→ Mi be the projection on the i-th
component then denote gi := pri ◦ f , we will show that gi (x0, . . . , xk)
only depends on xi . Indeed let x = (x0, . . . , xk) ∈ M, j 6= i and
vj ∈ TxjMj then by (3) of Corollary 3.1 :

Txgi (vj) = Tf (x)pri (Tx f (vj)︸ ︷︷ ︸
∈Mj

) = 0

Therefore if we fix (a0, . . . , ak) ∈ M and define fi : Mi −→ Mi by the
expession :

fi (y) := gi (a0, . . . , y , . . . , ak),

then fi is a well-defined diffeomorphism of Mi and f = Ψ(f0, . . . , fk). It
also follows that if f ∈ Isom(M, 〈 , 〉)0 then each fi is an isometry.

65



The affine group of a Riemannian manifold

Theorem 13

Let (M, 〈 , 〉) be a complete, irreducible Riemannian manifold, then
Aff(M,∇) = Isom(M, 〈 , 〉) except when M is a 1-dimensional Euclidean
space.
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The affine group of a Riemannian manifold

The proof of this Theorem will be done in two steps : First one proves
that on any such manifold, any affine transformation is homothetic and if
furthermore (M, 〈 , 〉) is not Euclidean then homothetic transformations
are isometries, the result follows then by observing that only
1-dimensional Euclidean spaces can be irreducible.
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The affine group of a Riemannian manifold

Let (M, 〈 , 〉) be a Riemannian manifold, and recall that f ∈ Diff(M) is
said to be a homothetic transformation if there exists a positive constant
c > 0 such that

〈Tx f (v),Tx f (w)〉 = c2〈v ,w〉

for all x ∈ M and v ,w ∈ TxM, i.e f ∗〈 , 〉 = c2〈 , 〉.
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The affine group of a Riemannian manifold

If ∇ is the Levi-Civita of (M, 〈 , 〉), then the Levi-Civita connection ∇̃ for
f ∗〈 , 〉 is given by :

∇̃XY := f −1
∗ (∇f∗X f∗Y ), (6)

When f : M −→ M is a homothetic transformation then 〈 , 〉 and f ∗〈 , 〉
share the same Levi-Civita connection i.e ∇̃ = ∇, hence any homothetic
transformation is an affine transformation. Conversely :
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The affine group of a Riemannian manifold

Lemma 14
If (M, 〈 , 〉) is an irreducible Riemannian manifold, then every affine
transformation f : M −→ M is homothetic.
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Proof. Clearly 〈 , 〉 and f ∗〈 , 〉 define the same Levi-Civita ∇.

Recall that if G ⊂ O(V , 〈 , 〉) acts irreducibly on a Euclidean vector
space (V , 〈 , 〉) and preserves a symmetric bilinear form B, then we can
find c > 0 such that B = c2〈 , 〉. Applying this fact to

(V , 〈 , 〉) = (TxM, 〈 , 〉x ), G = Holx (M, 〈 , 〉) and B = (f ∗〈 , 〉)x ,

we obtain that for any x ∈ M, (f ∗〈 , 〉)x = c2
x 〈 , 〉x for some cx > 0.

Finally, if y ∈ M is another point and γ : [0, 1] −→ M is a piecewise
smooth curve joining x to y , then for every v ∈ TxM :

c2
y 〈τγx (v), τγx (v)〉y = 〈Ty f (τγx (v)),Ty f (τγx (v))〉f (y)

= 〈τ f ◦γ
f (x)(Tx f (v)), τ f ◦γ

f (x)(Tx f (v))〉f (y)

= 〈Tx f (v),Tx f (v)〉f (x)

= c2
x 〈v , v〉x .

Since 〈v , v〉x = 〈τγx (v), τγx (v)〉y for any v ∈ TxM we get that cx = cy ,
completing the proof.
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The affine group of a Riemannian manifold

Lemma 15
If (M, 〈 , 〉) is a complete Riemannian manifold which is not locally
Euclidean, then every homothetic transformation is an isometry.

72



Proof.
Suppose that (M, 〈 , 〉) admits a homothetic transformation
f : M −→ M that isn’t an isometry, and write f ∗〈 , 〉 = c2〈 , 〉 with
c > 0. Next notice that f −1 is homothetic as well with ration 1/c,
therefore we suppose without loss of generality that 0 < c < 1.

We start by proving that f has a fixed point. Denote d : M ×M −→ R+

the geodesic distance and take an arbitrary point x ∈ M then put
` := d(x , f (x)). Let γ : [0, 1] −→ M be a minimizing geodesic joining x
to f (x), which exists since M is complete, then f i ◦ γ is a smooth curve
joining f i (x) and f i+1(x) with length :

`i =
∫ 1

0
〈(f i ◦ γ)′(t), (f i ◦ γ)′(t)〉

1
2
f i◦γ(t)dt = c i`,

Therefore if m, n ∈ N are such that m < n then :

d(f m(x), f n(x)) ≤
n−1∑
i=m

d(f i (x), f i+1(x)) ≤
n+1∑
i=m

`i =
n+1∑
i=m

c i` ≤ cm`

1− c ,

and thus (f m(x))m is a Cauchy sequence in (M, d) hence converges to
some x∗ ∈ M since M is complete.
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Proof. (Continued)
Now x∗ is obviously a fixed point of f , furthermore x∗ does not depend
on the choice of x , indeed given z ∈ M and α a geodesic joining z to x∗,
we get that f m ◦ α is a curve joining f m(z) to f m(x∗) = x∗ and so :

d(f m(z), x∗) ≤ `(f m ◦ α) = cm`(α) −→
m→+∞

0. (7)

Now fix a neighborhood U of x∗ in M with compact closure. Then there
exists a constant K∗ > 0 such that for any y ∈ U and any unit vectors
v1, v2 ∈ TyM :

|〈Ry (v1, v2)v1, v2〉y | ≤ K∗, (8)

where R denotes the curvature tensor of (M, 〈 , 〉). Since f is also an
affine transformation, then for any z ∈ M and any orthonormal family
{v ,w} of TzM :

〈Rf m(z)(f m
∗ v , f m

∗ w)f m
∗ v , f m

∗ w〉 = 〈f m
∗ (Rz (v ,w)v), f m

∗ w〉 = c2m〈Rz (v ,w)v ,w〉.
(9)
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Proof. (Continued)
According to (7) there exists N ∈ N such that f m(z) ∈ U for any m ≥ N,
moreover ‖f m

∗ v‖= ‖f m
∗ w‖= cm, thus using (8) :

|〈Rf m(z)(f m
∗ v , f m

∗ w)f m
∗ v , f m

∗ w〉| ≤ K∗‖f m
∗ v‖2‖f m

∗ w‖2= c4mK∗,

and finally (9) gives that |〈Rz (v ,w)v ,w〉| ≤ c2mK∗ for every m ≥ N. We
conclude that 〈Rz (v ,w)v ,w〉 = 0 for every z ∈ M and any orthonormal
family {v ,w} of TzM i.e (M, 〈 , 〉) is locally Euclidean.

75



The affine group of a Riemannian manifold

Theorems 12 and 13 have a number of interesting consequences, before
we state them we need to make some remarks :
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The affine group of a Riemannian manifold

Let X be an affine vector field on a complete Riemannian manifold
(M, 〈 , 〉) and denote M̃ the universal cover of M with the induced
metric p∗〈 , 〉 where p : M̃ −→ M is the natural projection, then let
M̃ = M0 × · · · ×Mk be its de Rham decomposition.

Next denote X̃ the lift of X to M̃, i.e the unique vector field on M̃
satisfying

Tzp(X̃z ) = Xp(z),

then X̃ is an affine transformation and since X is complete, X̃ is also
complete hence an element of aff(M̃,∇). Moreover X̃ is Killing if and
only if X is Killing.
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The affine group of a Riemannian manifold

By Theorem 12, we have aff(M̃,∇) ' aff(M0,∇)× · · · × aff(Mk ,∇) and
so X̃ corresponds to a unique family (X0, . . . ,Xk) such that

Xi ∈ aff(Mi ,∇).

According to Theorem 13 gives that X1, . . . ,Xk are all Killing vector
fields, therefore X will be Killing if and only if X0 is.
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The affine group of a Riemannian manifold

Corollary 3.2

If M is a complete whose restricted holonomy group H̃olx (M, 〈 , 〉) have
no nonzero invariant vector, then Aff(M,∇)0 = Isom(M, 〈 , 〉)0, where
∇ is the Levi-Civita connection of (M, 〈 , 〉).
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The affine group of a Riemannian manifold

Proof.
The restricted holonomy group H̃olx (M, 〈 , 〉) is isomorphic to the
restricted holonomy group of its universal cover M̃, this is due to the fact
that contractible loops on M lift to (contractible) loops on M̃, this gives
that the map :

H̃olz (M̃, 〈 , 〉) −→ H̃olp(z)(M, 〈 , 〉), τγx 7→ Tzp ◦ τγz ◦ (Tzp)−1 = τp◦γ
z ,

is an isomorphism for any z ∈ M̃, moreover the restricted holonomy
group of M̃ coincides with the total holonomy group since M̃ is simply
connected. So our assumption just states that M̃ has no Euclidean factor
i.e M0 is a point, which gives in view of the previous remarks that every
affine vector field on M is a Killing vector field.
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The affine group of a Riemannian manifold

Corollary 3.3
If X is an affine vector field of a complete Riemannian manifold (M, 〈 , 〉)
and if the length of X is bounded, then X is a Killing vector field.
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The affine group of a Riemannian manifold
Proof.
Denote M̃ the universal cover of M with the induced metric g := p∗〈 , 〉
where p : M̃ −→ M is the natural projection and let M̃ = M0 × · · · ×Mk
be its De Rham decomposition. Next let X̃ be the lift of X to M̃ and
write X̃ = (X0, . . . ,Xk) such that Xi ∈ aff(Mi ,∇). Then :

g(X0,X0) ≤ g(X̃ , X̃ ) = 〈X ,X 〉,

hence if X has bounded length then so does X0. Write X0 =
∑
ξi∂/∂x i

in some (global) Euclidean coordinate system x1, . . . , x r of M0. Since X0
is an affine vector field then it satisfies :

(LX0 ◦ ∇Y −∇Y ◦ LX0 )Z = ∇[X0,Z ]Y , i.e LX0∇ = 0.

For Y = ∂/∂x j and Z = ∂/∂xk we get that ∇Y = 0, ∇Z = 0 hence by
the previous expression ∇Y [X0,Z ] = 0 which is equivalent to :

∂2ξi

∂x j∂xk = 0, i , j , k = 1, . . . r .
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The affine group of a Riemannian manifold

Proof. (Continued)

This means that

X0 =
r∑

i=1

( r∑
j=1

aijx j + bi

)
∂/∂x i

where aij and bi are constants, but since X0 has bounded length it follows
that aij = 0 for all i , j = 1, . . . , r proving that X0 is a linear combination
of ∂/∂x1, . . . , ∂/∂x r each of which is a Killing vector field on M0, we
thus conclude that X0 is Killing. By the previous remarks, X is a Killing
vector field on M.
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The affine group of a Riemannian manifold

If M is a compact Riemannian manifold then the length of any vector
field is bounded, therefore :

Corollary 3.4 (Yano’s Theorem)
Let (M, 〈 , 〉) be a compact Riemannian manifold with Levi-Civita
connection ∇. Then Aff(M,∇)0 = Isom(M, 〈 , 〉)0.
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END

Thanks for your attention

85


	Introduction
	Preliminaries
	The Affine group of a Manifold as a Lie Group
	Isometry Group of a Riemannian Manifold as a Lie Group

	Results on the dimension of the group of affine transformations
	Parallel Transport and Horizontal Lift
	Main Results

	The affine group of a Riemannian manifold
	Holonomy
	De Rham decomposition Theorem
	Main results


