Classification of 3-step nilpotent, Einstein Lorentzian Lie algebras with 1-dimensional non-degenerate center

Presented by :

Oumaima Tibssirte

Advisor :

Mohamed Boucetta

Classification of 3-step nilpotent, Einstein Lorentzian Lie algebras with 1-dimensional non-degenerate center

Introduction

Theorem 1 (Milnor)

Let G be a nilpotent non-abelian Lie group and \langle , \rangle a left-invariant Riemannian metric on G. Then (G, \langle , \rangle) has a direction of strictly positive Ricci curvature and a direction of strictly negative Ricci curvature.

Introduction

Theorem 2

Let $(\mathfrak{g}, \langle , \rangle)$ be a 2-step nilpotent, Einstein Lorentzian Lie algebra. Then \mathfrak{g} is Ricci-flat with degnerate center.

Theorem 3

Let \mathfrak{g} be a nilpotent Lie algebra and \langle , \rangle be a lorentzian Einstein metric in \mathfrak{g} i.e $\operatorname{Ric}_{\mathfrak{g}} = \lambda \operatorname{Id}_{\mathfrak{g}}$. Suppose that there exists $e \in Z(\mathfrak{g})$ such that $e \neq 0$ and $\langle e, e \rangle = 0$. Then :

Introduction

- **1** The center $Z(\mathfrak{g})$ is degenerate and $\lambda = 0$.
- 2 The Lie algebra (𝔅, [,], ⟨, ⟩) is obtained by a double extension process with parameters (K, D, µ = 0, b) and D is nilpotent.

Introduction

This result allows to give a list of all Lorentzian Einstein metrics on nilpotent Lie algebras up to dimension 5.

QUESTION : Let $(\mathfrak{g}, \langle , \rangle)$ be a nilpotent, Einstein Lorentzian Lie algebra. Does \mathfrak{g} have a degenerate center?

The answer is no. Consider the 6-dimensional Lie algebra $\mathfrak{g} := \operatorname{span}\{e_1, \ldots, e_6\}$ given by :

$$[e_1, e_3] = e_6, \ [e_1, e_5] = e_6, \ [e_2, e_3] = -e_6, [e_2, e_4] = e_6, [e_3, e_4] = e_1, [e_3, e_5] = e_2$$

 $[e_4, e_5] = e_1 + e_2.$

Then g is 3-step nilpotent. Moreover if we define on g the inner product \langle , \rangle such that $\{e_1, \ldots, e_6\}$ is an orthonormal basis with $\langle e_1, e_1 \rangle = -1$, then $(\mathfrak{g}, \langle , \rangle)$ is Ricci-flat Lorentzian with non-degenerate (Euclidean) center $Z(\mathfrak{g}) = \mathbb{R}e_6$.

Theorem 4

Let $(\mathfrak{h}, \langle , \rangle)$ be a 3-step nilpotent Lorentzian Lie algebra with 1-dimensional center. Assume $Z(\mathfrak{h})$ is non-degenerate, then \langle , \rangle is Einstein if and only if it is Ricci-flat and either :

(i) dim $\mathfrak{h} = 6$ and \mathfrak{h} is isomorphic to $L_{6,19}(-1)$, i.e., \mathfrak{h} has a basis $(f_i)_{i=1}^6$ such that the non vanishing Lie brackets are

$$[f_1, f_2] = f_4, [f_1, f_3] = f_5, [f_2, f_4] = f_6, [f_3, f_5] = -f_6$$

and the metric is given by :

$$\langle \ , \ \rangle := f_1^* \otimes f_1^* + 2f_2^* \otimes f_2^* + 2f_3^* \otimes f_3^* + 4\alpha^4 f_6^* \otimes f_6^* - 2\alpha^2 f_4^* \odot f_5^*, \quad \alpha \neq 0.$$

(ii) dim $\mathfrak{h} = 7$ and \mathfrak{h} is an instance of a 1-parameter family of nilpotent Lie algebras given in a basis $\{f_i\}_{i=1}^7$ by :

$$[f_1, f_2] = f_5, \ [f_1, f_3] = f_6, \ [f_2, f_3] = f_4, \ [f_6, f_2] = (1 - r)f_7, \ [f_5, f_3] = -rf_7, \ [f_4, f_1] = f_7, \ [f_6, f_8] = -rf_7, \ [f_8, f_8] = -rf_8, \ [$$

with 0 < r < 1, and the metric has the form :

 $\langle \ , \ \rangle = f_1^* \otimes f_1^* + f_2^* \otimes f_2^* + f_3^* \otimes f_3^* - af_4^* \otimes f_4^* + arf_5^* \otimes f_5^* + a(1-r)f_6^* \otimes f_6^* + a^2f_7^* \otimes f_7^*, a > 0.$

Preliminaries

Recall that a pseudo-Euclidean vector space is a real vector space (V, \langle , \rangle) of finite dimension *n* endowed with a non degenerate symmetric inner product of signature (q, p) = (-, ..., -, +, ..., +). We suppose that $q \leq p$.

We say that (V, (,)) is Euclidean when the signature is equal to (0, n).
 We say that (V, (,)) is Lorentzian when the signature is equal to (1, n - 1).

Preliminaries

A vector subspace A of V is said to be non-degenerate if the restriction of \langle , \rangle is non-degenerate, this the same as $A \cap A^{\perp} = \{0\}$.

For a non-degenerate vector subspace A of a lorentzian vector space V, there are only two situations :

- **1** A is euclidean and A^{\perp} is lorentzian.
- **2** A is lorentzian and A^{\perp} is euclidean.

A vector $u \in V$ is called *spacelike* if $\langle u, u \rangle > 0$, *timelike* if $\langle u, u \rangle < 0$ and *isotropic* if $\langle u, u \rangle = 0$.

A basis (e_1, \ldots, e_n) of V is called orthogonal if we have the following property, for any $i, j = 1, \ldots, n$ such as $i \neq j$, $\langle e_i, e_j \rangle = 0$. This basis is called orthonormal if it is orthogonal and, for $i = 1, \ldots, n \langle e_i, e_i \rangle^2 = 1$.

A pseudo-Euclidean basis of V is a basis $(e_1, \bar{e}_2, \ldots, e_q, \bar{e}_q, f_1, \ldots, f_{n-2q})$ for which the non vanishing products are

 $\langle \overline{\mathbf{e}}_i, \mathbf{e}_i \rangle = \langle f_j, f_j \rangle = 1, \ i \in \{1, \dots, q\} \text{ and } j \in \{1, \dots, n-2q\}.$

We will refer to a Lie algebra $(\mathfrak{g}, [,])$ endowed with a non degenerate symmetric inner product \langle , \rangle as a pseudo-Euclidean Lie algebra. The Levi-Civita product is the bilinear map $L : \mathfrak{g} \times \mathfrak{g} \longrightarrow \mathfrak{g}$ defined by the Koszul formula :

$$2\langle \mathbf{L}_{u}\mathbf{v},\mathbf{w}\rangle = \langle [u,v],\mathbf{w}\rangle + \langle [w,u],\mathbf{v}\rangle + \langle [w,v],u\rangle.$$

Its associated curvature is the bilinear map $\mathcal{K} : \mathfrak{g} \times \mathfrak{g} \longrightarrow \operatorname{End}(\mathfrak{g})$ given by :

$$\mathcal{K}(u,v)w = \mathcal{L}_{[u,v]}w - \mathcal{L}_{u}\mathcal{L}_{v}w + \mathcal{L}_{v}\mathcal{L}_{u}w,$$

and the Ricci curvature is the bilinear map $\operatorname{ric}:\mathfrak{g}\times\mathfrak{g}\longrightarrow\mathbb{R}$ defined by :

$$\operatorname{ric}(u, v) = \operatorname{tr}(w \mapsto \mathcal{K}(u, w)v).$$

Preliminaries

Denote by $\operatorname{Ric} : \mathfrak{g} \longrightarrow \mathfrak{g}$ the Ricci operator, i.e the endomorphism given by :

 $\operatorname{ric}(u, v) = \langle \operatorname{Ric}(u), v \rangle.$

Note that $(\mathfrak{g}, \langle , \rangle)$ is said to be Einstein if $\operatorname{Ric} = \lambda \operatorname{Id}_{\mathfrak{g}}$ with $\lambda \in \mathbb{R}$. It is called Ricci-flat when $\lambda = 0$.

It is well known that the ricci curvature is also given by :

$$\operatorname{ric}(u,v) = -\frac{1}{2}\operatorname{tr}(\operatorname{ad}_u \circ \operatorname{ad}_v) - \frac{1}{2}\operatorname{tr}(\operatorname{ad}_u \circ \operatorname{ad}_v^*) - \frac{1}{4}\operatorname{tr}(\operatorname{J}_u \circ \operatorname{J}_v) - \frac{1}{2}\langle \operatorname{ad}_H u, v \rangle - \frac{1}{2}\langle \operatorname{ad}_H v, u \rangle,$$
(1)

where J_u is the skew-adjoint endomorphism given by $J_u v = ad_v^* u$, and H is the mean curvature vector is defined by the following relation :

$$\langle \mathrm{H}, u \rangle = \mathrm{tr}(\mathrm{ad}_u).$$

Recall that \mathfrak{g} is unimodular if and only if H = 0.

The use of equation (1) above leads to the following interesting formula :

$$\operatorname{Ric} = -\frac{1}{2}(\hat{B} + \mathcal{J}_1) + \frac{1}{4}\mathcal{J}_2 - \frac{1}{2}(\operatorname{ad}_{H} + \operatorname{ad}_{H}^*).$$
(2)

The auto-adjoint endomorphism $\hat{\mathrm{B}}$ associated to the Killing form is given by :

$$\langle \hat{\mathrm{B}} u, v \rangle = \mathrm{tr}(\mathrm{ad}_u \circ \mathrm{ad}_v).$$

We denote also by \mathcal{J}_1 and \mathcal{J}_2 the auto-adjoint endomorphisms defined by :

$$\langle \mathcal{J}_1 u, v
angle = \operatorname{tr}(\operatorname{ad}_u \circ \operatorname{ad}_v^*) \quad \text{and} \quad \langle \mathcal{J}_2 u, v
angle = -\operatorname{tr}(\operatorname{J}_u \circ \operatorname{J}_v) = \operatorname{tr}(\operatorname{J}_u \circ \operatorname{J}_v^*).$$
 (3)

Recall that the Lie algebra \mathfrak{g} is called nilpotent if the lower central series of \mathfrak{g} :

$$\mathfrak{g}^{(0)}=\mathfrak{g}, \quad \mathfrak{g}^{(k)}=[\mathfrak{g},\mathfrak{g}^{(k-1)}], \;\; k\geq 1,$$

becomes trivial, i.e $\mathfrak{g}^{(n)} = 0$ for some $n \in \mathbb{N}$.

In this case, $\hat{\rm B}=0$ and ${\rm H}=0,$ therefore the Ricci operator has the following simple expression :

$$\operatorname{Ric} = -\frac{1}{2}\mathcal{J}_1 + \frac{1}{4}\mathcal{J}_2.$$
(4)

Theorem 5

Let $(\mathfrak{g}, \langle , \rangle)$ be an Einstein Lorentzian nilpotent non-abelian Lie algebra.

- **1** If $Z(\mathfrak{g})$ is non degenerate then it is Euclidean.
- **2** If $[\mathfrak{g},\mathfrak{g}]$ is non degenerate then it is Lorentzian.
- **B** $[\mathfrak{g},\mathfrak{g}]\cap [\mathfrak{g},\mathfrak{g}]^{\perp}\subset Z(\mathfrak{g})$. Thus $[\mathfrak{g},\mathfrak{g}]$ is non-degenerate if $Z(\mathfrak{g})$ is non-degenerate.

Preliminaries

Main Results

Let $(\mathfrak{h}, \langle , \rangle_{\mathfrak{h}})$ be a Lorentzian nilpotent Lie algebra with nondegenerate Euclidean center $Z(\mathfrak{h})$ of dimension $p \geq 1$. Denote by \langle , \rangle_z the restriction of \langle , \rangle to $Z(\mathfrak{h})$, $\mathfrak{g} = Z(\mathfrak{h})^{\perp}$ and by $\langle , \rangle_{\mathfrak{g}}$ the restriction of \langle , \rangle to \mathfrak{g} . We get that

$$\mathfrak{h}=\mathfrak{g}\stackrel{\perp}{\oplus} Z(\mathfrak{h}),$$

where $(Z(\mathfrak{h}), \langle , \rangle_z)$ is an Euclidean vector space and $(\mathfrak{g}, \langle , \rangle_{\mathfrak{g}})$ is a Lorentzian vector space.

For any $u, v \in \mathfrak{g}$, we have the following decomposition :

$$[u,v] = [u,v]_{\mathfrak{g}} + \omega(u,v),$$

Then $(\mathfrak{g}, [,]_{\mathfrak{g}})$ is a Lie algebra and $\omega : \mathfrak{g} \times \mathfrak{g} \longrightarrow Z(\mathfrak{h})$ is a 2-cocycle of \mathfrak{g} with respect to the trivial representation of \mathfrak{g} in $Z(\mathfrak{h})$, namely, for any $u, v, w \in \mathfrak{g}$,

$$\omega([u,v]_{\mathfrak{g}},w)+\omega([v,w]_{\mathfrak{g}},u)+\omega([w,u]_{\mathfrak{g}},v)=0,$$

or simply $d\omega = 0$ where d denotes the Chevalley-Eilenberg differential. Moreover,

$$Z(\mathfrak{g}) \cap \ker \omega = \{0\},$$
 (5)

and $(\mathfrak{h}, [,])$ is k-step nilpotent if and only if $(\mathfrak{g}, [,]_{\mathfrak{g}})$ is (k-1)-step nilpotent.

Main Results

Definition 0.1

Let $(\mathfrak{h}, [,], \langle , \rangle_{\mathfrak{h}})$ be a Lorentzian nilpotent Lie algebra with nondegenerate Euclidean center. We call the triple $(\mathfrak{g}, \langle , \rangle_{\mathfrak{g}}, [,]_{\mathfrak{g}}), (Z(\mathfrak{h}), \langle , \rangle_{z})$ and $\omega \in Z^{2}(\mathfrak{g}, Z(\mathfrak{h}))$ the attributes of $(\mathfrak{h}, [,], \langle , \rangle_{\mathfrak{h}})$.

We proceed now to express the Ricci curvature of \mathfrak{h} in terms of its attributes

$$(\mathfrak{g},\langle\;,\;
angle_{\mathfrak{g}},[\;,\;]_{\mathfrak{g}}),\;(Z(\mathfrak{h}),\langle\;,\;
angle_{z}) \;\; ext{ and }\;\;\omega\in Z^{2}(\mathfrak{g},Z(\mathfrak{h})).$$

For any $x \in Z(\mathfrak{h})$, we define the endomorphism $S_x : \mathfrak{g} \longrightarrow \mathfrak{g}$ by the expression :

$$\langle S_x(u),v\rangle := \langle \omega(u,v),x\rangle.$$

Since ω is alternating, then S_x is skew-symmetric. Let $\mathcal{B} := (z_1, \ldots, z_p)$ be a basis of $Z(\mathfrak{h})$. There exists a unique family (S_1, \ldots, S_p) of allow symmetric order exists a symmetric for any $\omega \in \mathcal{I}$.

of skew-symmetric endomorphisms such that, for any $u, v \in \mathfrak{g}$,

$$\omega(u,v) = \sum_{i=1}^{p} \langle S_i u, v \rangle_{\mathfrak{g}} z_i.$$
(6)

This family will be called ω -structure endomorphisms associated to \mathcal{B} . One can check that $S_i = S_{z_i}$ when \mathcal{B} is orthonormal.

Main Results

Proposition 0.1

The Ricci curvature ${\rm ric}_{\mathfrak{h}}$ of $(\mathfrak{h},[\;,\;],\langle\;,\;\rangle_{\mathfrak{h}})$ is given by

$$\begin{split} \operatorname{ric}_{\mathfrak{h}}(u,v) &= \operatorname{ric}_{\mathfrak{g}}(u,v) - \frac{1}{2}\operatorname{tr}(\omega_{u}^{*} \circ \omega_{v}), \quad u,v \in \mathfrak{g}, \\ \operatorname{ric}_{\mathfrak{h}}(x,y) &= -\frac{1}{4}\operatorname{tr}(S_{x} \circ S_{y}), \quad x,y \in Z(\mathfrak{h}), \\ \operatorname{ric}_{\mathfrak{h}}(u,x) &= -\frac{1}{4}\operatorname{tr}(J_{u} \circ S_{x}), \quad x \in Z(\mathfrak{h}), u \in \mathfrak{g}, \end{split}$$

where $\operatorname{ric}_{\mathfrak{g}}$ is the Ricci curvature of $(\mathfrak{g}, [,]_{\mathfrak{g}}, \langle, \rangle_{\mathfrak{g}})$.

Corollary 0.1

 $(\mathfrak{h}, [,], \langle , \rangle_{\mathfrak{h}}) \text{ is } \lambda \text{-Einstein if and only if for any } u, v \in \mathfrak{g} \text{ and } x, y \in Z(\mathfrak{h}),$ $\operatorname{ric}_{\mathfrak{g}}(u, v) = \lambda \langle u, v \rangle_{\mathfrak{g}} + \frac{1}{2} \operatorname{tr}(\omega_{u}^{*} \circ \omega_{v}), \ \operatorname{tr}(J_{u} \circ S_{x}) = 0 \quad \text{and} \quad \operatorname{tr}(S_{x} \circ S_{y}) = -4\lambda \langle x, y \rangle_{z}.$ (7)

Main Results

Main Results

Theorem 6

Let $(\mathfrak{h}, [,], \langle , \rangle_{\mathfrak{h}})$ be a nilpotent, λ -Einstein, Lorentzian Lie algebra with non-degenerate center and $(\mathfrak{g}, [,]_{\mathfrak{g}})$ the corresponding attribute of \mathfrak{h} . Then :

- **I** The derived ideal $[\mathfrak{g},\mathfrak{g}]_{\mathfrak{g}}$ of \mathfrak{g} is non-degenerate Lorentzian.
- **2** If \mathfrak{h} is 3-step nilpotent then $\lambda \geq 0$ and $Z(\mathfrak{g}) = [\mathfrak{g}, \mathfrak{g}]_{\mathfrak{g}}$.

Main Results

Definition 0.2

A pseudo-Euclidean Lie algebra $(\mathfrak{g}, [,]_{\mathfrak{g}}, \langle , \rangle_{\mathfrak{g}})$ will be called ω -quasi Einstein of type p if there exists $\lambda \in \mathbb{R}$ and a 2-cocycle ω with values in a Euclidean vector space (V, \langle , \rangle_z) of dimension p such that ker $\omega \cap Z(\mathfrak{g}) = \{0\}$ and

$$\operatorname{Ric}_{\mathfrak{g}} = \lambda \operatorname{Id}_{\mathfrak{g}} + \frac{1}{2}D, \quad \operatorname{tr}(S_x \circ S_y) = -4\lambda \langle x, y \rangle_z$$

where $S_x : \mathfrak{g} \longrightarrow \mathfrak{g}$ denotes the ω -structure endomorphism corresponding to $x \in V$ and D is given by

$$\langle Du, v \rangle_{\mathfrak{g}} = \operatorname{tr}(\omega_{u}^{*} \circ \omega_{v})$$

and $\omega_u : \mathfrak{g} \longrightarrow V$, $v \mapsto \omega(u, v)$.

ω -quasi Einstein Lie algebras of type 1

In what follows $(\mathfrak{g}, [,], \langle , \rangle)$ will always denote a 2-step nilpotent, Lorentzian, ω -quasi Einstein Lie algebra of type 1, with Einstein constant $\lambda \in \mathbb{R}$.

In view of Theorem 6, we get that $\lambda \ge 0$ and $[\mathfrak{g}, \mathfrak{g}] = Z(\mathfrak{g})$ is non-degenerate Lorentzian, this allows the decomposition :

$$\mathfrak{g} = [\mathfrak{g}, \mathfrak{g}] \stackrel{\perp}{\oplus} [\mathfrak{g}, \mathfrak{g}]^{\perp}. \tag{8}$$

Put $n = \dim[\mathfrak{g}, \mathfrak{g}]$ and $m = \dim[\mathfrak{g}, \mathfrak{g}]^{\perp}$. The crucial part is to adapt the quasi-Einstein system on \mathfrak{g}

$$\operatorname{Ric}_{\mathfrak{g}} = \lambda \operatorname{Id}_{\mathfrak{g}} + \frac{1}{2}D, \quad \operatorname{tr}(S_x \circ S_y) = -4\lambda \langle x, y \rangle_z,$$

to the decomposition given by (8), this leads to the following system :

2-step nilpotent, ω -quasi Einstein Lie algebras of type 1

$$\begin{cases} -\frac{1}{2}J_{1}^{2} + \frac{1}{2}\sum_{j=2}^{n}J_{j}^{2} + \frac{1}{2}(L^{2} - BB^{*}) = \lambda \mathrm{Id}_{[\mathfrak{g},\mathfrak{g}]^{\perp}}, \\ -2B^{*}B - \sum_{i,j=1}^{n}\langle e_{i}, u\rangle \mathrm{tr}(J_{i} \circ J_{j})e_{j} = 4\lambda \mathrm{Id}_{[\mathfrak{g},\mathfrak{g}]}, \\ \mathrm{tr}(L^{2}) - 2\mathrm{tr}(BB^{*}) = -4\lambda, \\ LB = 0. \end{cases}$$

9)

This system is obtained by observing that $D = -S^2$ and then writing :

$$S = \begin{pmatrix} 0 & -B^* \\ B & L \end{pmatrix}, D = \begin{pmatrix} B^*B & B^*L \\ -LB & BB^* - L^2 \end{pmatrix}, \operatorname{Ric}_{\mathfrak{g}} = \begin{pmatrix} \frac{1}{4}\mathcal{J}_2 & 0 \\ 0 & -\frac{1}{2}\mathcal{J}_1 \end{pmatrix}$$

It then suffices to express \mathcal{J}_1 and \mathcal{J}_2 by means of structure endomorphisms J_1, \ldots, J_n of \mathfrak{g} corresponding to some orthonormal basis $\{e_1, \ldots, e_n\}$ of $[\mathfrak{g}, \mathfrak{g}]$ with $\langle e_1, e_1 \rangle = -1$.

2-step nilpotent, ω -quasi Einstein Lie algebras of type 1

We can in fact show that there exists an orthonormal basis $\mathcal{B}_1 = \{e_1, \ldots, e_n\}$ of $[\mathfrak{g}, \mathfrak{g}]$ with $\langle e_1, e_1 \rangle = -1$ and an orthonormal basis $\mathcal{B}_2 = \{f_1, \ldots, f_m\}$ of $[\mathfrak{g}, \mathfrak{g}]^{\perp}$ such that system (9) is given in $\mathcal{B}_1 \cup \mathcal{B}_2$ as follows :

$$\begin{cases} B^*B = \text{Diag}(-(2\lambda + \frac{1}{2}\langle e_i, e_i\rangle \text{tr}(J_i^2)), \ 1 \le i \le n) \\ \text{tr}(J_i \circ J_j) = 0, \ i \ne j \\ L^2 = \text{Diag}(0, \dots, 0, -\mu_1^2, -\mu_1^2, \dots, -\mu_r^2, -\mu_r^2), \ \mu_i \in \mathbb{R}, \end{cases}$$
(10)

and

$$J_1^2 - \sum_{k=2}^n J_k^2 = \text{Diag}\left(-\frac{1}{2}\text{tr}(J_1^2), \frac{1}{2}\text{tr}(J_2^2), \dots, \frac{1}{2}\text{tr}(J_n^2), -2\lambda, \dots, -2\lambda, -(2\lambda + \mu_1^2), \dots, -(2\lambda + \mu_r^2)\right).$$
(11)

The first result concerning this system of equations is a direct consequence of the following Lemma :

_emma ˈ

Let M_1, \ldots, M_n be a family of skew-symmetric $m \times m$ matrices with $2 \le n \le m$ and let (v_1, \ldots, v_{m-n}) be a family of nonpositive real numbers such that :

$$M_1^2 - \sum_{l=2}^n M_l^2 = \text{Diag}\left(-\frac{1}{2}\text{tr}(M_1^2), \frac{1}{2}\text{tr}(M_2^2), \dots, \frac{1}{2}\text{tr}(M_n^2), v_1, \dots, v_{m-n}\right).$$
(12)

Then

$$(v_1,\ldots,v_{m-n})=(0,\ldots,0).$$

Moreover, for any $i \in \{2, ..., n\}$, rank $(M_i) \leq 2$. If furthermore tr $(M_i \circ M_j) = 0$, $i \neq j$ then we can find an orthonomal basis $\{u_1, ..., u_n, w_1, ..., w_{m-n}\}$ of \mathbb{R}^m such that for all $2 \leq i, j \leq n$:

$$M_i(u_1) = \alpha_i u_i, \ M_i(u_j) = -\delta_{ij}\alpha_i u_1$$
 and $M_i(w_l) = 0.$

ω -quasi Einstein Lie algebras of type 1

Applying this lemma to our situation, we get $\lambda = 0$, i.e g is quasi-Ricci-flat, L = 0and that there exists an orthonormal basis $\{u_1, \ldots, u_n, v_1, \ldots, v_{m-n}\}$ of $[\mathfrak{g}, \mathfrak{g}]^{\perp}$ such that for all $2 \leq i, j \leq n$:

$$J_i(u_1) = \alpha_i u_i, \ J_i(u_j) = -\delta_{ij}\alpha_i u_1, \quad J_i(v_k) = 0.$$

The previous system is then reduced to the following set of equations :

$$J_1^2(f_1) = J(f_1) + \alpha^2 f_1, \ J_1^2(f_i) = J(f_i) - \alpha_i^2 f_i \quad \text{and} \quad J_1^2(v) - J(v) = 0.$$
(13)

$$B^*B(e_1) = -\alpha^2 e_1, \ B^*B(e_i) = \alpha_i^2 e_i.$$
 (14)

for i = 2, ..., n, $v \in \{f_1, ..., f_n\}^{\perp}$, $\alpha^2 = \alpha_2^2 + \dots + \alpha_n^2$ and $J = J_2^2 + \dots + J_n^2$.

ω -quasi Einstein Lie algebras of type 1

1 ker $(J_1) = \mathbb{R}f_1$ and thus $J_1 : f_1^{\perp} \longrightarrow f_1^{\perp}$ is invertible, in particular *m* is odd. 2 $J_1^2(\{f_1, \dots, f_n\}^{\perp}) \subset \operatorname{span}\{u_2, \dots, u_n\}$, this gives $m - n \leq n - 1$ therefore $n \leq m \leq 2n - 1$.

3 Finally we show that either n = 2 or n = 3 which corresponds to m = 3.

If n = 2, m = 3 i.e dim $\mathfrak{g} = 5$, we get that $B(e_1) = au_1$, $B(e_2) = bv_1$, and the structure endomorphisms J_1 , J_2 of \mathfrak{g} are represented in the basis $\{u_1, u_2, v_1\}$ of $[\mathfrak{g}, \mathfrak{g}]^{\perp}$ by the matrices

$$J_2 = \left(egin{array}{ccc} 0 & -lpha & 0 \ lpha & 0 & 0 \ 0 & 0 & 0 \end{array}
ight) ext{ and } J_1 = \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & b \ 0 & -b & 0 \end{array}
ight) ext{ and } a^2 = b^2 = lpha^2.$$

2 If n = m = 3 i.e dim $\mathfrak{g} = 6$, then we find that $B(e_2) = \mp \epsilon a u_3$, $B(e_3) = \pm \epsilon b u_2$ and $B(e_1) = \pm c u_1$, moreover J_1, J_2, J_3 are represented in the basis $\{u_1, u_2, u_3\}$ by the matrices :

$$J_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\epsilon c \\ 0 & \epsilon c & 0 \end{pmatrix}, \ J_2 = \begin{pmatrix} 0 & -a & 0 \\ a & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ J_3 = \begin{pmatrix} 0 & 0 & -b \\ 0 & 0 & 0 \\ b & 0 & 0 \end{pmatrix},$$

with $c = \sqrt{a^2 + b^2}$.

Theorem 8

Let $(\mathfrak{g}, [,], \langle , \rangle)$ be a Lorentzian 2-step nilpotent Lie algebra and $\omega \in Z^2(\mathfrak{g}, \mathbb{R})$. Then \mathfrak{g} is ω -quasi λ -Einstein of type 1 if and only if $\lambda = 0$ and, up to an isomorphism, $(\mathfrak{g}, [,], \langle , \rangle, \omega)$ has one of the following forms :

1 dim $\mathfrak{g} = 5$ and there exists an orthonormal basis $\{e_1, e_2, u_1, u_2, u_3\}$ of \mathfrak{g} with $\langle e_1, e_1 \rangle = -1$ such that the non vanishing Lie brackets and ω -products are given by :

$$[u_1, u_2] = \alpha e_2, \ [u_2, u_3] = \pm \alpha e_1, \ \omega(e_2, u_3) = \epsilon \alpha, \ \omega(e_1, u_1) = \mp \epsilon \alpha, \quad \alpha \neq 0, \epsilon = \pm 1.$$
(15)

2 dim $\mathfrak{g} = 6$ and there exists an orthonormal basis $\{e_1, e_2, e_3, u_1, u_2, u_3\}$ of \mathfrak{g} such that $\langle e_1, e_1 \rangle = -1$ and the non vanishing Lie brackets and ω -products are given by :

$$\begin{cases} [u_1, u_2] = \alpha_2 e_2, \ [u_1, u_3] = \alpha_3 e_3, \ [u_2, u_3] = \epsilon \alpha e_1, \\ \omega(e_2, u_3) = \mp \epsilon \alpha_2, \ \omega(e_3, u_2) = \pm \epsilon \alpha_3, \ \omega(e_1, u_1) = \pm \alpha, \end{cases}$$
(16)

where $\alpha_2, \alpha_3 \neq 0$, $\epsilon = \pm 1$ and $\alpha = \sqrt{\alpha_2^2 + \alpha_3^2}$.

2-step nilpotent, ω -quasi Einstein Lie algebras of type 1

A Lorentzian 3-step nilpotent Lie algebras ($\mathfrak{h}, \langle , \rangle$) with non-degenerate 1-dimensional center is Einstein if and only if it is Ricci-flat and has one of the following forms :

I Either dim $\mathfrak{h} = 6$ in which case dim $[\mathfrak{h}, \mathfrak{h}] = \operatorname{codim}[\mathfrak{h}, \mathfrak{h}] = 3$ and there exists an orthonormal basis $\{x, e_1, e_2, u_1, u_2, u_3\}$ of \mathfrak{h} with $\langle e_1, e_1 \rangle = -1$ such that the Lie algebra structure is given by :

$$[u_1, u_2] = \alpha e_2, \ [u_2, u_3] = \pm \alpha e_1, \ [e_2, u_3] = \alpha x, \ [e_1, u_1] = \mp \alpha x, \ \alpha \neq 0.$$
(17)

or

$$[u_1, u_2] = \alpha e_2, \ [u_2, u_3] = \pm \alpha e_1, \ [e_2, u_3] = -\alpha x, \ [e_1, u_1] = \pm \alpha x, \ \alpha \neq 0.$$
(18)

2 dim $\mathfrak{h} = 7$ in which case dim $[\mathfrak{h}, \mathfrak{h}] = \operatorname{codim}[\mathfrak{h}, \mathfrak{h}] + 1 = 4$. Moreover there exists an orthonormal basis $\{x, e_1, e_2, e_3, u_1, u_2, u_3\}$ of \mathfrak{h} such that $\langle e_1, e_1 \rangle = -1$ and in which the Lie algebra structure is given by :

$$[u_1, u_2] = \alpha_2 e_2, \ [u_1, u_3] = \alpha_3 e_3, \ [u_2, u_3] = \epsilon \alpha e_1, \ [e_2, u_3] = \mp \epsilon \alpha_2 x,$$
(19)
$$[e_3, u_2] = \pm \epsilon \alpha_3 x, \ [e_1, u_1] = \pm \alpha x$$

ロー 一日 《三下 三下 三 うへの

where $\alpha = \sqrt{\alpha_2^2 + \alpha_3^2}$.

2-step nilpotent, ω -quasi Einstein Lie algebras of type 1

END

🗇 🗸 글 🕨 < 글 🕨

1

Thanks for your attention